

Overview of LFI maps generation and their characteristics

Davide Maino

University of Milano, Dept. of Physics

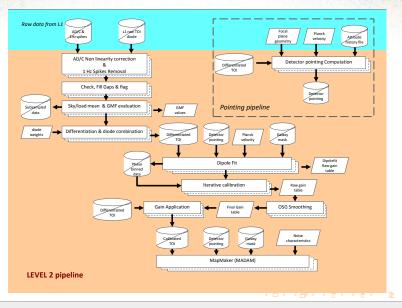
UC Davis, 20 May 2013

Davide Maino — Overview of LFI maps generation and their characteristics

Outline

- 1 Data Processing Overview
- 2 Map-making
- 3 Systematic Effects
- 4 Internal Validation
- 5 Maps Characteristics
- 6 Planck Maps
- 7 Next Steps

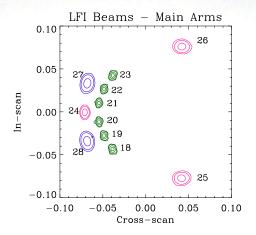
- Planck was launched on 14 May 2009 and the current data release includes temperature maps based on the first 15.5 months of observations
- Planck is still alive and LFI is currently taking data
 - HFI was switched off on January 2012, beyond the nominal period and now is supporting LFI providing essential H/K telemetry (e.g. 4K cooler)
 - LFI is expected to continue at least till September 2013
- Data are of incredible quality!


Data Processing Overview

- DPC approaches data reduction with specific tasks aiming to estimate and correct instrumental systematic effects
- There are three main logical levels:
 - Level 1: H/K and Science telemetry from the satellite are transformed into raw timelines and stored into dedicated databases with the associated time information
 - Level 2: instrument information is gathered and ingested into the Instrument Model, removal of systematic effects, flag data of suspected quality, photometric calibration and creation of maps and ancillary products
 - Level 3: more science here with component separation, power spectra estimation and extraction of cosmological parameters
- Each step is internally validated (with dedicated sims) and most of the DPC work is spent cross-checking internally and between the two instruments

LFI pipeline

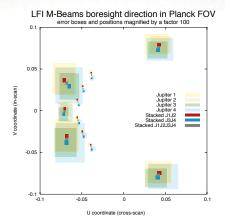
Flagged data



	30 GHz	44 GHz	70 GHz
Missing [%]	0.00014	0.00023	0.00032
Anomalies [%]	0.82220	0.99763	0.82925
Manoeuvres [%]	8.07022	8.07022	8.07022
Usable [%]	91.10744	90.93191	91.10021

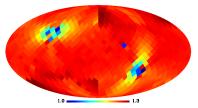
- During L1 and L2 pipeline all data are checked sample-by-sample to discard, flag all unusable samples and data acquired during manoeuvres and special operations (e.g. Sorption cooler switch-over)
- About 1% of the data are discarded due to instrument anomaly

Beams reconstruction

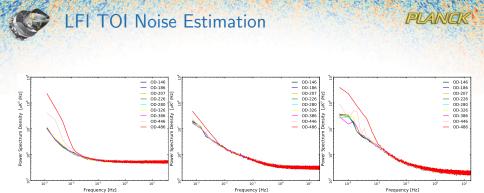


 Beams contours (-20dB) from planet transit. From S/C attitude and this geometrical calibration, pointing for each horn is reconstructed

Detector Pointing


Pointing reconstruction: error smaller that 0.5'. Several corrections applied: stellar aberration and wobble angle (thermoelastic deformation changing the relative orientation between start-tracker and reference body frame).

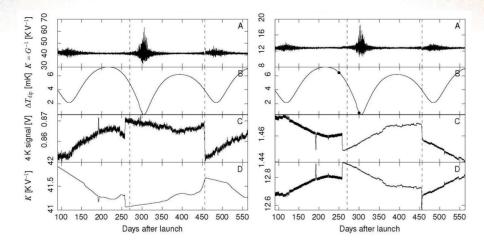
Effective Beams



Band	FWHM [']	е	Ω [arcmin ²]
30	32.239±0.013	$1.320{\pm}0.031$	$1189.51{\pm}0.84$
44	$27.01 {\pm} 0.55$	$1.034{\pm}0.031$	833±32
70	$13.252{\pm}0.033$	$1.223{\pm}0.026$	200.7±1.0

Ellipticity - 70 GHz

Scanning beams are used to compute effective beams which gives pixel-by pixel the beam shape projected in the sky when scanning strategy is accounted for. Fundamental for point source extractions and computation of beam window function

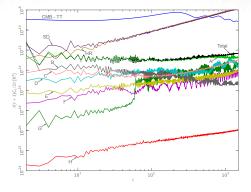

Noise estimation is used as a diagnostic tool and provide information for Monte Carlo Simulations. Determines also the correct horn weights used during the map-making process. Noise pipeline is checked against noise derived from HR maps and it is compatible at 1% level

Photometric Calibration

PLANCK

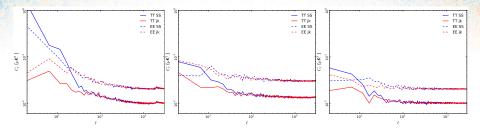
- This is the most important and critical aspect of data reduction pipeline. The LFI one works as follows
 - estimate dipole amplitude and alignment of dipole for any direction
 - create the expected level of the dipole signal accounting for the full-beam shape
 - fit real data with dipole with iterative approach (raw gains)
 - filter raw gains or use 4K to calibrate data
 - Calib. Accuracy estimated to be \sim 0.82% (30), $\sim \! 0.55\%$ (44) and $\sim \! 0.62\%$ (70)

Photometric Calibration

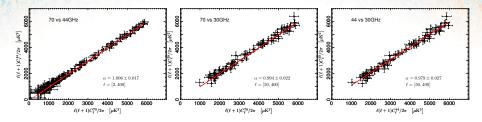

Map-making

- Calibrated TOI for each radiometer are input of madam map-making code, together with pointing data
- The algorithm is a maximum-likelihood destriping and estimates in this fashion the amplitude of the 1/f-noise baseline, subtract from the timelines and then simply bins the resulting TOI into a map
- Maps produced at different levels:
 - Frequency maps, HR maps and Survey maps
 - Low resolution maps used for the computation of the noise covariance matrix

Systematic effecs



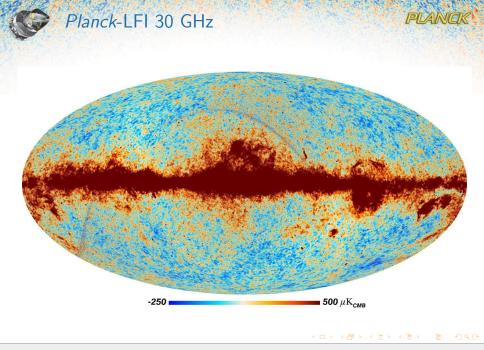
Two strategies for systematic effects analysis:

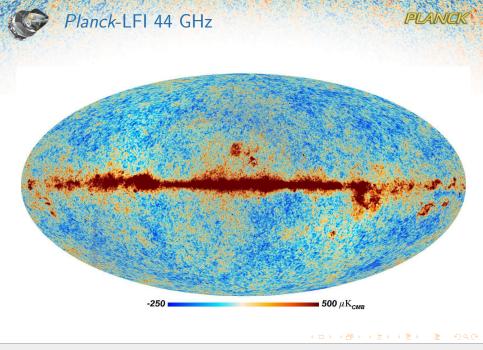

- Null tests: primary tool to see systematic effect residual w.r.t. white noise level
- Sims: Assess their impact on TOI using in-flight H/K data. This approach provides a powerful tool to check for systematics

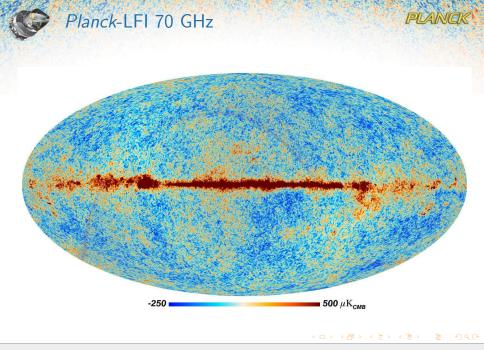
LFI Internal Validation - Null tests

- Quality of LFI maps is assessed and verified by a set of null-tests in an almost automatic way
- Several data combination (radiometer, horn-pairs, frequency) on different time-scales (1 hour, survey, full-mission): difference at horn level at even/odd surveys clearly reveals side lobe effect
- Null-test power spectra are used to check total level of systm. effects to be compared w.r.t. white noise level and systematic effects analysis

LFI Internal Validation - Check Spectra


- Compute power spectra in multipole range around the first acoustic peak removing the unresolved point source contributions. Spectra are consistent within errors. 30 and 44/70 have different approaches to gain applied
- Hausman test assess consistency at 70 GHz showing no statistically significant problem
- Spectra from horn-pairs and from all 12 radiometers: χ^2 analysis shows compatibility with null-hypothesis


Maps Characteristics



Uncertainty	Applies to	Method
Gain calib	All sky	WMAP dipole
Zero level	All sky	Galactic Cosecant model
Beam	All sky	GRASP models via FeBecop
СС	non-CMB	ground/flight bandpass leakage
Resid. Sys	All sky	Null-tests

Property	30	44	70
Frequency [GHz]	28.4	44.1	70.4
Noise rms/pixel [μK_{CMB}]	9.2	12.5	23.2
Gain Uncert	0.82%	0.55%	0.62%
Zero Level Uncert $[\mu K_{\mathrm{CMB}}]$	± 2.23	± 0.78	± 0.64

Future Steps & Conclusions

- Maps and other products are of very high quality and consistency
- Next goal will be the analysis of polarisation data. This implies the following steps:
 - 4π beam in calibration based on in-band response
 - Removal of Galactic Straylight
 - Assessment of expected systematics in polarisation

PLANCK

Davide Maino — Overview of LFI maps generation and their characteristics