

small-scale structure

small-scale $P(k)$ is interesting!

- shape of primordial power spectrum related to shape of inflaton potential
- small-scale $P(k)$ sensitive to physics of DM particles

Current best probe is Ly α forest (e.g. Seljak et al. 2006), but already approaching gas Jeans scale!

abundances

- another probe: abundance of objects (e.g. cluster dn/dM)

SZ maps

abundances

- another probe:abundance of objects (e.g. cluster dn/dM)
- low mass halos \& sub-halos sensitive to smallscale $P(k)$

halos and subhalos

$\mathrm{z}=11.9$

800×600 physical kpc
"Via Lactea" Diemand et al. 2006

Diemand, Kuhlen, Madau 2006

subhalos

Figure 1: Left: Density projection in the Via Lactea-II simulation [18]. Middle: Similar, but excluding particles belonging to subhalos whose masses never exceeded $10^{8} M_{\odot}$ any time throughout the simulation. Right: Like the middle panel, but excluding subhalos with $M_{\max }<10^{10} M_{\odot}$. This sequence should qualitatively illustrate the effect of truncating the power spectrum on substructure content in DM halos.

How to measure?

- count small galaxies / satellites
\square missing satellite problem (see Kravtsov 2012 for recent review)

How to measure?

- count small galaxies / satellites
\square missing satellite problem (see Kravtsov 2012 for recent review)
\square but low-mass subhalos could be dark...
- need gravitational probe to see dark halos/subhalos
- heating of tidal streams (e.g. Carlberg 2012)
- gravitational lensing!

Figure 11. Estimated gap rate vs. stream width relation for M31 NW, Pal 5, the EBS, and the CDM halo prediction. All data are normalized to 100 kpc . The width of the theoretical relation is evaluated from the dispersion in the length-height relation of Figure 8 . Predictions for an arbitrary alternative mass
functions, $N(M) \propto M^{-1.6}$, normalized to have 33 halos above $10^{9} M_{\odot}$ are shown with a dotted line.

Gravitational lensing

- the deflection of light rays caused by inhomogeneities
- also distorts the apparent shapes \& sizes of observed sources
- amount of lensing characterized by convergence $\kappa \sim \int \delta \rho d l$
- Two regimes:
- weak lensing $(|\kappa| \ll 1)$: small distortion
- strong lensing ($\kappa \gtrsim 1$) : large distortion \& multiple imaging

subhalo lensing

small ($M<10^{8} M_{\odot}$) halos and subhalos are wimpy lenses!

- small size ($\leqslant \mathrm{kpc}$), so each one affects a small fraction of the sky
- lensing amplitude is weak (central $\kappa, \gamma \leqslant 0.1$)
- need a way to boost their effect to detect them...

strong lensing

- if a small halo/subhalo projects near a strong lens, then the big lens can magnify the lensing effect of the small halo

$$
\Delta \theta \approx \mathbf{M} \cdot \Delta \alpha
$$

if high magnification, then perturbation can have big effect! (Mao \& Schneider 1998)

universality relations

- when 2 images are close together, they should have nearly equal brightness

$$
\frac{\Delta f}{f} \propto \frac{\Delta r}{r_{s}}
$$

universality relations

- when 2 images are close together, they should have nearly equal brightness

[

$$
\frac{\Delta f}{f} \propto \frac{\Delta r}{r_{s}}
$$

- similar relation when 3 images occur close together:

$\frac{f_{A}-f_{B}+f_{C}}{f_{A}+f_{B}+f_{C}} \propto \frac{\Delta r}{r_{s}}$

universality relations

$\frac{f_{A}-f_{B}+f_{C}}{f_{A}+f_{B}+f_{C}} \propto \frac{\Delta r}{r_{s}}$

flux anomalies

- implication: local scale length r_{s} is much smaller than size of the system \Rightarrow substructure in the potential
- in radio quasars, flux ratio anomalies can only be caused by mass substructure (not true for optical lenses)
- flux anomalies occur in almost all of the observed quasar lenses \Rightarrow lots of substructure!

how do we know it's substructure?

- radio flux ratios independent of λ, as expected for lensing but unlike propagation effects (like scintillation or dust extinction)
- observed parity dependence:
+ parity magnified, - parity demagnified
- radio quasars too big to be affected by stellar microlensing, unlike stellar QSO's.
- see Kochanek \& Dalal (2003) for more...

analysis of radio lenses

- Dalal \& Kochanek (2002) analyzed sample of $\mathbf{7}$ radio lenses
- found that ~ I-2\% of projected mass at 5 kpc is in substructure

how to improve?

- DK02 analyzed a tiny sample (7 lenses), but many more lenses are known, e.g. > 100 optical lenses
- unfortunately, optical QSO's are affected by extinction and stellar microlensing
- can circumvent with mid-IR fluxes, but most QSO's are faint in mid-IR
- galaxy lenses (e.g. SLACS) are really challenging (see, e.g.,Vegetti et al. 2012)

how to improve?

- we need a new class of lensed sources!

$4 \mathrm{ceg}^{2}$

All these "large-scale" fluctuations are primary CMB.

so what?

- why should we care about SPT's SMGs?
- because they're (basically) all lensed!

ALMA Cycle 0 Band 7350 GHz 2 minute snapshots

8" x 8" boxes

SPT 2147-50
$\mathrm{z}=3.761$ VLT/ISAAC

Only through the combination of strong gravitational lensing, the SPT selection, and ALMA followup is this result possible

Lens models

dirty image model image residual source model
SPT 0346－52
$z_{\mathrm{S}}=5.67 ; z_{\mathrm{L}} \sim 0.8$
$r_{E}=1.1 \mathrm{arcsec}$
$\mathrm{M}=3.7 \times 10^{11} \mathrm{M}$ 。
$\mu=5.4$
$\Sigma_{\mathrm{FIR}}=24 \times 10^{12} \mathrm{~L}_{\circ} / \mathrm{kpc}^{2}$
$\mathrm{R}_{1 / 2}=0.6 \mathrm{kpc}$
$\mathrm{L}_{\mathrm{FIR}}=3.7 \times 10^{13} \mathrm{~L}$ 。 $\mathrm{S}_{850 \mu \mathrm{~m}}=25.5 \mathrm{mJy}$

SPT 418－47
$z_{S}=4.22 ; z_{L}=0.27$
$\mathrm{r}_{\mathrm{E}}=1.4 \mathrm{arcsec}$
$\mathrm{M}=2.4 \times 10^{11} \mathrm{M}$ 。
$\mu=21$
$\Sigma_{\mathrm{FIR}}=0.74 \times 10^{12} \mathrm{~L}$ 。／kpc ${ }^{2}$
$\mathrm{R}_{1 / 2}=1.1 \mathrm{kpc}$
$\mathrm{L}_{\mathrm{FIR}}=3.8 \times 10^{12} \mathrm{~L}$ 。
$\mathrm{S}_{850 \mu \mathrm{~m}}=4.8 \mathrm{mJy}$

SPT 0529－54
$z_{\mathrm{S}}=3.37 ; \mathrm{zL}_{\mathrm{L}}=0.13$
$r_{\mathrm{E}}=1.5 \mathrm{arcsec}$
$\mathrm{M}_{\mathrm{L}}=1.6 \times 10^{11} \mathrm{M}$ 。
$\mu=9.4$

SPT 0538－50
$z_{\mathrm{S}}=2.782 ; z_{\mathrm{L}}=0.4$
$\mathrm{r}_{\mathrm{E}}=2.0 \mathrm{arcsec}$
$\mathrm{M}_{\mathrm{L}}=7.2 \times 10^{11} \mathrm{M}$ 。 $\mu=20.5$

Hezaveh et al．（2013）
$\Sigma_{\text {FIR }}=0.15 \times 10^{12} \mathrm{~L} \odot / \mathrm{kPC}^{2}$
$\mathrm{R}_{1 / 2}=2.4 \mathrm{kpc}$
$\mathrm{L}_{\text {FIR }}=3.8 \times 10^{12} \mathrm{~L}$ 。
$\mathrm{S}_{850 \mu \mathrm{~m}}=13 \mathrm{mJy}$

$\Sigma_{\text {FIR }}=1.0 \times 10^{12} \mathrm{~L} 。 / \mathrm{kpc}_{5}^{2}$
$\mathrm{R}_{1 / 2}=1.0 \mathrm{kpc}$
$\mathrm{L}_{\mathrm{FIR}}=4.5 \times 10^{12} \mathrm{~L}$ 。
$\mathrm{S}_{850 \mu \mathrm{~m}}=6.1 \mathrm{mJy}$

okay.... so what?

- lensed SMG's are perfect for detecting substructure!
- theoretically, we expect these galaxies to contain many compact star-forming clumps (~10-I00pc) inside much bigger GMC's ($\sim \mathrm{kpc}$). see also local analogues like Arp 220
- clumps are extremely bright in lines like CO 7-6
- example: high resolution SMA imaging of lensed SMG reveals compact source clumps
(Swinbank et al. 2010)

The Strength of Substructure Lensing Signal Depends on the Source Size

The Strength of Substructure Lensing Signal Depends on the Source Size

The Strength of Substructure Lensing Signal Depends on the Source Size

The Strength of Substructure Lensing Signal Depends on the Source Size

The Strength of Substructure Lensing Signal Depends on the Source Size

The Strength of Substructure Lensing Signal Depends on the Source Size

The Strength of Substructure Lensing Signal Depends on the Source Size

The Strength of Substructure Lensing Signal Depends on the Source Size

The Strength of Substructure Lensing Signal Depends on the Source Size

The Strength of Substructure Lensing Signal Depends on the Source Size

 Compact Sources Are Perturbed More Strongly

Spatially resolved spectroscopy

Figure 2. SMM J131201: this system displays a complex, irregular morphology; it most likely is an advanced pre-coalescence merger. The RGB image (mapping red, green, and blue parts of the spectrum) shows no indication of rotation. Spectra are, left: northeast (top) and southeast (bottom) arm, right: entire system (top), and central part (bottom). The beam size ($0^{\prime \prime} 59 \times 0^{\prime} .47$, P.A. $=50: 9$) is displayed in the lower left corner of the flux maps. North is up and east is to the left. Scale bar denotes $1^{\prime \prime}$.
(A color version of this figure is available in the online joumal.)

Velocity decomposition can separate small features of the source

so each SMG is equivalent to having many sources behind each lens!

Simulations of ALMA observations

* observe high excitation lines (e.g. CO 7-6)
* use most extended configuration in Cycle 1, one hour total integration

$$
\text { e.g. } \mathrm{CO} \quad 1-0 \quad 2-1
$$

Low excitation lines need low temperatures and densities to be excited. The whole molecular reservoirs of the galaxies will be emitting these lines over large extended regions.
e.g. CO 7-6 HCN HCO+ H2O

High excitation lines need higher temperatures and densities to be excited. They are dense gas tracers and are emitted from the compact cores of star forming clumps

Mean Number of Detections Per Lens (Cycle 1)

expect $\sim \mathrm{O}(1)$ detections in each lens system

even the low-magnification systems can be useful!

cosmology constraints

- existing sample (DK02) is $\mathbf{7}$ quasar lenses
- from SPT we expect ~ 100 SMG lenses, and each SMG lens is much more constraining than a quasar
- How do these measurements translate into bounds on cosmology?

cosmology constraints

- existing sample (DK02) is $\mathbf{7}$ quasar lenses
- from SPT we expect ~100 SMG lenses, and each SMG lens is much more constraining than a quasar
- How do these measurements translate into bounds on cosmology?
- We don't know - currently limited by theory! we don't know how to calculate substructure as a function of WDM, etc.
- we're working on it (Arka Banerjee)
- other statistics besides mass function might be more useful, e.g. substructure power spectrum

Conclusion:

- SMG lensing is great for DM substructure
- stay tuned!

