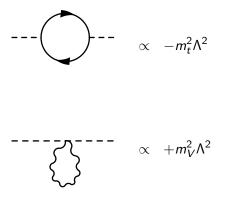
Bottom-up naturalness

Sonia El Hedri

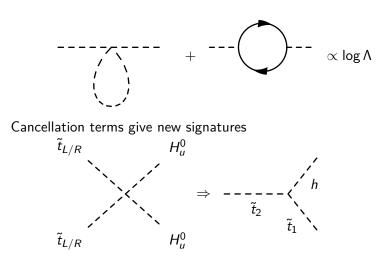

with Anson Hook

November 20, 2013

arXiv:1305.6608

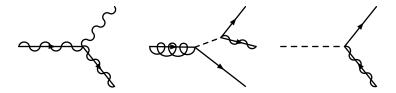
The hierarchy problem

- The Higgs mass in the SM is not protected by symmetries
- One loop contributions quadratically divergent (top, gauge)
- Mass corrections of order the cutoff scale Λ^2
- New physics at the TeV scale


Top down approaches

Assuming a high energy mechanism which cancels the divergences at all loop levels

- SUSY
- Extra dimensions
- Little Higgs
- ▶ ...


Traditional approaches

New particles running in loops

Traditional approaches

But dominant signatures from other terms

Model dependent

Not directly related to the quadratic divergences

Bottom up approach?

Study low energy signatures of naturalness

- \Rightarrow Cancellation at one loop only
- \Rightarrow No complete model

But

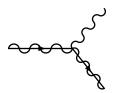
- \Rightarrow Necessary conditions for naturalness
- \Rightarrow Model independent approach
- \Rightarrow Hints for new complete theories?
- \Rightarrow Limited number of simplified models

Minimal naturalness

Naturalness is enforced by

- Find all possible ψ
- For each ψ, look for signatures which vanish when y or λ vanishes

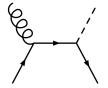
The trilinear term


Properties of ψ_1 , ψ_2

- ψ_1 and ψ_2 are fermions
- Negative one loop contribution
- ψ_1 and/or ψ_2 charged under **at least** SU(2)

Trilinear term – phenomenology

 ψ_1 and ψ_2 non SM


 Electroweakino-like phenomenology

- Decays to Higgs and gauge bosons
- ▶ ∉_T, CHAMPs, R-hadrons...

 $\psi_1 \; \mathsf{SM}$

 Fourth generation or RH neutrino

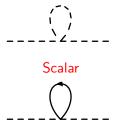


- Pair or single production
- Decays to W, Z, h + SM partner

The quartic term

 $\mathcal{L} = \mathcal{L}_{\rm SM} + \lambda H^{\dagger} H \psi^{\dagger} \psi$

$$\mathcal{L}_{2} = \lambda H^{\dagger} H \psi^{\dagger} \psi$$
$$\supset \lambda v h \psi^{\dagger} \psi + \frac{\lambda}{2} h^{2} \psi^{\dagger} \psi$$

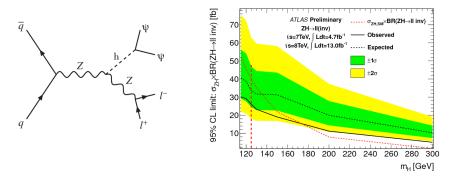


Vector-like fermion

- New Higgs decay modes
- ψ is a dark matter particle
- $\blacktriangleright \psi$ gets a vev
- ψ is charged under the SM

The quartic term

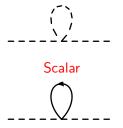
$$\mathcal{L}_{2} = \lambda H^{\dagger} H \psi^{\dagger} \psi$$
$$\supset \frac{\lambda v h \psi^{\dagger} \psi}{2} + \frac{\lambda}{2} h^{2} \psi^{\dagger} \psi$$



Vector-like fermion

- New Higgs decay modes
- ψ is a dark matter particle
- $\blacktriangleright \psi$ gets a vev
- ψ is charged under the SM

Higgs decays to $\psi^\dagger\psi$

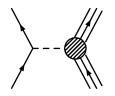


- Invisible decay modes
- Top and gauge divergences \Rightarrow Excluded
- Other divergences \Rightarrow Effect too small

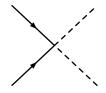
The quartic term

$$\mathcal{L}_{2} = \lambda H^{\dagger} H \psi^{\dagger} \psi$$

 $\supset \lambda v h \psi^{\dagger} \psi + \frac{\lambda}{2} h^{2} \psi^{\dagger} \psi$

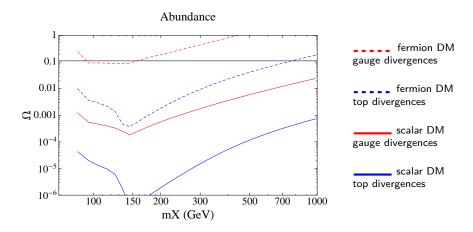


Vector-like fermion

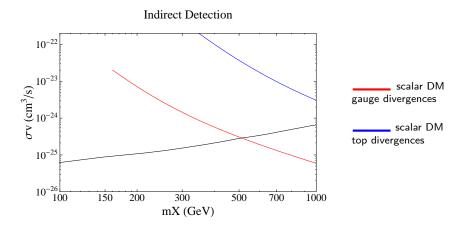

- New Higgs decay modes
- ψ is a dark matter particle
- $\blacktriangleright \psi$ gets a vev
- $\blacktriangleright \ \psi$ is charged under the SM

ψ is dark matter

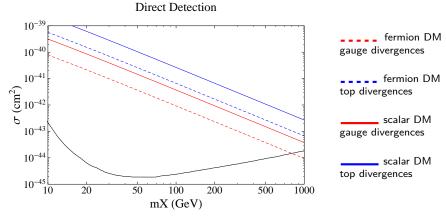
Direct detection


Spin independent interactions Higgs portal only Annihilation

 $\psi\psi
ightarrow$ hh, WW, ZZ


$$\lambda_f = rac{N_c y^2}{2N_f m_\psi} \qquad \lambda_s = rac{2N_c}{N_s} y^2$$

Relic abundance


Non thermal production or subdominant DM component

Indirect detection

- No top quadratic divergences cancellation
- Gauge cancellation possible for $m_{\psi} > 500 \, {
 m GeV}$

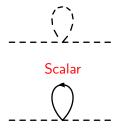
Direct detection

Top and gauge cancellation excluded

ψ dark matter

Correlated direct and indirect detection signatures

- If fermion, direct detection signature but no indirect detection signal
- If scalar,


$$\frac{\sigma_{\rm SI}}{\langle \sigma v \rangle_{v=0}} = \frac{16f^2 m_p^2}{m_h^4} = 1.5 \times 10^{-19} \frac{\rm cm^2}{\rm cm^3/s}$$

Measurable at FERMI, XENON100, LUX

Sub-TeV ψ cannot cancel the top quadratic divergences Small region still left for gauge quadratic divergences

The quartic term

$$\mathcal{L}_{2} = \lambda H^{\dagger} H \psi^{\dagger} \psi$$

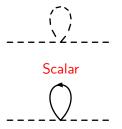
 $\supset \lambda v h \psi^{\dagger} \psi + \frac{\lambda}{2} h^{2} \psi^{\dagger} \psi$

Vector-like fermion

- New Higgs decay modes
- ψ is a dark matter particle
- $\blacktriangleright \psi$ gets a vev
- $\blacktriangleright \ \psi$ is charged under the SM

Scalar with a vev

$$\mathcal{L} = \lambda v v_{\psi} h \psi + \frac{\lambda}{2} v_{\psi} \psi h h + \frac{\lambda}{2} v h \psi \psi + \dots$$


If ψ is an SU(2) doublet \Rightarrow two Higgs doublet model What about a singlet?

- h decays (already studied)
- Mixing with the Higgs $\Rightarrow \cos \alpha > 0.93$
- ψ decays $\Rightarrow \sin \alpha < 0.20$
- For our minimal model, top cancellation requires

$$v_{\psi} > 2 \,\text{TeV}$$

The quartic term

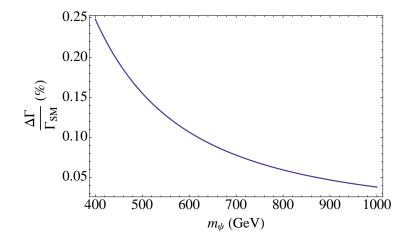
$$\mathcal{L}_{2} = \lambda H^{\dagger} H \psi^{\dagger} \psi$$
$$\supset \frac{\lambda v h \psi^{\dagger} \psi}{2} h^{2} \psi^{\dagger} \psi$$

Vector-like fermion

- New Higgs decay modes
- ψ is a dark matter particle
- \blacktriangleright ψ gets a vev
- ψ is charged under the SM

ψ charged under the SM

 $\mathcal{L} \supset \lambda h \psi^{\dagger} \psi + g_{\mathcal{G}} V_{\mathcal{G}}^{\mu} \gamma_{\mu} \psi^{\dagger} \psi$



One loop Higgs couplings to gauge bosons modified

SU(3) production, not visible SU(2) decay, hard to reach at the LHC $U(1)_{\rm EM}$ decay, high luminosity LHC ψ has electric charge ${\it Q}$ and cancels the top quadratic divergences

$$\mathcal{L} \supset -m\psi^{\dagger}\psi + \frac{3y_{t}^{2}}{2m}\psi^{\dagger}\psi hh$$
$$\frac{\Gamma(h \to \gamma\gamma)}{\Gamma_{\rm SM}(h \to \gamma\gamma)} = \left|1 + \frac{Q^{2}}{6.49}\frac{4}{3}\frac{\partial\log m_{\psi}}{\partial\log v}\left(1 + \frac{7m_{h}^{2}}{120m_{\psi}^{2}}\right)\right|^{2}$$

Example: electrically charged ψ

Less than 10% modifications at high mass

Quartic term: summary

$$\lambda \psi^{\dagger} \psi H^{\dagger} H \supset \begin{cases} \lambda \mathsf{v} h \psi^{\dagger} \psi + \frac{\lambda}{2} h h \psi^{\dagger} \psi \\ \frac{\lambda}{2} \mathsf{v} \mathsf{v}_{\psi} h \psi + \lambda \mathsf{v} h \psi^{\dagger} \psi + \lambda \mathsf{v}_{\psi} \psi h h \end{cases}$$

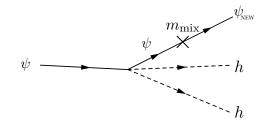
- ψ light
 - Invisible Higgs decays
 - Cannot cancel top and gauge quadratic divergences
- ψ dark matter
 - Correlated direct and indirect detection signatures
 - Strong constraints on top and gauge divergences cancellation
- $\blacktriangleright \psi$ scalar with a vev
 - Precision Higgs coupling measurements
 - Tight constraints on v_{ψ}
- ψ charged under the SM
 - One loop contributions to $h \rightarrow VV$
 - Modifications too small to observe with current searches

- Strong constraints in specific cases for top and gauge cancellation (dark matter, light particle, etc...)
- In most cases, precision Higgs measurements are needed

Most minimal signatures cannot be observed with current experiments!

Can some simple extensions be probed at the LHC?

Minimal naturalness - Quartic term extension


$$\mathcal{L} = \mathcal{L}_{\rm SM} + \lambda H^{\dagger} H \psi^{\dagger} \psi$$

Find additional terms:

- IR effect
- No assumptions about the UV physics
- New decay modes for ψ , new LHC signatures
- Signatures vanish when $\lambda \rightarrow 0$

Mass mixing

Only possible term $\mathcal{L} \supset m_0 \psi^{\dagger} \psi_{\rm NEW}$

$$\mathcal{L} \supset \lambda_1 \psi^{\dagger} \psi H^{\dagger} H + \lambda_2 \psi^{\dagger} \psi_{\rm NEW} H^{\dagger} H$$

- Measuring λ_2
 - \Rightarrow **Indirect** evidence of λ_1
- Three-body decays to ψ_{NEW} , *WW*, *hh* and *ZZ*
- Two-body decay to ψ_{NEW} and h
- NO two-body decays to gauge bosons

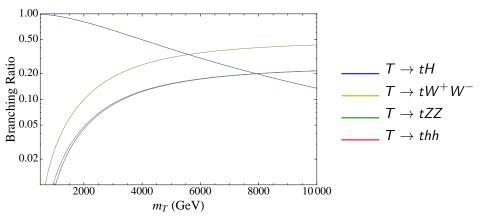
Fermionic top partner

$$\mathcal{L} = m_{\psi}\psi\psi^{c} + \lambda_{1}\psi^{c}HQ + \lambda_{2}u^{c}HQ + \frac{\lambda_{3}}{m_{\psi}}\psi\psi^{c}H^{\dagger}H$$

In mass basis

$$\mathcal{L} = m_T T T^c + \lambda_T T^c H Q + y_t u^c H Q$$
$$+ \frac{\lambda_{TT}}{m_T} T^c T H^{\dagger} H + \frac{\lambda_t T}{m_T} u^c T H^{\dagger} H$$

Example: Little Higgs model


$$\mathcal{L} \supset \lambda_T T^c HQ + rac{\lambda_t T}{m_T} u^c T H^{\dagger} H$$

- Two-body decays from trilinear + quartic terms
- λ_T usually expected to dominate
- But two-body signatures dominantly from quartic if

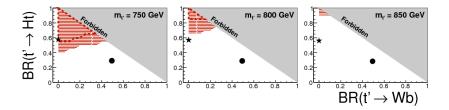
$$\lambda_{tT} > \lambda_T \frac{m_T}{v}$$

Little Higgs is a good example for large quartic and moderate m_T

T decay modes

 $T \rightarrow tH$ largely dominating

Vector-like fermions at the LHC


$\mathcal{L} \supset \lambda \psi \psi_{\mathrm{NEW}} H^{\dagger} H \supset \lambda_{1} \psi \psi_{\mathrm{NEW}} h$

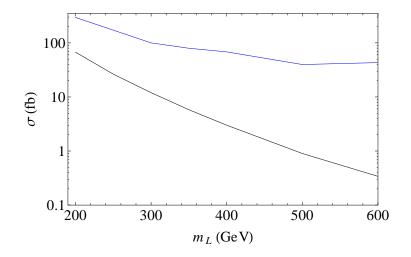
- Choose $\psi_{\rm NEW}$ SM fermion
- Consider only two-body decays
- Derive bounds for top quark, light quark and lepton partners

 $T \rightarrow t + h$ $U \rightarrow u + h$ $L \rightarrow l + h$

Top quark partners

- ATLAS-CONF-2013-018
- ▶ 8 TeV, 14.3fb⁻¹

• $\operatorname{Br}(T \to th) = 100\% \Rightarrow m_T > 850 \,\mathrm{GeV}$

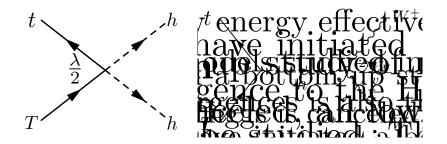

Light quark partner

- hhjj final state
- No rapidity gap between the two jets
- ► Low branching ratio to leptons + low lepton ID efficiency
- $h \rightarrow \gamma \gamma$ search does not veto on extra jets
- \blacktriangleright Current bounds on $\gamma\gamma$ allow up to 10 $\rm pb$ signal

 $m_U > 300\,{\rm GeV}$

- I⁺I⁻hh final state
- ▶ $I^+I^- + 2b$ dominant but existing searches require an on-shell Z
- 4-lepton events from $h \rightarrow W^+W^-, \tau \tau$
- ATLAS-CONF-2013-036
- 4-leptons + effective mass cut
- Low background, high signal efficiency

Lepton partner



Low production cross section \Rightarrow no exclusion bounds

Summary

- Two possible operators to cancel one-loop divergences
- Bottom-up approach: study signatures which vanish when these operators vanish
- ► New Yukawa term ⇒ electroweakino phenomenology, CHAMPs, R-hadrons
- Quartic term
 - Correlated dark matter detection signatures
 - Higgs precision measurements
- Mass mixing with a SM fermion gives new decay modes
- Only one two-body decay mode to SM fermion + Higgs
- Strong bounds on top partners at the LHC, high luminosity + dedicated searches needed for the other particles

Goldstone boson equivalence theorem

$$egin{aligned} |M(T
ightarrow thh)|^2 &\sim rac{\lambda^2}{2} p_{T,\mu} p_t^\mu \ M(T
ightarrow tW^+W^-)|^2 &\sim 4\lambda^2 m_W^4 p_{T,\mu} p_t^\mu rac{1}{((p_T-p_t)^2-m_h^2)^2} rac{(p_{W^+} \cdot p_{W^-})^2}{m_W^4} \end{aligned}$$

Little Higgs model

$$\Sigma = \exp\left(\frac{i}{f} \begin{pmatrix} 0 & H \\ H^{\dagger} & 0 \end{pmatrix}\right) \begin{pmatrix} 0 \\ f \end{pmatrix}$$

After symmetry breaking

$$\mathcal{L} \supset \lambda_1 u_3^c \Sigma \chi + \lambda_2 f u^{\prime c} u^{\prime}$$

At lowest order

$$\mathcal{L} \supset f(\lambda_1 u_3^3 + \lambda_2 u'^c)u' - \lambda_1 u_3^c HQ_3 + \frac{\lambda_1}{2f} HH^{\dagger} u_3^c u'$$

Little Higgs model

After diagonalization

$$\mathcal{L} \supset \frac{\lambda_1 \lambda_2}{\sqrt{\lambda_1^2 + \lambda_2^2}} t_3^c H Q_3 + \frac{\lambda_1^2}{\sqrt{\lambda_1^2 + \lambda_2^2}} T^c H Q_3 + \frac{\lambda_1^2}{2m_T} H H^{\dagger} T^c T + \frac{\lambda_1 \lambda_2}{2m_T} H H^{\dagger} t_3^c T$$

Two body decays from the quartic term dominate if

$$\frac{\lambda_2^2 v}{\sqrt{2}ym_T} \gg 1$$