A new method for a sterile neutrino search

M. Bergevin, UC Davis

Today

Topics of this seminar:

*What are neutrinos and how do we measure them?

* Sterile neutrinos and the reactor neutrino anomaly
* Difficulties in current analysis techniques (the so-called shape anomaly)
* Describe a 2-reactor 1-detector analysis technique that provides a new approach to searching for sterile neutrinos
* Case Study: Double Chooz near detector

Neutrinos: what you need to remember (Cliff notes)

* Neutrinos are produced radioactive decay, nuclear reactions, high energy collision (neutron decay, muon decay, nuclear power operation, cosmic rays hitting the atmosphere, ...)

We measure low energy neutrinos through
Inverse Beta Decay (IMD) and Electron Scattering (ES)

* We have confirmed there is at least 3 flavors of neutrinos (electron, muon, tau neutrinos)
* These neutrino can oscillate to other flavor of neutrino (electron neutrino can go to muon neutrino), this oscillation is a function of distance traveled over the energy of the neutrino (L / E)

$$
\begin{aligned}
\nu_{e} n & \rightarrow p e^{-}(\mathrm{IBD}) \\
\bar{\nu}_{e} p & \rightarrow n e^{+}(\mathrm{IBD}) \\
\nu_{e} e^{-} & \rightarrow \nu_{e} e^{-}(\mathrm{ES})
\end{aligned}
$$

* There are possible hints from reactor neutrino experiments for what are called sterile neutrinos (reactor antineutrino anomaly)

Neutrinos: they can oscillate from one to the other

Neutrino oscillations are parameterized by the PMNS matrix, U :

$$
\begin{aligned}
& \left(\begin{array}{c}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right)=\left(\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & 0 & s_{13} e^{-i \delta} \\
0 & 1 & 0 \\
-s_{13} e^{i \delta} & 0 & c_{13}
\end{array}\right)\left(\begin{array}{l}
\nu_{1} \\
\nu_{2} \\
\nu_{3}
\end{array}\right) \\
& \text { flavor solar }-\theta_{12} \text { atmospheric }-\theta_{23} \text { reactor }-\theta_{13} \text { mass } \\
& \text { eigenstates where } c_{i j}=\cos \theta_{i j} \text { and } s_{i j}=\sin \theta_{i j}
\end{aligned}
$$

Oscillation probability:

$$
\begin{gathered}
P\left(\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta}\right)=\delta_{\alpha \beta}-4 \sum_{i>j} \operatorname{Re}\left(U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*}\right) \sin ^{2}\left(\Delta_{i j}\right)-2 \sum_{i>j} \operatorname{Im}\left(U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*}\right) \sin \left(2 \Delta_{i j}\right) \\
\text { where } \Delta_{i j}=\frac{\Delta m_{i j}^{2} L}{4 E_{\nu}} \text { and } \Delta m_{i j}^{2} \equiv m_{j}^{2}-m_{i}^{2}
\end{gathered}
$$

θ_{12} and $\Delta m^{2}{ }_{12} \rightarrow$ Probed with Solar + KamLAND data
θ_{23} and $\Delta m^{2}{ }_{23} \rightarrow$ Probed with Super, K2K and MINOS data
$\theta_{13} \rightarrow$ As of Nov. 2011, weak indication of $\theta_{13} \neq 0$ from Chooz, MINOS and T2K
C. Grant

February 3-9, $2013 \quad$ Aspen Center for Physics - Winter Conference: "New Directions in Neutrino Physics"
2
For reactor anti-neutrino detector close to a reactor, this can be boiled down to:

Neutrino physicist: we live for those anomalies! (e.g.: Solar neutrino anomaly)

$$
\begin{aligned}
& \mathbf{0 . 5}{ }^{37} \mathbf{A r} \text { per day for } \\
& \mathbf{1 3 3} \text { ton }{ }^{37} \mathbf{C l} \\
& \text { Expect } 8.6 \mathrm{SNU} \\
& \text { Measure } 2.5 \mathrm{SNU} \\
& 40 \text { year of counting! } \\
& \\
& \varphi_{\text {meas } /} / \varphi_{\exp }=\mathbf{0 . 3 0 1} \pm \mathbf{0 . 0 2 7}
\end{aligned}
$$

$1 \mathrm{SNU}=1$ neutrino interaction per second for 10^{36} target atoms

Radiochemical Detectors (Davis Cl experiment)

SuperK neutrino Elastic Scattering measurement

$$
\begin{gathered}
\phi_{\mathrm{SK}}^{\mathrm{ES}}\left(\nu_{x}\right)=2.32 \pm 0.03(\text { stat. })_{-0.07}^{+0.08}(\text { sys. }) \times 10^{6} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \\
\varphi_{\mathrm{SK}} / \varphi_{\text {solar model }}=\mathbf{0 . 4 0 6} \pm \mathbf{0 . 0 1 4}
\end{gathered}
$$

Hence, the solar neutrino anomaly

How to measure amplitude: $\sin ^{2}(2 \theta)$ How we measure solar neutrinos in SNO

One kiloton of $\mathrm{D}_{2} \mathrm{O}$
12 m diameter acrylic vessel

$$
\mathrm{D}={ }^{2} \mathrm{H}=n p
$$

Deuteron is weakly bound together:

$$
\begin{array}{r}
\nu_{e}+d \rightarrow p+p+e(\mathrm{CC}) \\
\nu_{x}+d \rightarrow p+n+\nu_{x}(\mathrm{NC}) \\
\\
\nu_{x}+e^{-} \rightarrow \nu_{x}+e^{-}(\mathrm{ES})
\end{array}
$$

Again, three types of flavor: (electron, muon, tau) neutrino

(a) Charged-current

(b) Neutral-current

(c)

(d)

How to measure amplitude: $\sin ^{2}(2 \theta)$ SNO was able to measure the total rate

Solar neutrino problem solved!

SNO's first result

$$
\begin{aligned}
\phi_{\mathrm{CC}}^{\mathrm{SNO}} & =1.76_{-0.05}^{+0.06}(\text { stat. })_{-0.09}^{+0.09}(\text { syst. }) \\
\phi_{\mathrm{ES}}^{\mathrm{SNO}} & =2.39_{-0.23}^{+0.24}(\text { stat. })_{-0.12}^{+0.12} \text { (syst.) } \\
\phi_{\mathrm{NC}}^{\mathrm{SNO}} & =5.09_{-0.43}^{+0.44} \text { (stat.) } \\
-0.43 & \text { (syst. }) .
\end{aligned}
$$

(a) Charged-current

(b) Neutral-current

SNO's consistent with SuperK ES measurement

$$
\left.\phi_{\mathrm{SK}}^{\mathrm{ES}}\left(\nu_{x}\right)=2.32 \pm 0.03 \text { (stat. }\right)_{-0.07}^{+0.08}(\text { sys. }) \times 10^{6} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}
$$

$\mathrm{CC} / \mathrm{NC}$ is consistent with Chlorine experiment!

How to measure frequency $\left(\Delta \mathrm{m}^{2}\right)$ KamLAND

How to measure frequency $\left(\Delta m^{2}\right)$ KamLAND (disappearance experiment)

What about appearance experiments? LSND claim (π beam close to rest)

KARMEN

segmented liquid scintillator calorimeter with 608 modules and a total mass of 56 t

LSND

167 t of liquid scintillator mineral oil and $0.031 \mathrm{~g} / \mathrm{l}$ of $\mathrm{b}-\mathrm{PBD}$

LSND collected 28,896 C on target and observed a 3.8σ excess of events consistent with $v_{\mu}->\mathrm{V}_{\mathrm{e}}$ [$\mathrm{P}_{\mathrm{osc}}=(0.264+/-0.067+/-0.04)$]

Property	LSND	KARMEN
Proton Energy	798 MeV	800 MeV
Proton Intensity	$1000 \mu \mathrm{~A}$	$200 \mu \mathrm{~A}$
Protons on Target	$28,896 \mathrm{C}$	9425 C
Duty Factor	6×10^{-2}	1×10^{-5}
Total Mass	167 t	56 t
Neutrino Distance	30 m	17.7 m
Particle Identification	YES	NO
Energy Resolution at 50 MeV	6.6%	1.6%
Events for $100 \% \bar{v}_{\mu} \rightarrow \bar{v}_{e}$ Transmutation	33,300	14,000

MiniBoone excess

The MiniBooNE experiment at Fermilab reports results from an analysis of the combined ν_{e} and $\bar{\nu}_{e}$ appearance data from 6.46×10^{20} protons on target in neutrino mode and 11.27×10^{20} protons on target in antineutrino mode. A total excess of $240.3 \pm 34.5 \pm 52.6$ events (3.8σ) is observed from combining the two data sets in the energy range $200<E_{\nu}^{Q E}<1250 \mathrm{MeV}$. In a combined fit for CP-conserving $\nu_{\mu} \rightarrow \nu_{e}$ and $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ oscillations via a two-neutrino model, the background-only fit has a χ^{2}-probability of 0.03% relative to the best oscillation fit. The data are consistent with neutrino oscillations in the $0.01<\Delta m^{2}<1.0 \mathrm{eV}^{2}$ range and with the evidence for antineutrino oscillations from the Liquid Scintillator Neutrino Detector (LSND).

Sterile Neutrinos?

- $3+\mathrm{N}$ models
- $\mathrm{N}>1$ allows CP violation for short baseline experiments
- $\nu_{\mu} \rightarrow v_{\mathrm{e}} \neq \bar{\nu}_{\mu} \rightarrow \bar{v}_{\mathrm{e}}$

Slide stolen from W. C. Louis SLAC Intensity Frontier Workshop March 6, 2

$$
\begin{aligned}
& \mathrm{N}=0 \\
& \left(\begin{array}{c}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right)=\left(\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & 0 & s_{13} e^{-i \delta} \\
0 & 1 & 0 \\
-s_{13} e^{i \delta} & 0 & c_{13}
\end{array}\right)\left(\begin{array}{l}
\nu_{1} \\
\nu_{2} \\
\nu_{3}
\end{array}\right) \\
& \text { flavor solar }-\theta_{12} \text { atmospheric }-\theta_{23} \quad \text { reactor }-\theta_{13} \text { mass } \\
& \text { eigenstates } \\
& \text { where } c_{i j}=\cos \theta_{i j} \text { and } s_{i j}=\sin \theta_{i j} \\
& \text { C. Grant }
\end{aligned}
$$

You mentioned something about a reactor anomaly?

Neutrino: how they are produced in nuclear reactors and measured by detectors?

\bar{v}_{e} Flux Source:

β-decays from neutron-rich fission products in nuclear reactors
~ $200 \mathrm{MeV} /$ fission
~ 6 anti-nu's / fission
$\sim 2 \times 10^{20}$ anti-nu's / GW ${ }_{\text {th }}$

To calculate fission rates:
Double Chooz uses reactor simulations (MURE and DRAGON) in combination with an anchor point from Bugey4 to minimize systematic uncertainty
C. Grant

February 3-9, 2013
Aspen Center for Physics - Winter Conference: "New Directions in Neutrino Physics"
T. A. Mueller et al., arXiv:1101.2663v3

What is the reactor anti-neutrino anomaly?

In 2011, re-evaluation of reactor anti-neutrino spectra because
(a) 3% increased flux of antineutrinos relative to the previous calculations
(b) experimental neutron lifetime value significantly lower

Previously published experimental result with $\mathrm{L}<100 \mathrm{~m}$ now show a disappearance not consistent with θ_{13} (could be due to a sterile neutrino oscillation)

What is the reactor anti-neutrino anomaly?

In 2011, re-evaluation of reactor anti-neutrino spectra because
(a) 3% increased flux of antineutrinos relative to the previous calculations
(b) experimental neutron lifetime value significantly lower

Previously published experimental result with $\mathrm{L}<100 \mathrm{~m}$ now show a disappearance not consistent with θ_{13} (could be due to a sterile neutrino oscillation)

The current reactor experiments probe regions of $\Delta \mathrm{m}^{2}>0.3 \mathrm{eV}^{2}$

Sterile neutrino allowed mixing parameters for RNA

These different have allowed solutions to the oscillation formula

BUGEY-3 measurement of oscillation:

${ }^{6} \mathrm{Li}$ loaded scintillator
$n+{ }^{6} \mathrm{Li} \longrightarrow{ }^{4} \mathrm{He}+{ }^{3} \mathrm{H}+4.8 \mathrm{MeV}$.

AmBe 4.4 MeV gamma source

Nuclear Physics B 434 (1995) 503-532

BUGEY-3 measurement of oscillation:

Nuclear Physics B 434 (1995) 503-532

No oscillation was seen: (exclusion plot of solutions)

Sterile neutrino allowed mixing parameters for RNA

arXiv:1204.5379

Further anomaly? The SAGE/GALLEX study:

Radioactive Neutrino Source Anomaly

SAGE, Phys. Rev. C 73 (2006) 045805

Create a neutrino source close to the detector

$$
\begin{aligned}
& e^{-}+{ }^{51} \mathrm{Cr} \rightarrow{ }^{51} \mathrm{~V}+v_{e}, \\
& e^{-}+{ }^{37} \mathrm{Ar} \rightarrow{ }^{37} \mathrm{Cl}+v_{e},
\end{aligned}
$$

	GALLEX		SAGE	
k	G 1	G 2	S 1	S 2
source	${ }^{51} \mathrm{Cr}$	${ }^{51} \mathrm{Cr}$	${ }^{51} \mathrm{Cr}$	${ }^{37} \mathrm{Ar}$
R_{B}^{k}	0.953 ± 0.11	$0.812_{-0.11}^{+0.10}$	0.95 ± 0.12	$0.791 \pm{ }_{-0.084}^{+0.084}$
R_{H}^{k}	$0.84_{-0.12}^{+0.13}$		$0.71_{-0.11}^{+0.12}$	$0.84_{-0.13}^{+0.14}$
radius [m]		1.9		
height [m]		5.0		$0.70 \pm{ }_{-0.09}^{+0.10}$
source height [m]	2.7		2.38	

$\mathbf{R}=0.86+-0.05$ Slide taken from W. C. Louis
SLAC Intensity Frontier Workshop March 6, 2

GALLEX \& SAGE observe fewer events than expected from their calibration measurements, consistent with $\boldsymbol{v}_{\mathrm{e}}$ disappearance to sterile neutrinos

Future Experiments to measure sterile neutrinos?

Future Experiments to measure sterile neutrinos?

Future Experiments to measure sterile neutrinos?

Stereo at ILL, France

POSEIDON at Reactor PIK, Russia

Gd-LS Detector: $2.1 \times 1.3 \times 1.3 \mathrm{~m}^{3}$
Energy resolution: $\sigma=7 \%$ at 1 MeV
Spatial resolution: $\sigma_{\mathrm{x}}=15 \mathrm{~cm}$ at 1 MeV

Energy and spatial resolution to measure oscillation curves for different E_{v}
aim to detect oscillatory signature

Bring the source to the detector!

CeLAND Concept with KamLAND Detector

cea ${ }^{144} \mathbf{C e}$ Source @external + 35 cm W-alloy

J. Link, SLAC Intensity Frontier Workshop March 6, 2

Short Distance Oscillations with Borexino Concept

Source Under Detector

What about the other extreme?
Neutrino evaluated from cosmic measurement

But what about cosmic limits?

Summary of Cosmological $N_{\text {eff }}$ Constraints

- SDSS BOSS Galaxy Clustering + BAO + WMAP $7+$ SNe $+\mathrm{H}_{0}$ (Zhao et. al 2012)

$$
N_{\text {eff }}=4.308 \pm 0.794 \quad 68 \% \mathrm{CL}
$$

- SPT + WMAP 7 + Ho (Hou et al. 2012)

$$
N_{\text {eff }}=3.71 \pm 0.35
$$

- ACT + WMAP $7+$ BAO $+\mathrm{H}_{0}$
(Sievers et al 2013)

$$
N_{\text {eff }}=2.78 \pm 0.55
$$

-) - WMAP $9+e \mathrm{CMB}+\mathrm{BAO}+\mathrm{H}_{0}$ (Hinshaw et al. $2012 \mathrm{v2}$)

$$
N_{\text {eff }}=3.84 \pm 0.40
$$

but, see Verde et al. 2011: shape of priors
ABAZAJIAN, Kev, Cosmic Frontier SLAC Meeting

But what about cosmic limits?

Perturbations enter horizon:

But what about cosmic limits?

ABAZAJIAN, Kev, Cosmic Frontier SLAC Meeting

A real anomaly!

A new method to look for sterile neutrinos

 Bergevin, Grant, Svoboda: arxiv.1303.0310v1
Traditional way of looking at a reactordetector relationship:

Average the reactors to amplitude evaluation

Daya Bay finally called it! (Measured amplitude change)

However, taking the ratio leads to strange behaviors(a possible shape anomaly)

Why the "1"-reactor multi-detector sterile neutrino rate or shape analysis is difficult:

- A traditional rate analysis of the neutrino spectra at each detector may not be sufficient to detect a higher $\Delta \mathrm{m}^{2}{ }_{14}$ due to systematic uncertainties in the absolute rate
- The detector resolution will wash out the large $\Delta \mathrm{m}^{2}$ such that the survival probability will average out to $0.5^{*} \sin ^{2}\left(2 \theta_{14}\right)$ for a shape analysis
- In addition, distances implied are on the order of the core size which will also wash it out the oscillation feature in a shape analysis rate is difficult

Traditional way of looking at a reactor-detector relationship (DC case study)

As stated before, a 2-reactor 2detector set-up, it is customary to think of an "average" reactor and multiple detector scenario (" 1 "reactor 2-detector)

In the rare case when both reactors are off, gain better understanding of detector related systematics (${ }^{(} \mathrm{Li}, \mathrm{FN}$)

Double Chooz:

- Two 4.25 GWth Reactors
(1,2 for this talk)
- 2 Detectors (Near, Far)

New idea of the reactor-detector relationship for a Shape-Only analysis:

Do not have the two reactor running at the same time (luckily, we don't have to convince anyone, this happens naturally)

Collect data when Reactor 1 is on and Reactor 2 off and vice versa

One can then think of a near and far reactor

Do a ratio of the energy spectra corrected for livetime and distance for near and far reactor:

This can be used in a shape analysis that does not depend on rate information

In a shape only analysis, major detector related systematics (fast neutrons, 9Li production, ...) can be constrained

A quantitative case study : DC Near detector

Assumption for this analysis:
~274 days of data per Reactor assuming down cycle of 15% per Reactor. (implies 5 years total of detector operation)

Reactor 1-Near detector :

- 351 meters away from DC detector
- ~460 anti-neutrinos per day

Reactor 2-Near detector :

- 465 meters away from detector
- ~260 anti-neutrinos per day

Only works with 2
"identical" reactors

Do a ratio of the energy spectra corrected for livetime and distance for near and far reactor!

Understanding the shape distortion from the ratio of the oscillated spectra:

$$
P_{e e}=1-\sin ^{2}\left(2 \theta_{\text {new }}\right) \sin ^{2}\left(\frac{\Delta m_{\text {new }}^{2} L}{4 E_{\bar{\nu}_{e}}^{2}}\right) \xrightarrow{\text { ratio }+ \text { simplify }} \frac{P_{e e}^{R_{1}}}{P_{e e}^{R_{2}}}=\frac{1-\alpha^{2} \sin ^{2}\left(\beta L_{1}\right)}{1-\alpha^{2} \sin ^{2}\left(\beta L_{2}\right)}
$$

Understanding the shape distortion from the ratio of the oscillated spectra:

$$
P_{e e}=1-\sin ^{2}\left(2 \theta_{\text {new }}\right) \sin ^{2}\left(\frac{\Delta m_{\text {new }}^{2} L}{4 E_{\bar{\nu}_{e}}}\right) \xrightarrow{\text { ratio + simplify }} \frac{P_{e e}^{R_{1}}}{P_{e e}^{R_{2}}}=\frac{1-\alpha^{2} \sin ^{2}\left(\beta L_{1}\right)}{1-\alpha^{2} \sin ^{2}\left(\beta L_{2}\right)}
$$

do some math

$$
\frac{P_{e e}^{R_{1}}}{P_{e e}^{R_{2}}}=\frac{1+\alpha^{2} \sin \left(\beta L_{2-1}\right) \sin \left(\beta L_{1+2}\right)-\alpha^{4} \sin ^{2}\left(\beta L_{1}\right) \sin ^{2}\left(\beta L_{2}\right)}{1-\alpha^{4} \sin ^{4}\left(\beta L_{2}\right)}
$$

Doing a ratio of two distribution yields an interference term with a behavior $\sim \sin (\gamma / E)$ function (and not as the square of a sin function)
(a) $\quad L_{1} \equiv$ distance from detector to reactor 1
(b) $L_{2} \equiv$ distance from detector to reactor 2
(c) $L_{2-1} \equiv L_{2}-L_{1}$
(d) $L_{1+2} \equiv L_{1}+L_{2} \quad$ identify 4 baselines

What can be probed with these baselines?

$$
\frac{P_{e e}^{R_{1}}}{P_{e e}^{R_{2}}}=\frac{1+\alpha^{2} \sin \left(\beta L_{2-1}\right) \sin \left(\beta L_{1+2}\right)-\alpha^{4} \sin ^{2}\left(\beta L_{1}\right) \sin ^{2}\left(\beta L_{2}\right)}{1-\alpha^{4} \sin ^{4}\left(\beta L_{2}\right)}
$$

$$
\frac{P_{e e}^{R_{1}}}{P_{e e}^{R_{2}}} \approx 1+\left[1-\alpha^{2} \sin ^{2}\left(\beta L_{2}\right)\right]\left[\alpha^{2} \sin \left(\beta L_{2-1}\right) \sin \left(\beta L_{1+2}\right)\right]+O(6)+\ldots
$$

arXiv:1204.5379

How is this ratio observed in a detector?

- Convolve 4th neutrino with 3-neutrino oscillation
- Make appropriate livetime, core evolution and distance corrections

Finally, convolve with detector energy resolution and finite core size

Expected spectra after applying oscillation and core evolution

How does this ratio change as a function of $\Delta \mathrm{m}^{2}$?

How does this ratio change as a function of $\Delta \mathrm{m}^{2}$?

Rate

Figure 58. Allowed regions in the $\sin ^{2}\left(2 \theta_{\text {new }}\right)-\Delta m_{\text {new }}^{2}$ plane obtained from the fit of the reactor neutrino data, without any energy spectra information, to the $3+1$ neutrino hypothesis, with $\sin ^{2}\left(2 \theta_{1}\right)=0$. The best-fit point is indicated by a star.

Apply

 detector resolution

At even lower $\Delta \mathrm{m}^{2}$ the detector resolution has less of an impact:

θ_{13} order

Result first: domain with 5 year of near detector

Systematic Uncertainties from the detector

Systematic Uncertainties from the reactor

Exclusion domain with 5 year of near detector operation + shape systematics

To Do from the Davis group:

- Add rate constraint with appropriate systematics
- Look at better performing detectors (better energy resolutions)
- Try same analysis in L / E instead of as a function of E
- Optimize position for new experiment to probe higher $\Delta \mathrm{m}^{2}$
- Optimize binning strategy for different $\Delta \mathrm{m}^{2}$ domain

Conclusions

* The DC near detector experiment is being built (no cost) and offers sensitivity in a region of phase space not explored before
* Formalism developed can be applicable for different experimental sites. Braidwood is a good example, 2 identical cores separated by $\sim 100 \mathrm{~m}$
* The choice of the location of the detector is paramount: L_{1-2} and L_{1+2} should be optimized for specific detector set-up: for example with $\mathrm{L}_{1-2}=\mathbf{1 0} \sim 15$ meters, the ILL region might be probed by the interference terms

Backup: Sensitivity map Going in a unexplored region

