Higgs Mass from Compositeness at a Multi-TeV Scale

Jiayin Gu

UC Davis

LHC Lunch November 6, 2013

based on current work with Hsin-Chia Cheng and Bogdan A. Dobrescu

Jiayin Gu

Introduction

NJL Model & Top Condensation

Top Seesaw Model

Higgs Mass and Heavy State Spectrum

Conclusion

Jiayin Gu

Introduction

- Hierarchy problem.
- One solution: no light fundamental scalar!
- Composite Higgs that no longer exists above the compositeness scale.
- No new physics at LHC yet. Are we at a crossroads?
- Small hierarchy may still exist.
- New strong dynamics at the compositeness scale.
- Usually predicts a heavy Higgs due to large quartic couplings, unless the Higgs mass is protected by some symmetry.

Consider some theory at scale Λ with an effective four-fermion vertex

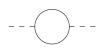
$$\mathcal{L}_{\Lambda} = \overline{\psi}_{L} i \partial \psi_{L} + \overline{\psi}_{R} i \partial \psi_{R} + \frac{g^{2}}{\Lambda^{2}} (\overline{\psi}_{L} \psi_{R}) (\overline{\psi}_{L} \psi_{R}) . \tag{1}$$

- The four-fermion vertex may come from some spontaneously broken gauge theory by integrating out the heavy gauge bosons.
- Eq. (1) can be rewritten in the following form with an auxilliary field H

$$\mathcal{L}_{\Lambda} = \overline{\psi}_{L} i \partial \psi_{L} + \overline{\psi}_{R} i \partial \psi_{R} + (g \overline{\psi}_{L} \psi_{R} H + \text{h.c.}) - \Lambda^{2} H^{\dagger} H .$$
⁽²⁾

(I will follow the appendix of arXiv:hep-ph/0203079 (C. T. Hill & E .H. Simmons).)

- Evolving down to scale μ with the fermion bubble approximation



which generates kinetic and quartic terms of the H field and also gives a correction to the mass term

$$\mathcal{L}_{\mu} = \overline{\psi}_{L} i \partial \!\!\!/ \psi_{L} + \overline{\psi}_{R} i \partial \!\!\!/ \psi_{R} + (g \overline{\psi}_{L} \psi_{R} H + \text{h.c.}) + Z_{H} |\partial_{\nu} H|^{2} - m_{H}^{2} H^{\dagger} H - \frac{\lambda_{0}}{2} (H^{\dagger} H)^{2}$$
(3)

where

Jiavin Gu

$$Z_{H} = \frac{g^{2} N_{c}}{(4\pi)^{2}} \log (\Lambda^{2}/\mu^{2}), \ m_{H}^{2} = \Lambda^{2} - \frac{2g^{2} N_{c}}{(4\pi)^{2}} (\Lambda^{2} - \mu^{2}), \ \lambda_{0} = \frac{2g^{2} N_{c}}{(4\pi)^{2}} \log (\Lambda^{2}/\mu^{2}).$$
(4)

- When µ → Λ, Z_H → 0, which mean H is no longer a physical degree of freedom.
- If we normalize the kinetic term of H, then the couplings blow up at Λ .

$$\mathcal{L}_{\mu} = \overline{\psi}_{L} i \partial \psi_{L} + \overline{\psi}_{R} i \partial \psi_{R} + (\xi \overline{\psi}_{L} \psi_{R} H + \text{h.c.}) + |\partial_{\nu} H|^{2} - \widetilde{m}_{H}^{2} H^{\dagger} H - \frac{\lambda}{2} (H^{\dagger} H)^{2}$$
(5)

$$\xi^{2} = g^{2}/Z_{H} = \frac{16\pi^{2}}{N_{c}\log(\Lambda^{2}/\mu^{2})}, \qquad \tilde{m}_{H}^{2} = m_{H}^{2}/Z_{H},$$

$$\lambda = \lambda_{0}/Z_{H}^{2} = \frac{32\pi^{2}}{N_{c}\log(\Lambda^{2}/\mu^{2})} = 2\xi^{2}.$$
(6)

One can think of H as a composite particle of the fermions, while A is the compositeness scale, at which the couplings are strong.

$$m_{H}^{2} = \Lambda^{2} - \frac{2g^{2}N_{c}}{(4\pi)^{2}}(\Lambda^{2} - \mu^{2}).$$
(7)

- $m_H^2 < 0$ if g is large enough. (Spontaneous symmetry breaking!)
- If the theory is spontaneously broken, $\lambda = 2\xi^2$ implies

$$m_h = 2m_f . (8)$$

The results are subject to change when effects of other interactions are included.

Jiayin Gu

Top Condensation

- ► The Higgs field is a low energy condensate $\langle \bar{t}t \rangle$ triggered by some new fundamental interaction at a higher scale Λ .
- Instead of the fermion bubble approximation, the full one-loop RG equations are used. [Phys. Rev. D 41, 16471660 (1990), (Bardeen, Hill, Lindner)]
- To get the right Electroweak VEV, top quark is too heavy unless the compositeness scale is extremely large. (Need the top Yukawa coupling to be very large at Λ and be ≈ 1 at weak scale.)
 - $\Lambda = 10^5 \text{ GeV} \Rightarrow m_{top} \approx 360 \text{ GeV}.$
 - ► $\Lambda = 10^{19} \text{ GeV} \Rightarrow m_{top} \approx 220 \text{ GeV}.$
- $ightarrow m_h \gtrsim m_{top}$.
- It doesn't work!

Top Condensation Seesaw

- option 1: Give up.
- option 2: Modify the theory until it works!
- Minimal modification: add a new vector-like top partner.
- A number of papers at the end of last century
 - arXiv:hep-ph/9712319 (Dobrescu, Hill)
 - arXiv:hep-ph/9809470 (Chivukula, Dobrescu, Georgi, Hill)
 - arXiv:hep-ph/9908391 (Dobrescu)
- With the top seesaw mechanism, one can have a large ($\gg 1$) Yukawa coupling while keeping the correct top mass (173 GeV).
- We found that by imposing an approximate U(3)_L symmetry, the Higgs mass has a rather restricted range and we can easily obtain a 126 GeV Higgs.

Introducing a new vector-like quark

- We introduce a new SU(2)_W-singlet vector-like quark, χ of electric charge +2/3.
- $\psi_L^3 = \begin{pmatrix} t_L \\ b_L \end{pmatrix}$, χ_L , t_R , χ_R form bound states due to some strong interactions at scale Λ , which approximately preserves $U(3)_L \times U(2)_R$ flavor symmetry.
- \blacktriangleright We label the composite scalars collectively as $\Phi,$ which is a 3 \times 2 matrix

$$\Phi = \begin{pmatrix} \Phi_t & \Phi_\chi \end{pmatrix},\tag{9}$$

$$\Phi_t \sim \overline{t}_R \begin{pmatrix} \psi_L^3 \\ \chi_L \end{pmatrix} \qquad , \qquad \Phi_\chi \sim \overline{\chi}_R \begin{pmatrix} \psi_L^3 \\ \chi_L \end{pmatrix}. \tag{10}$$

Yukawa couplings of the fermions and composite scalars:

$$\mathcal{L}_{\text{Yukawa}} = -\xi \begin{pmatrix} \overline{\psi}_{L}^{3} & \overline{\chi}_{L} \end{pmatrix} \Phi \begin{pmatrix} t_{R} \\ \chi_{R} \end{pmatrix} + \text{H.c.}$$
(11)

The ligher mass eigenstate is the physical top, which can be "light" because of the seesaw mechanism.

Jiayin Gu

Effective potential of the scalar sector

The Yukawa couplings give rise to the following potential for Φ:

$$V_{\Phi} = \frac{\lambda_1}{2} \operatorname{Tr} \left[(\Phi^{\dagger} \Phi)^2 \right] + \frac{\lambda_2}{2} \left(\operatorname{Tr} [\Phi^{\dagger} \Phi] \right)^2 + M_{\Phi}^2 \Phi^{\dagger} \Phi \quad . \tag{12}$$

▶ We introduce additional explicit $U(2)_R$ breaking effects in the mass term which distinguish t_R and χ_R .

$$V_{U(2)} = \delta M_{tt}^2 \, \Phi_t^{\dagger} \Phi_t + \delta M_{\chi\chi}^2 \, \Phi_{\chi}^{\dagger} \Phi_{\chi} + (M_{\chi t}^2 \Phi_{\chi}^{\dagger} \Phi_t + \text{H.c.})$$
(13)

SM gauge invariant mass terms at scale Λ

$$\mathcal{L}_{\text{mass}} = -\mu_{\chi t} \bar{\chi}_L t_R - \mu_{\chi \chi} \bar{\chi}_L \chi_R + \text{H.c.}$$
(14)

map to tadpole terms for the $SU(2)_W$ -singlet scalars below Λ

$$V_{\text{tadpole}} = -(0, 0, C_{\chi t})\Phi_t - (0, 0, C_{\chi \chi})\Phi_{\chi} + \text{H.c.}$$
(15)

$$C_{\chi t} \approx \frac{\mu_{\chi t}}{\xi} \Lambda^2 \quad , \quad C_{\chi \chi} \approx \frac{\mu_{\chi \chi}}{\xi} \Lambda^2 .$$
 (16)

► $U(3)_L \times U(2)_R$ is broken down to $U(2)_L \times U(1)_R$ (with approximate $U(3)_L$).

Jiayin Gu

Two doublets + two singlets

Rewrite the scalar potential

$$V_{\text{scalar}} = \frac{\lambda_1 + \lambda_2}{2} \left[(\Phi_t^{\dagger} \Phi_t)^2 + (\Phi_\chi^{\dagger} \Phi_\chi)^2 \right] + \lambda_1 |\Phi_t^{\dagger} \Phi_\chi|^2 + \lambda_2 (\Phi_t^{\dagger} \Phi_t) (\Phi_\chi^{\dagger} \Phi_\chi) + M_{tt}^2 \Phi_t^{\dagger} \Phi_t + M_{\chi\chi}^2 \Phi_\chi^{\dagger} \Phi_\chi + (M_{\chi t}^2 \Phi_\chi^{\dagger} \Phi_t + \text{H.c.}) - (0, 0, 2C_{\chi t}) \text{Re } \Phi_t - (0, 0, 2C_{\chi\chi}) \text{Re } \Phi_\chi .$$
(17)

$$\Phi_t = \begin{pmatrix} H_t \\ \phi_t \end{pmatrix} , \qquad \Phi_{\chi} = \begin{pmatrix} H_{\chi} \\ \phi_{\chi} \end{pmatrix}.$$
(18)

For certain values of parameters, all 4 scalars will have vacuum expectation values. (We will have $M_{tt}^2 > 0$, $M_{\chi\chi}^2 < 0$.)

$$\langle H_t \rangle = \begin{pmatrix} \frac{v_t}{\sqrt{2}} \\ 0 \end{pmatrix}, \quad \langle H_\chi \rangle = \begin{pmatrix} \frac{v_\chi}{\sqrt{2}} \\ 0 \end{pmatrix}, \quad \langle \phi_t \rangle = \frac{u_t}{\sqrt{2}}, \quad \langle \phi_\chi \rangle = \frac{u_\chi}{\sqrt{2}}.$$
 (19)

Jiayin Gu

Chiral symmetry breaking scale

> We need to have the correct electroweak VEV, v = 246 GeV.

$$v_t^2 + v_\chi^2 = v^2$$
 , $u_t^2 + u_\chi^2 = u^2$. (20)

Chiral symmetry breaking scale

$$f = \sqrt{u^2 + v^2}$$
 (21)

- We expect $\Lambda \sim 4\pi f$ for *f* to be natural.
- > T parameter constraint requires $v \ll f$, which requires tuning!
- The U(3)_L symmetry does not contain a custodial SU(2) symmetry.
- No new physics at LHC so far, some tuning in the electroweak scale is probably inevitable.

Choosing a particular basis

- Perform an $U(2)_R$ transformation to go to a basis where $v_t = 0$ and $v_{\chi} = v$. (no more tan β !)
- Also define angle γ so that

$$u_t = u \sin \gamma$$
 , $u_{\chi} = u \cos \gamma$ (22)

- Short-hand notation $s_{\gamma} = \sin \gamma$.
- ▶ In the limit $s_{\gamma} \rightarrow 0$, the tadpole terms will vanish and the Higgs field becomes massless.

Top Seesaw

Neglecting the mixing of the charm and up quarks with t and χ, the mass terms of the heavy charge-2/3 fermions quarks are given by

$$-\frac{\xi}{\sqrt{2}} \left(\overline{t}_L, \overline{\chi}_L \right) \begin{pmatrix} 0 & v \\ u s_\gamma & u c_\gamma \end{pmatrix} \begin{pmatrix} t_R \\ \chi_R \end{pmatrix} + \text{H.c.}$$
(23)

The mass of the top quark is suppressed by s_γ so that ξ can be much larger than one.

$$m_t \approx \frac{\xi \, v \, s_{\gamma}}{\sqrt{2}} \quad \Rightarrow \quad s_{\gamma} \approx \frac{y_t}{\xi} \;.$$
 (24)

- We can obtain the correct top mass while keeping the compositeness scale relatively small.
- The heaver eigenstate is the "top partner" and has mass

1

$$m_{t'} \approx \frac{\xi f}{\sqrt{2}}$$
 (25)

Light Higgs

two doublets + two singlets

$$\Phi_t = \begin{pmatrix} H_t \\ \phi_t \end{pmatrix} , \qquad \Phi_{\chi} = \begin{pmatrix} H_{\chi} \\ \phi_{\chi} \end{pmatrix}.$$
 (26)

- Three NGBs that will become the longitudinal modes of W and Z.
- 4 CP-even neutral scalars, 3 CP-old neutral scalars and 1 charged scalar.
- The lightest mass eigenstate of the 4 CP-even neutral scalars is a PNGB of the approximate U(3)_L symmetry. It is the 126 GeV "Higgs".
- Keeping the leading order terms in v^2/f^2 and s_{γ} ,

$$M_h^2 \approx \frac{\lambda_1}{2\xi^2} \left(1 + \frac{\lambda_1 m_{t'}^2}{\xi^2 M_{H^{\pm}}^2} \right)^{-1} y_t^2 v^2 .$$
 (27)

• With 0.4
$$\lesssim rac{\lambda_1}{2\xi^2} \lesssim$$
 1, we have $M_h \lesssim$ 185 GeV.

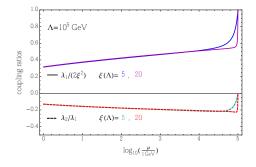
Using RGE to estimate $\lambda_1/(2\xi^2)$ and λ_2/λ_1

• The Yukawa coupling ξ and the quartic couplings λ_1 , λ_2 are related.

$$V_{\text{quartic}} = \frac{\lambda_1}{2} \operatorname{Tr} \left[(\Phi^{\dagger} \Phi)^2 \right] + \frac{\lambda_2}{2} \left(\operatorname{Tr} [\Phi^{\dagger} \Phi] \right)^2 \quad . \tag{28}$$

- In the fermion loop approximation, $\lambda_1 = 2\xi^2$, $\lambda_2 = 0$.
- In one loop RG running, the ratios of couplings λ₁/(2ξ²) and λ₂/λ₁ are quickly driven to some approximate fixed points.
- The Evolutions of $\lambda_1/(2\xi^2)$ and λ_2/λ_1 are quite insensitive to the value of ξ .

Using RGE to estimate $\lambda_1/(2\xi^2)$ and λ_2/λ_1



- Boundary conditions: $\lambda_1/(2\xi^2) = 1$, $\lambda_2/\lambda_1 = 0$ at Λ .
- Choosing different boundary conditions for ξ , $\xi(\Lambda) = 5$, 20.
- One loop RG running predicts that

$$\frac{\lambda_1}{2\xi^2} \approx 0.4$$
 , $\frac{\lambda_2}{\lambda_1} \approx -0.2$. (29)

Jiayin Gu

UC Davis

Using RGE to estimate $\lambda_1/(2\xi^2)$ and λ_2/λ_1

- Do we trust the results from 1-loop RGEs? No.
- Coupling is strong, higher loop contributions may be large.
- To avoid excessive tuning, the chiral symmetry breaking scale is not far below the compositeness scale.
- If we assume a smooth evolution, the ratios of couplings are expected to lie in between their initial values and the infrared fixed point values:

$$0.4 \lesssim rac{\lambda_1}{2\xi^2} \lesssim 1 \quad , \quad -0.2 \lesssim rac{\lambda_2}{\lambda_1} \lesssim 0 \; .$$
 (30)

$U(3)_L$ breaking from electroweak interactions

- So far we assume that the only explicit U(3)[⊥] breaking comes from the tadpole terms.
- Other explicit U(3)_L breaking effects can feed into the mass and quartic terms through loops.
- We can parameterize the U(3)_L breaking terms as

$$\Delta V_{\text{breaking}} = \frac{\kappa_1}{2} [(H_t^{\dagger} H_t)^2 + (H_{\chi}^{\dagger} H_{\chi})^2 + 2(H_t^{\dagger} H_{\chi})(H_{\chi}^{\dagger} H_t)] + \frac{\kappa_2}{2} (H_t^{\dagger} H_t + H_{\chi}^{\dagger} H_{\chi})^2 + \kappa_1' [H_t^{\dagger} H_t \phi_t^{\dagger} \phi_t + H_{\chi}^{\dagger} H_{\chi} \phi_{\chi}^{\dagger} \phi_{\chi} + (H_t^{\dagger} H_{\chi} \phi_{\chi}^{\dagger} \phi_t + \text{H.c.})] + \kappa_2' (H_t^{\dagger} H_t + H_{\chi}^{\dagger} H_{\chi}) (\phi_t^{\dagger} \phi_t + \phi_{\chi}^{\dagger} \phi_{\chi}) + \Delta M_{tt}^2 H_t^{\dagger} H_t + \Delta M_{\chi\chi}^2 H_{\chi}^{\dagger} H_{\chi} + (\Delta M_{\chi t}^2 H_{\chi}^{\dagger} H_t + \text{H.c.}) .$$
(31)

• In leading order of s_{γ} and v^2/f^2 ,

$$\Delta M_h^2 \approx \left(\kappa_1 + \kappa_2 - \frac{5}{2}(\kappa_1' + \kappa_2') - \frac{\Delta M_{\chi\chi}^2}{f^2}\right) v^2.$$
 (32)

This can screw up the prediction of Higgs mass!

Jiayin Gu

UC Davis

$U(3)_L$ breaking from electroweak interactions

- In our model, the additional U(3)_L breaking effects come from the SU(2)_W × U(1)_Y gauge interactions.
- We assume this contribution is cut off by M_ρ, presumably the mass of some vector state in the theory.
- Contributions to mass terms and quartic couplings ($\mu \sim m_{t'} \approx \xi f/\sqrt{2}$)

$$\Delta M_{\chi\chi}^2 = \Delta M_{tt}^2 = \frac{9g_2^2 + 3g_1^2}{64\pi^2} M_{\rho}^2 , \qquad \Delta M_{\chi t}^2 = 0 , \qquad (33)$$

$$\frac{\kappa_{1(2)}}{\lambda_{1(2)}} \approx 2 \, \frac{\kappa_{1(2)}'}{\lambda_{1(2)}} \approx \frac{3(3g_2^2 + g_1^2)}{16\pi^2} \ln\left(\frac{M_{\rho}}{\mu}\right) \quad . \tag{34}$$

- The contributions to mass terms and quartic couplings both reduce the Higgs mass.
- With not too large $M_{\rho} (\leq 5f)$, we can still get the correct Higgs mass.

Numerical study!

- We want to verify the Higgs mass prediction with a numerical study.
- Our model contains the following parameters:

$$\xi, \lambda_1, \lambda_2, M_{tt}^2, M_{\chi\chi}^2, M_{\chi\chi}^2, C_{\chi t}, C_{\chi\chi}, M_{\rho}.$$
(35)

• Choose the $v_t = 0$ basis and write in terms of $M_{H^{\pm}}$ and the VEVs,

$$\xi, \lambda_1, \lambda_2, M_{H^{\pm}}, v, f, s_{\gamma}, M_{\rho}.$$
(36)

• v = 246 GeV, use top mass to solve for s_{γ} ,

$$\xi, \ \lambda_1/(2\xi^2), \ \lambda_2/\lambda_1, \ f, \ M_{H^{\pm}}/f, \ M_{\rho}/f.$$
 (37)

► To calculate the Higgs mass, we match the theory with SM at scale $m_{t'} \approx \frac{\xi f}{\sqrt{2}}$, compute λ_h and evolve it down to the weak scale.

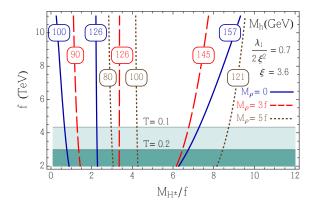
Parameter space

What are the expected ranges of the 6 parameters?

$$\xi, \ \lambda_1/2\xi^2, \ \lambda_2/\lambda_1, \ f, \ M_{H^{\pm}}/f, \ M_{\rho}/f.$$
 (38)

- ► T parameter constraint requires $f \gg v$. We consider f up to 10 TeV to avoid excessive fine tuning.
- ► The states in the theory should have masses below the cutoff scale $M_{H^{\pm}}, M_{\rho} \leq 4\pi f.$
- ► Using 1-loop RGE, we expect $0.4 \leq \lambda_1/(2\xi^2) \leq 1$ and $-0.2 \leq \lambda_2/\lambda_1 \leq 0$.
- ► ξ is expected to be roughly between 2.5 and 5. Use $\xi = 2\pi/\sqrt{3} \approx 3.6$ as the standard reference value.

We can have a 126 GeV Higgs!



- ▶ Plot Higgs mass as a function of the dimensionful parameters. ($\lambda_2 = 0$)
- $M_h = 126$ GeV can be obtained with reasonable parameters of our model.

Jiayin Gu

T parameter

The heavy fermion t' can give a large contribution to the T parameter, which is related to the fact that U(3)_L does not contain a custodial SU(2) symmetry.

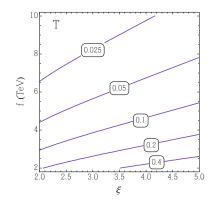
$$T = \frac{3}{16\pi^2 \alpha v^2} \left[s_L^4 m_{t'}^2 + 2s_L^2 (1 - s_L^2) \frac{m_{t'}^2 m_t^2}{m_{t'}^2 - m_t^2} \ln\left(\frac{m_{t'}^2}{m_t^2}\right) - s_L^2 (2 - s_L^2) m_t^2 \right],$$
(39)

• can be rewritten in terms of ξ and f as

$$T \approx \frac{3}{16\pi^2 \alpha f^2} \left[\frac{v^2 \xi^2}{2} + 4m_t^2 \ln\left(\frac{\xi f}{\sqrt{2}m_t}\right) - 2m_t^2 \right].$$
 (40)

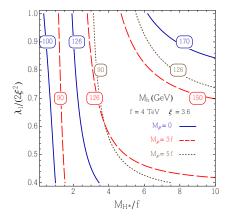
Jiayin Gu

T parameter



- ▶ 68% bound \rightarrow $T \leq 0.1$ corresponds to $f \gtrsim 4.3$ TeV (for $\xi = 3.6$).
- ▶ 95% bound $\rightarrow T \lesssim 0.15$ corresponds to $f \gtrsim 3.5$ TeV (for $\xi = 3.6$).

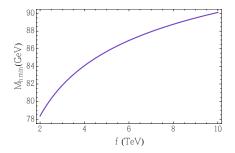
Upper bound on Higgs mass



- ► The Higgs mass in the leading order is sensitive to $\lambda_1/(2\xi^2)$, $M_{H^{\pm}}/f$ and M_{ρ}/f .
- Fix f = 4 TeV, ξ = 3.6, λ₂ = 0. The dependence on these parameters is mild.
- A larger Higgs mass occurs for larger $M_{H\pm}/f$, $\lambda_1/(2\xi^2)$ and smaller M_{ρ}/f .
- ▶ $M_h \lesssim 175 \text{ GeV}$.

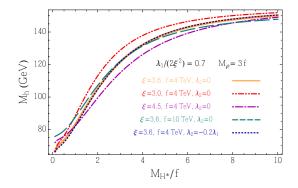
Jiayin Gu

Lower bound on Higgs mass



- ► M_h min as a function of f for $\xi = 3.6$, allowed by the condition $\lambda_h > 0$ at scale $m_{t'} \approx \xi f / \sqrt{2}$.
- Higgs mass is restricted by $80 \leq M_h \leq 175 \text{ GeV}$.

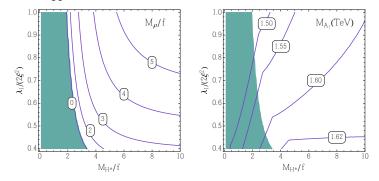
The dependence on ξ , f, λ_2 are mild



• The dependence of Higgs mass on ξ , f, λ_2 is mild.

Heavy state spectrum

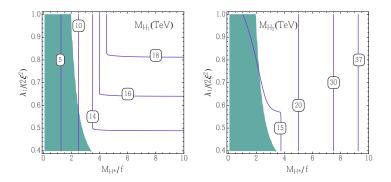
Use Higgs mass (126 GeV) to fix M_ρ, plot the required M_ρ that gives the correct Higgs mass.



• $f = 4 \text{ TeV}, \ \xi = 3.6, \ \lambda_2 = 0 \ (m_{t'} = 10.2 \text{ TeV}).$

The lightest CP-odd neutral scalar is also a PNGB.

Heavy state spectrum



•
$$f = 4 \text{ TeV}, \ \xi = 3.6, \ \lambda_2 = 0$$
.

Too heavy for LHC!

Phenomenology?

- New states (apart from the 126 GeV Higgs) are too heavy to be probed at the LHC.
- But they can be probed at a $\mathcal{O}(100)$ TeV hadron collider!
- ► Higgs couplings are very close to SM values, approximately given by SM values times a factor of $\cos(v/f) \approx 1 v^2/(2f^2)$.
- ▶ 0.2% deviation for f = 4 TeV, probably even beyond the reach of a future e^+e^- collider.
- ► A precise determination of the *T* parameter would help probe or constrain this model.

Conclusion

- The Top Seesaw Model is a modification of Top Condensation by introducing a new vector like top partner.
- It addresses the origin of both electroweak symmetry breaking and top Yukawa coupling.
- ▶ The Higgs mass is related to the top mass and has a rather restricted range, $80 \leq M_h \leq 175$ GeV , and one can easily obtain a 126 GeV Higgs.
- Constraint from *T*-parameter requires the chiral symmetry breaking scale to be much higher than the electroweak scale, which requires tuning.
- What if LHC doesn't find anything?
- Modifications that embeds custodial symmetry can bring down the chiral symmetry breaking scale and predict interesting phenomenology at the LHC.

sidenote: I also worked on Stop searches using kinematic variables.

Jiayin Gu