Challenges for theoretical cosmology

Andreas Albrecht

Fundamental Questions in Cosmology
UC Davis May 2013

Multipole moment, ℓ

Challenges for Cosmic Inflation (eternal inflation)

"Anything that can happen will happen infinitely many times" (A. Guth)

1) Measure Problems
2) Problems defining probabilit
3) Problems/hidden assumptions re initial conditions
\rightarrow problem claiming generic predictions about state
\rightarrow cannot claim "solution to cosmological
problems"
\rightarrow Related to $2^{\text {nd }}$ law, low S start
4) Yet, Successful fits to data

Slow rolling of inflaton

Challenges for Cosmic Inflation (eternal inflation)

"Anything that can happen will happen infinitely many times" (A. Guth)

1) Measure Problems
2) Problems defining probabilit
3) Problems/hidden assumptions re initial conditions
\rightarrow problem claiming generic predictions about state
\rightarrow cannot claim "solution to cosmological
problems"
\rightarrow Related to $2^{\text {nd }}$ law, low S start
4) Yet, Successful fits to data

Multipole moment, ℓ

Challenges: Answer these questions re your theories \& beliefs:

1) Do you predict the observed state of the universe to be likely or natural? (And do you care?)
2) Do you treat infinities rigorously?
3) Do you require a probability tooth fairy?

1) Do you predict the observed state of the universe to be likely or natural? (And do you care?)

- Beware hidden assumptions about initial conditions (often related to $2^{\text {nd }}$ law: $S>0 \rightarrow S$ initially small \rightarrow starting in limited part of phase space)

Gibbons \& Turok
Carroll \& Tam
Shiffren \& Wald
Penrose

1) Do you predict the observed state of the universe to be likely or natural? (And do you care?)

- Beware hidden assumptions aḅout initial conditions (often related to $2^{\text {nd }}$ law: $S>0 \rightarrow S$ initially small \rightarrow starting in limited part of phase space)

Gibbons \& Turok
Carroll \& Tam
Shiffren \& Wald
Penrose
(just as true of cyclic models)

1) Do you predict the observed state of the universe to be likely or natural? (And do you care?)

2) Do you predict the observed state of the universe to be likely or natural? (And do you care?)

3) Do you predict the observed state of the universe to be likely or natural? (And do you care?)

In general: Need a quantitative theory for your starting point (inflation, cyclic, whatever) to make this claim.

Attempts I know to create this rigor have led to surprises.

1) Do you predict the observed state of the universe to be likely or naturat? (And do you care?)

In general: Need a quantitative theory for your starting point (inflation, cyclic, whatever) to make this claim.

Attempts I know to create this rigor have led to surprises.

2) Do you treat infinities rigorously?

"Property \mathbf{X} is infinite, so \mathbf{I} don't need to worry about issue $\mathbf{Y}^{\prime \prime}$

2) Do you treat infinities rigorously?

"Property \mathbf{X} is infinite, so I don't need to worry about issue $\mathbf{Y}^{\prime \prime}$

\mathbf{X}	Y
Volume of inflated regions	Probability for starting inflation

2) Do you treat infinities rigorously?

"Property \mathbf{X} is infinite, so I don't need to worry about issue $\mathbf{Y}^{\prime \prime}$

X	\mathbf{Y}
Volume of inflated regions	Probability for starting inflation
Entropy	Probability of starting a cyclic universe

2) Do you treat infinities rigorously?

"Property \mathbf{X} is infinite, so I don't need to worry about issue $\mathrm{Y}^{\prime \prime}$

\mathbf{X}	Y
Volume of inflated regions	Probability for starting inflation
Entropy	Probability of starting a cyclic universe
Number of observers (in my theory) who see a universe like ours	The infinitely many other observers who see something totally different

2) Do you treat infinities rigorously?

"Property \mathbf{X} is infinite, so I don't need to worry about issue $\mathbf{Y}^{\prime \prime}$

Need more rigor:

- Hernley, AA \& Dray (2013) \leftrightarrow Guth toy model
- AA \& Sorbo (2004)

Increasing the level of rigor usually reveals significant hidden assumptions that amount to tuning of initial conditions.

2) Do you treat infinities rigorously?

"Property \mathbf{X} is infinite, so I don't need to worry about issue $\mathrm{Y}^{\prime \prime}$

Need more rigor:

- Hernley, AA \& Dray (2013) \Leftarrow Guth toy model
- AA \& Sorbo (2004)

Increasing the level of rigor usually reveals significant hidden assumptions that amount to tuning of initial conditions.

3) Do you require a probability tooth fairy?

3) Do you require a probability tooth fairy?

3) Do you require a probability tooth fairy?

Non-Quantum probabilities in a toy model:

$$
\begin{aligned}
& U=A \otimes B \quad A:\left\{|1\rangle^{A},|2\rangle^{A}\right\} \quad B:\left\{|1\rangle^{B},|2\rangle^{B}\right\} \\
& U:\{|1\rangle\rangle,|12\rangle,|21\rangle,|22\rangle\} \quad|i j\rangle \equiv|i\rangle^{A}|j\rangle^{B}
\end{aligned}
$$

3) Do you require a probability tooth fairy?

Non-Quantum probabilities in a toy model:

$$
\begin{aligned}
& \left.U=A \otimes B \quad A:\{1\rangle^{A},|2\rangle^{A}\right\} \quad B:\left\{|1\rangle^{B},|2\rangle^{B}\right\} \\
& U:\{|11\rangle,|12\rangle,|21\rangle,|22\rangle\} \quad|i j\rangle \equiv|i\rangle^{A}|j\rangle^{B}
\end{aligned}
$$

Possible Measurements \leftrightarrows Projection operators:
Measure A only:

$$
\hat{P}_{i}^{A}=\left(|i\rangle^{A A}\langle i|\right) \otimes \mathbf{1}^{B}=[|i 1\rangle\langle i 1|+|i 2\rangle\langle i 2|]
$$

Measure B only:

$$
\hat{P}_{i}^{B}=\left(|i\rangle^{B B}\langle i|\right) \otimes \mathbf{1}^{A}=[|1 i\rangle\langle 1 i|+|2 i\rangle\langle 2 i|]
$$

Measure entire U :

$$
\hat{P}_{i j} \equiv|i j\rangle\langle i j|
$$

3) Do yoı BUT: It is impossible to construct a projection operator for the case where you do not know whether it is
 Non-Quan A or B that is being measured.

Could Write

$$
U=A^{\prime} \quad \hat{P}_{i}=p_{A} \hat{P}_{i}^{A}+p_{B} \hat{P}_{i}^{B}
$$

Possible Measurements \leftrightarrows Projection operators:
Measure A only:

$$
\hat{P}_{i}^{A}=\left(|i\rangle^{A A}\langle i|\right) \otimes \mathbf{1}^{B}=[|i 1\rangle\langle i 1|+|i 2\rangle\langle i 2|]
$$

Measure B only:

$$
\hat{P}_{i}^{B}=\left(|i\rangle^{B B}\langle i|\right) \otimes \mathbf{1}^{A}=[|1 i\rangle\langle 1 i|+|2 i\rangle\langle 2 i|]
$$

Measure entire U :

$$
\hat{P}_{i j} \equiv|i j\rangle\langle i j|
$$

Possible Measurements \leftrightarrows Projection operators:
Measure A only:

$$
\hat{P}_{i}^{A}=\left(|i\rangle^{A A}\langle i|\right) \otimes \mathbf{1}^{B}=[|i 1\rangle\langle i 1|+|i 2\rangle\langle i 2|]
$$

Measure B only:

$$
\hat{P}_{i}^{B}=\left(|i\rangle^{B B}\langle i|\right) \otimes \mathbf{1}^{A}=[|1 i\rangle\langle 1 i|+|2 i\rangle\langle 2 i|]
$$

Measure entire U :

$$
\hat{P}_{i j} \equiv|i j\rangle\langle i j|
$$

3) Do you

BUT: It is impossible to construct a projection operator for the case where you do not know whether it $\mathrm{j} \quad$ Classical A or B that is being measured.

Could Write

$$
\hat{P}_{i}=p_{A}^{2} \hat{P}_{i}^{A}+p_{B}^{\widehat{A}} \widehat{P_{i}^{B}}
$$

$$
\hat{P}_{i} \hat{P}_{j} \neq \delta_{i j} \hat{P}_{j}
$$

Does not

represent a
hents \longleftrightarrow Projection operators:
quantum

measurement

Measure o only:

$$
\begin{aligned}
& \hat{P}_{i}^{A}=\left(|i\rangle^{A A}\langle i|\right) \otimes \mathbf{1}^{B}=[|i 1\rangle\langle i 1|+|i 2\rangle\langle i 2|] \\
& \hat{P}_{i}^{B}=\left(|i\rangle^{B A}\langle i|\right) \otimes \mathbf{1}^{A}=[|1 i\rangle\langle 1 i|+|2 i\rangle\langle 2 i|]
\end{aligned}
$$

Measure entire U :

$$
\hat{P}_{i j} \equiv|i j\rangle\langle i j|
$$

3) Do you

BUT: It is impossible to construct a projection operator for the case where you do not know whether it i Non-Quan A or B that is being measured.

Classical Probabilities

$$
U=A
$$

Does not represent a quantum

measurement

Measure D only:
Measure entire U :

Could Write

$$
\hat{P}_{i}=p_{A}^{*} \hat{P}_{i}^{A}+p_{B}^{-} \widehat{P_{i}^{B}}
$$

to measure
A, B

$$
\hat{P}_{i} \hat{P}_{j} \neq \delta_{i j} \hat{P}_{j}
$$

$$
\text { hents } \leftrightarrow \mathrm{p} \text { Page: The }
$$

multiverse requires this (are you in pocket universe A or B?)
3) Do you

BUT: It is impossible to construct a projection operator for the case where you do not know whether it i Non-Quan A or B that is being measured.

Classical Probabilities

$$
U=A
$$

Does not represent a quantum measurement Measure donly:

Measure entire U :

Could Write

$$
\hat{P}_{i}=p_{A}^{4} \hat{P}_{i}^{\Lambda}+p_{B}^{-} \widehat{P_{i}^{B}}
$$

to measure
A, B

$$
\hat{P}_{i} \hat{P}_{j} \neq \delta_{i j} \hat{P}_{j}
$$

Page: The
multiverse requires this (are you in pocket universe A or B?)

- All everyday probabilities are quantum probabilities
- One should not use ideas from everyday probabilities to justify probabilities that have been proven to have no quantum origin

AA \& D. Phillips 2012

- All everyday probabilities are quantum probabilities
- One should not use ideas from everyday probabilities to justify probabilities that have been proven to have no quantum orici

A problem for
many multiverse theories

AA \& D. Phillips 2012

- All everyday probabilities are quantum probabilities
- One should not use ideas from everyday probabilities to justify probabilities that have been proven to have no quantum orici

A problem for
many multiverse theories

AA \& D. Phillips 2012
3) Do yol

BUT: It is impossible to construct a projection operator for the case where you do not know whether it $\mathrm{j} \quad$ Class cal A or B that is being measured.

Could Write

$$
\hat{P}_{i}=p_{A}^{*} \hat{P}_{i}^{A}+p_{B}^{-} \hat{P_{i}^{B}}
$$

Pro \& bilities \dagger mea ure A, B

Page: The

multiverse requires this (are you in pocket universe A or B?)
Measure entire U :

$$
\hat{P}_{i j} \equiv|i j\rangle\langle i j|
$$

All everyday probabilities are quantun

 probabilities- One should not use ideas from everyday probabilities to justify probabilities that have been proven to have no quantum origin

AA \& D. Phillips 2012

Quantum effects in a billiard gas

$$
\left(\begin{array}{cccccccc}
0^{\circ} & 8_{0}^{0} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \varepsilon_{0} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Quantum effects in a billiard gas

Quantum effects in a billiard gas

$$
\Delta b=\delta x_{\perp}+\frac{\delta p_{\perp}}{m} \Delta t
$$

Quantum effects in a billiard gas

$$
\Delta b=\delta x_{\perp}+\frac{\delta p_{\perp}}{m} \Delta t=\sqrt{2}\left(a+\frac{\hbar}{2 a} \frac{l}{m \bar{v}}\right) \quad \psi \propto \exp \left(\frac{-x^{2}}{2 a^{2}}\right)
$$

$\Delta \bar{b}$

Quantum effects in a billiard gas

$$
\psi \propto \exp \left(\frac{-x^{2}}{2 a^{2}}\right)
$$

$\psi \propto \exp \left(\frac{-x^{2}}{2 a^{2}}\right)$

$$
\begin{aligned}
& \Delta b=\delta x_{\perp}+\frac{\delta p_{\perp}}{m} \Delta t=\sqrt{2}\left(a+\frac{\hbar}{2 a} \frac{l}{m \bar{v}}\right) \\
& \quad \min 2^{3 / 2}\left(\frac{\hbar l}{2 m \bar{v}}\right) \equiv \sqrt{l \lambda_{d B} / 2}
\end{aligned}
$$

Quantum effects in a billiard gas

After n collisions:

$$
\Delta b_{n}=\Delta b(1+2 l / r)^{n}
$$

Quantum effects in a billiard gas

n_{Q} is the number of collisions so that $\Delta b_{n_{Q}}=r$
(full quantum uncertainty as to which is the next collision)

$$
n_{Q}=-\frac{\log \left(\frac{\Delta b}{r}\right)}{\log \left(1+\frac{2 l}{r}\right)}
$$

n_{Q} for a number of physical systems

(all units MKS)

	r	l	m	\bar{v}	$\lambda_{d B}$	Δb	n_{Q}
Air							
Water							
Billiards							
Bumper Car							

n_{Q} for a number of physical systems

(all units MKS)

	r	l	m	\bar{v}	$\lambda_{d B}$	Δb	n_{Q}
Air							
Water							
Billiards							
Bumper Car	1	2	150	0.5	1.4×10^{-36}	3.4×10^{-18}	25

n_{Q} for a number of physical systems

(all units MKS)

	r	l	m	\bar{v}	$\lambda_{d B}$	Δb	n_{Q}
Air							
Water							
Billiards	0.029	1	0.16	1	6.6×10^{-34}	5.1×10^{-17}	8
Bumper Car	1	2	150	0.5	1.4×10^{-36}	3.4×10^{-18}	25

n_{Q} for a number of physical systems

(all units MKS)

	r	l	m	\bar{v}	$\lambda_{d B}$	Δb	n_{Q}
Air							
Water	3.0×10^{-10}	5.4×10^{-10}	3×10^{-26}	460	7.6×10^{-12}	1.3×10^{-10}	0.6
Billiards	0.029	1	0.16	1	6.6×10^{-34}	5.1×10^{-17}	8
Bumper Car	1	2	150	0.5	1.4×10^{-36}	3.4×10^{-18}	25

n_{Q} for a number of physical systems

(all units MKS)

	r	l	m	\bar{v}	$\lambda_{d B}$	Δb	n_{Q}
Air	1.6×10^{-10}	3.4×10^{-7}	4.7×10^{-26}	360	6.2×10^{-12}	2.9×10^{-9}	-0.3
Water	3.0×10^{-10}	5.4×10^{-10}	3×10^{-26}	460	7.6×10^{-12}	1.3×10^{-10}	0.6
Billiards	0.029	1	0.16	1	6.6×10^{-34}	5.1×10^{-17}	8
Bumper Car	1	2	150	0.5	1.4×10^{-36}	3.4×10^{-18}	25

n_{Q} for a number of physical systems

(all units MKS)

	r	l	m	\bar{v}	$\lambda_{d B}$	Δb	n_{O}
Air	1.6×10^{-10}	3.4×10^{-7}	4.7×10^{-26}	360	6.2×10^{-12}	2.9×10^{-9}	-0.3
Water	3.0×10^{-10}	5.4×10^{-10}	3×10^{-26}	460	7.6×10^{-12}	1.3×10^{-10}	0.6
Billiards	0.029	1	0.16	1	6.6×10^{-34}	5.2	Quantum at every collision
Bumper Car	1	2	150	0.5	1.4×10^{-36}	3.	3.

n_{Q} for a number of physical systems

(all units MKS)

n_{Q} for a number of physical systems

(all units MKS)

n_{Q} for a number of physical systems

(all units MKS)

(independent of "interpretation")

n_{Q} for a number of physical systems

(all units MKS)

An important role for Brownian motion: Uncertainty in neuron transmission times

Analysis of coin flip

$$
\begin{aligned}
& \delta t_{f}=\delta t_{n} \times\left(\frac{v_{h}}{v_{h}+v_{f}}\right) \\
& \delta t_{t}=\sqrt{2} \delta t_{f} \\
& f=\frac{4 v_{f}}{\pi d}
\end{aligned}
$$

$$
\delta N=f \delta t_{t}=0.5
$$

Using:

Coin diameter $=d$

$$
\begin{aligned}
& \delta t_{n} \approx 1 \mathrm{~ms} \quad v_{h}=v_{f}=5 \mathrm{~m} / \mathrm{s} \\
& d=0.01 \mathrm{~m}
\end{aligned}
$$

Analysis of coin flip

$$
\delta t_{f}=\delta t_{n} \times\left(\frac{v_{h}}{v_{h}+v_{f}}\right)
$$

$$
\delta t_{t}=\sqrt{2} \delta t_{f}
$$

$$
f=\frac{4 v_{f}}{\pi d}
$$

$\delta N=f \delta t_{t}=0.5$

50-50 coin flip probabilities are
 a derivable quantum result

Using:

$$
\begin{aligned}
& \delta t_{n} \approx 1 \mathrm{~ms} \quad v_{h}=v_{f}=5 \\
& d=0.01 \mathrm{~m}
\end{aligned}
$$

Analysis of coin flip

$$
\delta t_{f}=\delta t_{n} \times\left(\frac{v_{h}}{v_{h}+v_{f}}\right)
$$

$$
\delta t_{t}=\sqrt{2} \delta t_{f}
$$

$$
f=\frac{4 v_{f}}{\pi d}
$$

$\delta N=f \delta t_{t}=0.5$

50-50 coin flip probabilities are a derivable quantum result

Analysis of coin flip

$$
\delta t_{f}=\delta t_{n} \times\left(\frac{v_{h}}{v_{h}+v_{f}}\right)
$$

$$
\delta t_{t}=\sqrt{2} \delta t_{f}
$$

$$
f=\frac{4 v_{f}}{\pi d}
$$

$\delta N=f \delta t_{t}=0.5$

NB: Coin flip is "at the margin" of classical vs quantum control: Increasing d or deceasing v_{h} can reduce δN substantially

All everyday probabilities are quantum probabilities

- Proof by exhaustion not realistic

All everyday probabilities are quantum probabilities

- Proof by exhaustion not realistic
- One counterexample (practical utility of non-quantum probabilities) will undermine our entire argument.

All everyday probabilities are quantum probabilities

- Proof by exhaustion not realistic
- One counterexample (practical utility of non-quantum probabilities) will undermine our entire argument
- Can still invent classical probabilities just to do multiverse cosmology

3) Do you require a probability tooth fairy?

- Proof by exhaustion not realistic
- One counterexample (practical utility of non-quantum probabilities) will undermine our entire argument
- Can still invent classical probabilities just to do multiverse cosmology

3) Do you require a probability tooth fairy?

- Proof by exhaustion not realistic
- One counterexample (practical utility of non-quantum probabilities) will undermine our entire argument
- Can still invent classical probabilities just to do multiverse cosmology
- Not a problem for finite theories (AA, Banks \& Fischler)

3) Do you require a probability tooth fairy?

- Proof by exhaustion not realistic
- One counterexample (practical utility of non-quantum probabilities) will undermine our entire argument
- Can still invent classical probabilities just to do multiverse cosmology
- Not a problem for finite theories (AA, Banks \& Fischler)
- Which theories really do require classical probabilities not yet resolved rigorously.

3) Do you require a probability tooth fairy?

- Proof by exhaustion not realistic
- One counterexample (practical utility of non-quantum probabilities) will undermine our entire argument
- Can still invent classical probabilities just to do multiverse cosmology
- Not a problem for finite theories (AA, Banks \& Fischler)
- Which theories really do require classical probabilities not yet resolved rigorously.

Challenges for Cosmologists:

1) Find a foundation for inflation (or an alternative theory) that can be *well* tested with modern data. Meet the "Challenges for theorists"
2) Only then can we claim to resolve the famous cosmological puzzles (Monopoles already OK).
3) Still, already have great narrative about the origin of perturbations. (Should we be happy with that?)
4) Run risk of being "stuck" like standard model of particle physics has been (so far).

Challenges for Cosmologists:

1) Find a foundation for inflation (or an alternative theory) that can be *well* tested with modern data. Meet the "Challenges for theorists"
2) Only then can we claim to resolve the famous cosmological puzzles (Monopoles already OK).
3) Still, already have great narrative about the origin of perturbations. (Should we be happy with that?)
4) Run risk of being "stuck" like standard model of particle physics has been (so far).

Challenges for Cosmologists:

1) Find a foundation for inflation (or an alternative theory) that can be *well* tested with modern data. Meet the "Challenges for theorists"
2) Only then can we claim to resolve the famous cosmological puzzles (Monopoles already OK).
3) Still, already have great narrative about the origin of perturbations. (Should we be happy with that?)
4) Run risk of being "stuck" like standard model of particle physics has been (so far).

Challenges for Cosmologists:

1) Find a foundation for inflation (or an alternative theory) that can be *well* tested with modern data. Meet the "Challenges for theorists"
2) Only then can we claim to resolve the famous cosmological puzzles (Monopoles already OK).
3) Still, already have great narrative about the origin of perturbations. (Should we be happy with that? NO!
4) Run risk of being "stuck" like standard model of particle physics has been (so far).

Challenges for Cosmologists:

1) Find a foundation for inflation (or an alternative theory) that can be *well* tested with modern data. Meet the "Challenges for theorists"
2) Only then can we claim to resolve the famous cosmological puzzles (Monopoles already OK).
3) Still, already have great narrative about the origin of perturbations. (Should we be happy with that? NO!
4) Run risk of being "stuck" like standard model of particle physics has been (so far). We can do better!

Challenges: Answer these questions re your theories \& beliefs:

1) Do you predict the observed state of the universe to be likely or natural? (And do you care?)
2) Do you treat infinities rigorously?
3) Do you require a probability tooth fairy?

Multipole moment, ℓ

Challenges: Answer these questions re your theories \& beliefs:

1) Do you predict the observed state of the universe to be likely or natural2 (And do you care?1

YES

2) Do you treat infinities rigorously?
3) Do you require a probability tooth fairy?
