CMB Lensing Cross-Correlations (optical, IR, submm)

Gil Holder

<u>SPT</u>

Bleem et al 2012 Holder et al 2013 Geach et al (soon!)

Why CMB Lensing?

- well-known source redshift
- highest source redshift possible (for photons)
- very different systematics from galaxybased cosmic shear
- wide areas
- lots of good data coming in now

SPT Lensing Mass Map

Planck (all-sky)

SPT (2500 sq deg)

The CMB Lensing 10⁻⁷ Landscape

 $\mathsf{L}^4 \ C_L^{\phi\phi} \, / 2\pi$

best maps are being made when noise curve is below signal curve

Planck (all-sky)

SPT

(2500 sq deg)

CMB Lensing X Galaxies

CMB lensing power comes from z>0.5, but still plenty of overlap with structure at z~1

(another lensing source screen at z=1100)

CMB Lensing X Galaxies

linear bias: r_{gal}=br_{matter}

•Galaxy-galaxy correlation: b^2

•Galaxy-lensing correlation: b¹

•Lensing-lensing correlation: b⁰

Measuring Quasar Host Galaxy Masses

 linear bias tells you host galaxy mass in simple halo models

Optical galaxy counts (19.5<i<22.5)

IR galaxy counts
(15<[3.4]<17 or (15<[4.5]<17)

CMB lensing (smoothed to only show scales with S/N>1)

Using <5% of completed SPT survey

Bleem et al

Galaxy-Mass Cross-Correlation Detected

Planck X Galaxies, etc.

Quasar-Mass Cross-Correlation Detected: ACT X SDSS

AGN Selection with WISE

Quasar-Mass Cross-Correlation Detected: SPT X WISE

stacked SPT lensing map in bins of AGN density

Quasar-Mass Cross-Correlation Detected: SPT X WISE

Planck and SPT in excellent agreement

bias measurements agree with expectations

Geach et al coming soon

CMB Lensing/Herschel

Light Traces Mass

Lensing/Galaxies
Cross-Power
Spectrum (\$\frac{1}{5}\) 10

strong detection of correlated structure

bias relative to nonlinear P(k):

b=1.3-1.8,

depending on assumed dl/dz

Holder et al

CMB Lensing/Herschel

CMB Lensing X Galaxies

- cosmic shear good at lower z (z~1.5?)
- galaxy auto-spectra are also very useful
 - we "know" s₈ at % level, so autospectrum good enough to measure simple linear bias
- CMB lensing is unique at higher z
- we can use cosmic shear to clean out low z structure

Summary

CMB lensing is being measured

strong cross-correlation with LSS

independent measures of galaxy bias

lots more to come

Lensing simplified

gravitational potentials distort shapes by stretching, squeezing, shearing

Lensing simplified

where gravity
 stretches, gradients
 become smaller

where gravity compresses, gradients are larger

Lensing simplified

where gravity
 stretches, gradients
 become smaller

where gravity compresses, gradients are larger

shear changes

direction

Mode Coupling from Lensing

$$T^{L}(\hat{\mathbf{n}}) = T^{U}(\hat{\mathbf{n}} + \nabla \phi(\hat{\mathbf{n}}))$$

=
$$T^{U}(\hat{\mathbf{n}}) + \nabla T^{U}(\hat{\mathbf{n}}) \cdot \nabla \phi(\hat{\mathbf{n}}) + O(\phi^{2}),$$

Non-gaussian mode coupling

$$l_{1}\neq -l_{2}:$$

We extract ϕ by taking a suitable average over CMB multipoles separated by a distance L

We use the Hu quadratic

E-modes/B-modes

- E-modes vary spatially parallel or perpedicular to polarization direction
- B-modes vary spatially at 45 degrees
- CMB
- scalar perturbations only generate *only* E

Simulated Polarized CMB Maps

E-modes/B-modes

- E-modes vary spatially parallel or perpedicular to polarization direction
- B-modes vary spatially at 45 degrees
- CMB
- scalar perturbations only generate *only* E
- Lensing of CMB is much more obvious in polarization!

Image of positive kx/positive ky Fourier transform of a 10x10 deg chunk of Stokes Q CMB map [simulated; nothing clever done to it]