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Motivation

If I had a theory of Quantum Gravity, what would I do with it?

I Answer should be independent of QG model.
I My answer: Compute qualitative and quantitative QG corrections

to experiments and observations.
I Unfortunately, what is easiest to compute in QG is model

dependent may not have a direct experimental interpretation.
I Idea: Work backwards! Start with a potential experiment (even if

only in principle possible), described operationally. Construct a
mathematical model of it and obtain an observable quantity with
an unambiguous interpretation.

I Bonus: Direct comparison of various QG models.
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Observables from (Thought) Experiments

I Which experiments are sensitive to QG effects? All of them!

I However, we do not know which are most sensitive.

I A safe bet is to learn to model all experiments.

I Only when reliable methods for computing QG corrections are
available, would it make sense to look for where the largest
corrections occur.

I So, let’s start with something easy!
. . . And see how it could lead to something interesting.
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Time Delay Observable
operational definition

u v

O

P

Q
s

τ(s)

τ(s′)

s′

I Consider two inertially moving, localized
systems: the lab and the probe. Probe is
launched from the lab at event O.

I Each carries a proper-time clock. The
clocks are synchronized at O.

I The probe broadcasts signals time
stamped with the emission time, τ at P.

I The lab records the reception time, s at
Q, together with the time stamp τ(s).

I The time delay

δτ(s) = s − τ(s)

is the observable we seek.
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Time Delay Observable
mathematical model

Definition (Spacetime + Apparatus)
A lab-equipped spacetime (M,g,O,eα) is a (time oriented, globally
hyperbolic) Lorentzian manifold (M,g) together with a point O ∈ M and
an orthonormal tetrad eαi ∈ TOM, with eα0 timelike and future directed.

Definition (Gauge Equivalence)
Two lab-equipped spacetimes (M,g,O,eα) and (M ′,g′,O′,e′α) are
gauge equivalent if there exists a diffeomorphism φ : M → M ′ such that
φ∗g = g′, φ(O) = O′ and φ∗eαi = e′αi .
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Time Delay Observable
mathematical model

Definition (Observers)
The lab worldline is the geodesic tangent to uα = eα0 at O. The probe
worldline is the geodesic tangent to vα = v ieαi at O, for a timelike, unit,
future directed v i ∈ R1,3.

Definition (Signal)
For t > 0 and Vα = tvα, let P = expO(Vα) and let Q be the
intersection of the lab worldline with E+(P) (future null cone of P).

Definition (Observables)
For a reception time s > 0 and Uα = suα, let emission time τ(s) be the
largest t such that Q = expO(Uα). The time delay is δτ(s) = s − τ(s).
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Time Delay Observable
diffeomorphism invariance and causal bounds

Theorem (Gauge Invariance)
Given two gauge equivalent, lab-equipped spacetimes (M,g,O,eα)
and (M ′,g′,O′,e′α), the respective time delays δτ and δτ ′ (keeping s
and v i fixed) are equal.

Proof.
By construction.

Remark:
I The time delay obeys interesting inequalities, which probe the

causal structure of classical Lorentzian manifolds.
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Time Delay Observable
causal bounds: speed of light

O

P

Q
s

τ

τ ′

s′

s�A

Q′

P ′

Theorem (Maximality of Light Speed)
In a Lorentzian geometry

τ ′ < τ =⇒ s′ < s.

In particular, if τ(s) is smooth, then τ̇(s) > 0.

Proof.
P ∈ I+(P ′), Q ∈ J+(P) =⇒ Q ∈ int J+(P ′).
[Hawking & Ellis, Proposition 4.5.10]
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Time Delay Observable
causal bounds: twin paradox

O

P

Q
s

τ(s)

τ(s, λ)

Theorem (Local Geodesic Extremality)
In a Lorentzian geometry

τ(s) ≤ s (or δτ(s) ≥ 0).

Proof.
Adapt the formula for the first variation of the
length of piecewise geodesics to show
∂
∂λτ(s, λ) < 0 and write

τ(s) = s +

∫ 1

0
dλ

∂

∂λ
τ(s, λ),

[Hawking & Ellis, Proposition 4.5.4]

Igor Khavkine (ITF, Utrecht) Time delay observable UC Davis 14/01/2013 10 / 25



Time Delay Observable
causal bounds: twin paradox

O

P

Q
s

τ(s)

τ(s, λ)

Theorem (Local Geodesic Extremality)
In a Lorentzian geometry

τ(s) ≤ s (or δτ(s) ≥ 0).

Proof.
Adapt the formula for the first variation of the
length of piecewise geodesics to show
∂
∂λτ(s, λ) < 0 and write

τ(s) = s +

∫ 1

0
dλ

∂

∂λ
τ(s, λ),

[Hawking & Ellis, Proposition 4.5.4]

Igor Khavkine (ITF, Utrecht) Time delay observable UC Davis 14/01/2013 10 / 25



Time Delay in Linearized Gravity

I Linearization about Minkowski space: gµν → ηµν + hµν .

I Explicit expression for τ(s) at O(h) is available:

τ(s) = τ [η](s) + τ1[h](s) + · · ·
= se−θ(1 + r [h] + · · · )

r [h] = r xhx = H + J

I θ—rapidity, vrel = tanh(θ)
I r x—integro-differential operator
I H, J—separately invariant under linearized diffeomorphisms that fix

O and eα

I Note: H, J, . . . may have been found by brute force, but it would
not have been obvious how these invariants would combine into
an observable with direct phenomenological interpretation
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Time Delay in Quantum Linearized Gravity

I Quantization: gµν → ηµν + ĥµν , fix gauge, Fock space.

I Quantum model of experiment: add apparatus physical degrees
freedom, take limit where irrelevant internal dynamics and back
reaction on the geometry become negligible.
Use ideas of [Page & Wootters (1983)] and [Gambini & Pullin (2009)].

I Time delay observable: τ(s)→ τ̂(s) = se−θ(1 + r [ĥ] + · · · ).

I The correction r [ĥ] is invariant under linearized diffeomorphisms
fixing O and eα.

I Fock vacuum |0〉 is invariant under Poincaré transformations.

I Expectation values 〈0|F (r [ĥ])|0〉 are independent of gauge and of
choice of O and eα.
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I The correction r [ĥ] is invariant under linearized diffeomorphisms
fixing O and eα.

I Fock vacuum |0〉 is invariant under Poincaré transformations.
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I Quantization: gµν → ηµν + ĥµν , fix gauge, Fock space.

I Quantum model of experiment: add apparatus physical degrees
freedom, take limit where irrelevant internal dynamics and back
reaction on the geometry become negligible.
Use ideas of [Page & Wootters (1983)] and [Gambini & Pullin (2009)].

I Time delay observable: τ(s)→ τ̂(s) = se−θ(1 + r [ĥ] + · · · ).
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Causal Bounds in Quantum Linearized Gravity
Lorentzian signature

I For a classical, everywhere small h, gµν = ηµν + hµν is Lorentzian.

I For h arbitrary, gµν = ηµν + hµν may be not Lorentzian:
causal bounds may not hold!

I Spectral Density of state ψ with respect to observable Â

Pψ(a) = 〈ψ|δ(Â− a)|ψ〉
I Â—observable, operator on a Hilbert space
I |ψ〉—state, element of a Hilbert space
I δ(Â− a)—spectral projection

I For linear perturbations, Pψ is Gaussian with respect to ĥµν(x) for
Fock vacuum and thermal states.
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Gaussian states

I The correction r [ĥ] is linear in ĥ. Therefore, the spectral density of
the Fock vacuum |0〉 with respect to r [ĥ] is a Gaussian.

τ̂(s) = se−θ(1 + r [ĥ] + · · · ), P(τ) = 〈0|δ(τ̂(s)− τ)|0〉

τ

0 sτcl(s)

P(τ)

〈(∆τ)2〉

I Causal bounds on the spectrum of τ̂(s) are generically violated!
I At linear level, g → η + h, Lorentz signature not preserved. Same

holds to any finite perturbative order.
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“Causality Violation” in Quantum Gravity

I Speculation, proposals, phenomenology over the years:
I space-time foam
I generalized uncertainty principles
I non-locality
I discreteness

I Almost no direct investigation without presupposing the answer.
I Notable exception: light cone fluctuations in quantum linearized

gravity [Ford et al (1995,1999,2005,2006)] [Roura & Arteaga (priv. comm.)]

I Ford’s work has many loose ends: gauge invariance,
regularization, linearization artifacts.
This work and independent work by Roura & Arteaga aims to
clarify these issues.

I Lorentz signature violation in naïve perturbation theory obscures
possible quantum causality violation, or lack thereof.

I What other QG model + approximation method is available?
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Explicit Calculation
basic idea

I What to calculate?

〈0|τ̂(s)|0〉 = 〈0|se−θ(1 + r [ĥ] + · · · )|0〉 = se−θ(1 + 0 + · · · )

τ

0 sτcl(s)

P(τ)

〈(∆τ)2〉

I P(τ) is Gaussian. Need only compute variance to know full
spectral density.

〈(∆τ)2〉 = s2e−2θ(〈0|r [ĥ]2|0〉+ · · · )
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Explicit Calculation
basic idea

I Variance needs the Hadamard 2-point function G(x , y).
With r̂2 = (r [ĥ])2:

〈0|r̂2|0〉 =
1
2
〈{r̂ , r̂}〉 =

1
2

r x r y 〈{ĥx , ĥy}〉 =
1
2

r x r yG(x , y)

I Integrals in r x are not sufficient to tame the x − y → 0 divergence
of G(x , y) ∼ `2p/(x − y)2. Need to use smeared fields h̃:

r̃ = r x h̃x = r x〈〈ĥx−z〉〉,

〈〈f (z)〉〉 =

∫
dz f (z)g̃(z),

where g̃(z) is a smearing function, localized at z = 0, of spread
µ� s: 〈〈zn〉〉 ∼ µn.
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Time Delay in Quantum Linearized Gravity
explicit expressions

O

P

Q

U

V

W
r xhx = H + J

I Explicit expression:

H ∼
∑

X=V ,U,W

( )X ,

( )X ∼
∫ (1)

X
∇h.

I H is invariant under linearized
diffeomorphisms that fix O and eα.
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〈0|r̂2|0〉 =
1
2
〈{r̂ , r̂}〉 =

1
2

r x r y 〈{ĥx , ĥy}〉 =
1
2

r x r yG(x , y)

I Integrals in r x are not sufficient to tame the x − y → 0 divergence
of G(x , y) ∼ `2p/(x − y)2. Need to use smeared fields h̃:

r̃ = r x h̃x = r x〈〈ĥx−z〉〉,
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Smearing and Detector Resolution

O

P

Q

u

I In QED, 〈E(x)2〉 diverges, but 〈Ẽ(x)2〉 is
finite and represents the vacuum noise in a
detector of sensitivity profile g̃(x).

I Physically speaking, µ, the spread of g̃(x),
is the spatial resolution of the detector.

I We can back-of-envelope estimate µ as the
wavelength of the light/radio signals
exchanged between lab and probe.

I A more detailed detector model should
unambiguously fix g̃(x) for each leg of
4OPQ.

I Provisionally, set g̃(x) ∼ δ(u · x)g(x2
⊥)

everywhere.
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Explicit Calculation
computational strategy

I Start with r x =
∑
|K |mX

rK
mX

∫ (m)

X
∇K and conclude that

〈r̃2〉 =
∑
|K |mX

∑
|L|nY

rK
mX rL

nY Ĩmn
K∪L(X ; Y ),

Ĩmn
K (X ; Y ) = 〈〈∇K Imn(X ; Y + z)〉〉

Imn(X ; Y ) =

∫ (m)

X
dσ
∫ (n)

Y
dτ G(x(σ), y(τ))

I Expand in moments of g̃(x):

Ĩmn
K (X ; Y ) ∼

∑
N,N̄

`2psN−2 (ln s/µ)N̄

µN Ĩmn
K ,N,N̄(X ; Y )

I What is the leading order in µ and ln(s/µ)?
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Explicit Calculation
dimensional analysis

I Dimensional analysis: [µ] = [`p] = [z] = 1, [∇] = −1, G ∼ `2p/z2.

〈r̃2〉 ∼ s2〈〈
∫

X

∫
Y
∇2G(z)〉〉 ∼ s2〈〈

∫
X

∫
Y

`2p
z4 〉〉

∼ s2〈〈
`2p

s2z2 〉〉 ∼
`2p
µ2

I Detailed calculations confirm the structure

〈r̃2〉 =
`2p
µ2

(
ρ0 + ρ1

µ

s
+ ρ2

µ2

s2 + O
(µ

s

)3
)

+ O

(
`2p
µ2

)

I rms fluctuation in τ̂(s) ∼ s
√
〈r̃2〉 ∼ s

`p
µ

, µ ∼ 1nm (X-rays)

laboratory: s ∼ 1m ∼ 10−9s,
`p

µ
∼ 10−26: 10−35s

cosmology: s ∼ 1Mpc ∼ 1014s,
`p

µ
∼ 10−26: 10−12s
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I Dimensional analysis: [µ] = [`p] = [z] = 1, [∇] = −1, G ∼ `2p/z2.

〈r̃2〉 ∼ s2〈〈
∫

X

∫
Y
∇2G(z)〉〉 ∼ s2〈〈

∫
X

∫
Y

`2p
z4 〉〉

∼ s2〈〈
`2p

s2z2 〉〉 ∼
`2p
µ2

I Detailed calculations confirm the structure

〈r̃2〉 =
`2p
µ2

(
ρ0 + ρ1

µ

s
+ ρ2

µ2

s2 + O
(µ

s

)3
)

+ O

(
`2p
µ2

)

I rms fluctuation in τ̂(s) ∼ s
√
〈r̃2〉 ∼ s

`p
µ

, µ ∼ 1nm (X-rays)

laboratory: s ∼ 1m ∼ 10−9s,
`p

µ
∼ 10−26: 10−35s

cosmology: s ∼ 1Mpc ∼ 1014s,
`p

µ
∼ 10−26: 10−12s
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Explicit Calculation
result [B. Bonga, MSc thesis]

All dependence on geometry (relative lab-probe speed vrel/c) is in the
coefficients ρ0, ρ1, . . .

0.0 0.2 0.4 0.6 0.8 1.0

0

50

100

150

vrel�c

Ρ
0

The second coefficient is just ρ1 = −2π2.
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Summary & Outlook

I Observables in Quantum Gravity can be constructed by carefully
modeling (thought) experiments.

I The time delay is an interesting example, especially sensitive to
the causal structure of spacetime.

I The time delay is only one member of a larger class:
Quantum Astrometric Observables.

I Question: Are non-perturbative calculations possible? (improved
perturbation theory, 2 + 1, CDT, . . . )

I Question: Is minimal matter content necessary? (astrometry +
Komar-Bergmann observables)

I Future application: Which observable can tell us the “size” of a
Black Hole? And what can it say about BH evaporation?

Thank you for your attention!
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