Time delay observable in classical and quantum geometries [arXiv:1111.7127] PRD **85**, 124014 (2012)

Igor Khavkine

Institute for Theoretical Physics Utrecht University

14 Jan 2013 Theory Seminar, UC Davis

Outline

1 Motivation: Observables from Thought Experiments

2 Time Delay Observable and Classical Causality

3 Time Delay Observable in Quantum Linearized Gravity

4 Summary & Outlook

- Answer should be independent of QG model.
- My answer: Compute qualitative and quantitative QG corrections to experiments and observations.
- Unfortunately, what is easiest to compute in QG is model dependent may not have a direct experimental interpretation.
- Idea: Work backwards! Start with a potential experiment (even if only in principle possible), described operationally. Construct a mathematical model of it and obtain an observable quantity with an unambiguous interpretation.
- Bonus: Direct comparison of various QG models.

If I had a theory of Quantum Gravity, what would I do with it?

Answer should be independent of QG model.

- My answer: Compute qualitative and quantitative QG corrections to experiments and observations.
- Unfortunately, what is easiest to compute in QG is model dependent may not have a direct experimental interpretation.
- Idea: Work backwards! Start with a potential experiment (even if only in principle possible), described operationally. Construct a mathematical model of it and obtain an observable quantity with an unambiguous interpretation.
- Bonus: Direct comparison of various QG models.

- Answer should be independent of QG model.
- My answer: Compute qualitative and quantitative QG corrections to experiments and observations.
- Unfortunately, what is easiest to compute in QG is model dependent may not have a direct experimental interpretation.
- Idea: Work backwards! Start with a potential experiment (even if only in principle possible), described operationally. Construct a mathematical model of it and obtain an observable quantity with an unambiguous interpretation.
- Bonus: Direct comparison of various QG models.

- Answer should be independent of QG model.
- My answer: Compute qualitative and quantitative QG corrections to experiments and observations.
- Unfortunately, what is easiest to compute in QG is model dependent may not have a direct experimental interpretation.
- Idea: Work backwards! Start with a potential experiment (even if only in principle possible), described operationally. Construct a mathematical model of it and obtain an observable quantity with an unambiguous interpretation.
- Bonus: Direct comparison of various QG models.

- Answer should be independent of QG model.
- My answer: Compute qualitative and quantitative QG corrections to experiments and observations.
- Unfortunately, what is easiest to compute in QG is model dependent may not have a direct experimental interpretation.
- Idea: Work backwards! Start with a potential experiment (even if only in principle possible), described operationally. Construct a mathematical model of it and obtain an observable quantity with an unambiguous interpretation.
- Bonus: Direct comparison of various QG models.

- Answer should be independent of QG model.
- My answer: Compute qualitative and quantitative QG corrections to experiments and observations.
- Unfortunately, what is easiest to compute in QG is model dependent may not have a direct experimental interpretation.
- Idea: Work backwards! Start with a potential experiment (even if only in principle possible), described operationally. Construct a mathematical model of it and obtain an observable quantity with an unambiguous interpretation.
- Bonus: Direct comparison of various QG models.

Which experiments are sensitive to QG effects? All of them!

- ► However, we do not know which are most sensitive.
- A safe bet is to learn to model all experiments.
- Only when reliable methods for computing QG corrections are available, would it make sense to look for where the largest corrections occur.
- So, let's start with something easy!
 - ... And see how it could lead to something interesting.

Which experiments are sensitive to QG effects? All of them!

- ► However, we do not know which are most sensitive.
- A safe bet is to learn to model all experiments.
- Only when reliable methods for computing QG corrections are available, would it make sense to look for where the largest corrections occur.
- So, let's start with something easy!
 - ... And see how it could lead to something interesting.

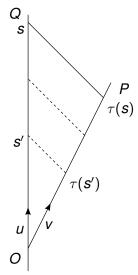
- Which experiments are sensitive to QG effects? All of them!
- However, we do not know which are most sensitive.
- A safe bet is to learn to model all experiments.
- Only when reliable methods for computing QG corrections are available, would it make sense to look for where the largest corrections occur.
- So, let's start with something easy!
 - ... And see how it could lead to something interesting.

- Which experiments are sensitive to QG effects? All of them!
- However, we do not know which are most sensitive.
- A safe bet is to learn to model all experiments.
- Only when reliable methods for computing QG corrections are available, would it make sense to look for where the largest corrections occur.
- So, let's start with something easy!
 - ... And see how it could lead to something interesting.

- Which experiments are sensitive to QG effects? All of them!
- However, we do not know which are most sensitive.
- A safe bet is to learn to model all experiments.
- Only when reliable methods for computing QG corrections are available, would it make sense to look for where the largest corrections occur.
- So, let's start with something easy!
 And see how it could lead to something interesting.

- Which experiments are sensitive to QG effects? All of them!
- ► However, we do not know which are most sensitive.
- A safe bet is to learn to model all experiments.
- Only when reliable methods for computing QG corrections are available, would it make sense to look for where the largest corrections occur.
- So, let's start with something easy!
 - ... And see how it could lead to something interesting.

operational definition

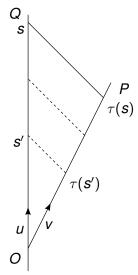


- Consider two inertially moving, localized systems: the lab and the probe. Probe is launched from the lab at event O.
- Each carries a proper-time clock. The clocks are synchronized at O.
- The probe broadcasts signals time stamped with the emission time, τ at P.
- The lab records the reception time, s at Q, together with the time stamp τ(s).

The time delay

$$\delta \tau(\boldsymbol{s}) = \boldsymbol{s} - \tau(\boldsymbol{s})$$

operational definition

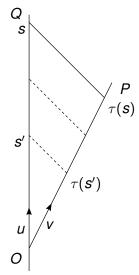


- Consider two inertially moving, localized systems: the lab and the probe. Probe is launched from the lab at event O.
- Each carries a proper-time clock. The clocks are synchronized at O.
- The probe broadcasts signals time stamped with the emission time, τ at P.
- The lab records the reception time, s at Q, together with the time stamp τ(s).

The time delay

$$\delta \tau(\boldsymbol{s}) = \boldsymbol{s} - \tau(\boldsymbol{s})$$

operational definition

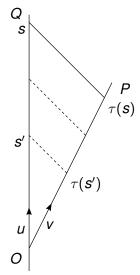


- Consider two inertially moving, localized systems: the lab and the probe. Probe is launched from the lab at event O.
- Each carries a proper-time clock. The clocks are synchronized at O.
- The probe broadcasts signals time stamped with the emission time, τ at P.
- ► The lab records the reception time, s at Q, together with the time stamp \(\tau(s)\).

The time delay

$$\delta \tau(\boldsymbol{s}) = \boldsymbol{s} - \tau(\boldsymbol{s})$$

operational definition

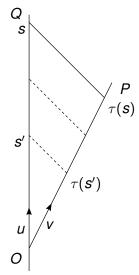


- Consider two inertially moving, localized systems: the lab and the probe. Probe is launched from the lab at event O.
- Each carries a proper-time clock. The clocks are synchronized at O.
- The probe broadcasts signals time stamped with the emission time, τ at P.
- The lab records the reception time, s at Q, together with the time stamp τ(s).

The time delay

$$\delta \tau(\boldsymbol{s}) = \boldsymbol{s} - \tau(\boldsymbol{s})$$

operational definition



- Consider two inertially moving, localized systems: the lab and the probe. Probe is launched from the lab at event O.
- Each carries a proper-time clock. The clocks are synchronized at O.
- The probe broadcasts signals time stamped with the emission time, τ at P.
- The lab records the reception time, s at Q, together with the time stamp τ(s).

The time delay

$$\delta \tau(\boldsymbol{s}) = \boldsymbol{s} - \tau(\boldsymbol{s})$$

mathematical model

Definition (Spacetime + Apparatus)

A *lab-equipped spacetime* (M, g, O, e^{α}) is a (time oriented, globally hyperbolic) Lorentzian manifold (M, g) together with a point $O \in M$ and an orthonormal tetrad $e_i^{\alpha} \in T_O M$, with e_0^{α} timelike and future directed.

Definition (Gauge Equivalence)

Two lab-equipped spacetimes (M, g, O, e^{α}) and $(M', g', O', e'^{\alpha})$ are *gauge equivalent* if there exists a diffeomorphism $\phi \colon M \to M'$ such that $\phi_*g = g', \phi(O) = O'$ and $\phi_*e_i^{\alpha} = e'_i^{\alpha}$.

mathematical model

Definition (Spacetime + Apparatus)

A *lab-equipped spacetime* (M, g, O, e^{α}) is a (time oriented, globally hyperbolic) Lorentzian manifold (M, g) together with a point $O \in M$ and an orthonormal tetrad $e_i^{\alpha} \in T_O M$, with e_0^{α} timelike and future directed.

Definition (Gauge Equivalence)

Two lab-equipped spacetimes (M, g, O, e^{α}) and $(M', g', O', e'^{\alpha})$ are *gauge equivalent* if there exists a diffeomorphism $\phi: M \to M'$ such that $\phi_*g = g', \phi(O) = O'$ and $\phi_*e_i^{\alpha} = e'_i^{\alpha}$.

mathematical model

Definition (Observers)

The *lab worldline* is the geodesic tangent to $u^{\alpha} = e_0^{\alpha}$ at *O*. The *probe worldline* is the geodesic tangent to $v^{\alpha} = v^i e_i^{\alpha}$ at *O*, for a timelike, unit, future directed $v^i \in \mathbb{R}^{1,3}$.

Definition (Signal)

For t > 0 and $V^{\alpha} = tv^{\alpha}$, let $P = \exp_O(V^{\alpha})$ and let Q be the intersection of the lab worldline with $E^+(P)$ (future null cone of P).

Definition (Observables)

For a *reception time* s > 0 and $U^{\alpha} = su^{\alpha}$, let *emission time* $\tau(s)$ be the largest t such that $Q = \exp_O(U^{\alpha})$. The *time delay* is $\delta \tau(s) = s - \tau(s)$.

mathematical model

Definition (Observers)

The *lab worldline* is the geodesic tangent to $u^{\alpha} = e_0^{\alpha}$ at *O*. The *probe worldline* is the geodesic tangent to $v^{\alpha} = v^i e_i^{\alpha}$ at *O*, for a timelike, unit, future directed $v^i \in \mathbb{R}^{1,3}$.

Definition (Signal)

For t > 0 and $V^{\alpha} = tv^{\alpha}$, let $P = \exp_O(V^{\alpha})$ and let Q be the intersection of the lab worldline with $E^+(P)$ (future null cone of P).

Definition (Observables)

For a *reception time* s > 0 and $U^{\alpha} = su^{\alpha}$, let *emission time* $\tau(s)$ be the largest t such that $Q = \exp_O(U^{\alpha})$. The *time delay* is $\delta \tau(s) = s - \tau(s)$.

mathematical model

Definition (Observers)

The *lab worldline* is the geodesic tangent to $u^{\alpha} = e_0^{\alpha}$ at *O*. The *probe worldline* is the geodesic tangent to $v^{\alpha} = v^i e_i^{\alpha}$ at *O*, for a timelike, unit, future directed $v^i \in \mathbb{R}^{1,3}$.

Definition (Signal)

For t > 0 and $V^{\alpha} = tv^{\alpha}$, let $P = \exp_O(V^{\alpha})$ and let Q be the intersection of the lab worldline with $E^+(P)$ (future null cone of P).

Definition (Observables)

For a *reception time* s > 0 and $U^{\alpha} = su^{\alpha}$, let *emission time* $\tau(s)$ be the largest t such that $Q = \exp_O(U^{\alpha})$. The *time delay* is $\delta \tau(s) = s - \tau(s)$.

diffeomorphism invariance and causal bounds

Theorem (Gauge Invariance)

Given two gauge equivalent, lab-equipped spacetimes (M, g, O, e^{α}) and $(M', g', O', e'^{\alpha})$, the respective time delays $\delta \tau$ and $\delta \tau'$ (keeping s and vⁱ fixed) are equal.

Proof.

By construction.

Remark:

The time delay obeys interesting inequalities, which probe the causal structure of classical Lorentzian manifolds.

diffeomorphism invariance and causal bounds

Theorem (Gauge Invariance)

Given two gauge equivalent, lab-equipped spacetimes (M, g, O, e^{α}) and $(M', g', O', e'^{\alpha})$, the respective time delays $\delta \tau$ and $\delta \tau'$ (keeping s and vⁱ fixed) are equal.

Proof.

By construction.

Remark:

► The time delay obeys interesting inequalities, which probe the causal structure of classical Lorentzian manifolds.

diffeomorphism invariance and causal bounds

Theorem (Gauge Invariance)

Given two gauge equivalent, lab-equipped spacetimes (M, g, O, e^{α}) and $(M', g', O', e'^{\alpha})$, the respective time delays $\delta \tau$ and $\delta \tau'$ (keeping s and vⁱ fixed) are equal.

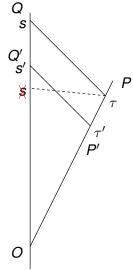
Proof.

By construction.

Remark:

The time delay obeys interesting inequalities, which probe the causal structure of classical Lorentzian manifolds.

causal bounds: speed of light



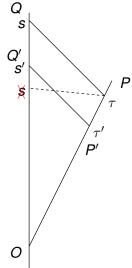
Theorem (Maximality of Light Speed) In a Lorentzian geometry

 $\tau' < \tau \implies \mathbf{S}' < \mathbf{S}.$

In particular, if $\tau(s)$ is smooth, then $\dot{\tau}(s) > 0$.

Proof. $P \in I^+(P'), Q \in J^+(P) \implies Q \in \operatorname{int} J^+(P').$ [Hawking & Ellis, Proposition 4.5.10]

causal bounds: speed of light



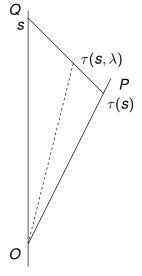
Theorem (Maximality of Light Speed) In a Lorentzian geometry

 $\tau' < \tau \implies \mathbf{S}' < \mathbf{S}.$

In particular, if $\tau(s)$ is smooth, then $\dot{\tau}(s) > 0$.

Proof. $P \in I^+(P'), Q \in J^+(P) \implies Q \in \text{int } J^+(P').$ [Hawking & Ellis, Proposition 4.5.10]

causal bounds: twin paradox



Theorem (Local Geodesic Extremality) In a Lorentzian geometry

$$au(s) \leq s \quad (or \ \delta \tau(s) \geq 0).$$

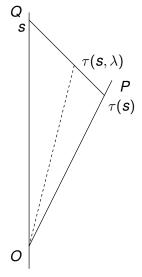
Proof.

Adapt the formula for the first variation of the length of piecewise geodesics to show $\frac{\partial}{\partial \lambda} \tau(s, \lambda) < 0$ and write

$$au(s) = s + \int_0^1 \mathrm{d}\lambda \, rac{\partial}{\partial\lambda} au(s,\lambda),$$

[Hawking & Ellis, Proposition 4.5.4]

causal bounds: twin paradox



Theorem (Local Geodesic Extremality) In a Lorentzian geometry

$$au(oldsymbol{s}) \leq oldsymbol{s} \quad (\textit{or } \delta au(oldsymbol{s}) \geq oldsymbol{0}).$$

Proof.

Adapt the formula for the first variation of the length of piecewise geodesics to show $\frac{\partial}{\partial\lambda}\tau(s,\lambda) < 0$ and write

$$au(oldsymbol{s}) = oldsymbol{s} + \int_0^1 \mathrm{d}\lambda \, rac{\partial}{\partial\lambda} au(oldsymbol{s},\lambda),$$

[Hawking & Ellis, Proposition 4.5.4]

Time Delay in Linearized Gravity

- Linearization about Minkowski space: $g_{\mu\nu} \rightarrow \eta_{\mu\nu} + h_{\mu\nu}$.
- Explicit expression for $\tau(s)$ at O(h) is available:

$$\tau(s) = \tau[\eta](s) + \tau_1[h](s) + \cdots$$
$$= se^{-\theta}(1 + r[h] + \cdots)$$
$$r[h] = r^x h_x = H + J$$

- θ —rapidity, $v_{rel} = tanh(\theta)$
- r^x—integro-differential operator
- *H*, *J*—separately invariant under linearized diffeomorphisms that fix
 O and *e^α*
- Note: H, J, ... may have been found by brute force, but it would not have been obvious how these invariants would combine into an observable with direct phenomenological interpretation

Igor Khavkine (ITF, Utrecht)

Time Delay in Linearized Gravity

- Linearization about Minkowski space: $g_{\mu\nu} \rightarrow \eta_{\mu\nu} + h_{\mu\nu}$.
- Explicit expression for $\tau(s)$ at O(h) is available:

$$\tau(s) = \tau[\eta](s) + \tau_1[h](s) + \cdots$$
$$= se^{-\theta}(1 + r[h] + \cdots)$$
$$r[h] = r^x h_x = H + J$$

- θ —rapidity, $v_{rel} = tanh(\theta)$
- r^x—integro-differential operator
- ► *H*, *J*—separately invariant under linearized diffeomorphisms that fix *O* and e^{α}
- Note: H, J, ... may have been found by brute force, but it would not have been obvious how these invariants would combine into an observable with direct phenomenological interpretation

Igor Khavkine (ITF, Utrecht)

Time Delay in Linearized Gravity

- Linearization about Minkowski space: $g_{\mu\nu} \rightarrow \eta_{\mu\nu} + h_{\mu\nu}$.
- Explicit expression for $\tau(s)$ at O(h) is available:

$$\tau(s) = \tau[\eta](s) + \tau_1[h](s) + \cdots$$
$$= se^{-\theta}(1 + r[h] + \cdots)$$
$$r[h] = r^x h_x = H + J$$

- θ —rapidity, $v_{rel} = tanh(\theta)$
- r^x—integro-differential operator
- ► *H*, *J*—separately invariant under linearized diffeomorphisms that fix *O* and e^{α}
- Note: H, J, ... may have been found by brute force, but it would not have been obvious how these invariants would combine into an observable with direct phenomenological interpretation

Time Delay in Quantum Linearized Gravity

• Quantization: $g_{\mu\nu} \rightarrow \eta_{\mu\nu} + \hat{h}_{\mu\nu}$, fix gauge, Fock space.

- Quantum model of experiment: add apparatus physical degrees freedom, take limit where irrelevant internal dynamics and back reaction on the geometry become negligible. Use ideas of [Page & Wootters (1983)] and [Gambini & Pullin (2009)].
- Time delay observable: $\tau(s) \rightarrow \hat{\tau}(s) = se^{-\theta}(1 + r[\hat{h}] + \cdots)$.
- ► The correction r[ĥ] is invariant under linearized diffeomorphisms fixing O and e^α.
- ► Fock vacuum |0⟩ is invariant under Poincaré transformations.
- Expectation values (0|*F*(*r*[ĥ])|0) are independent of gauge and of choice of *O* and *e^α*.

Time Delay in Quantum Linearized Gravity

• Quantization: $g_{\mu\nu} \rightarrow \eta_{\mu\nu} + \hat{h}_{\mu\nu}$, fix gauge, Fock space.

- Quantum model of experiment: add apparatus physical degrees freedom, take limit where irrelevant internal dynamics and back reaction on the geometry become negligible. Use ideas of [Page & Wootters (1983)] and [Gambini & Pullin (2009)].
- ► Time delay observable: $\tau(s) \rightarrow \hat{\tau}(s) = se^{-\theta}(1 + r[\hat{h}] + \cdots).$
- ► The correction r[ĥ] is invariant under linearized diffeomorphisms fixing O and e^α.
- Fock vacuum $|0\rangle$ is invariant under Poincaré transformations.
- Expectation values (0|*F*(*r*[ĥ])|0) are independent of gauge and of choice of *O* and *e^α*.

• Quantization: $g_{\mu\nu} \rightarrow \eta_{\mu\nu} + \hat{h}_{\mu\nu}$, fix gauge, Fock space.

- Quantum model of experiment: add apparatus physical degrees freedom, take limit where irrelevant internal dynamics and back reaction on the geometry become negligible. Use ideas of [Page & Wootters (1983)] and [Gambini & Pullin (2009)].
- Time delay observable: $\tau(s) \rightarrow \hat{\tau}(s) = se^{-\theta}(1 + r[\hat{h}] + \cdots)$.
- The correction r[ĥ] is invariant under linearized diffeomorphisms fixing O and e^α.
- Fock vacuum $|0\rangle$ is invariant under Poincaré transformations.
- Expectation values (0|*F*(*r*[ĥ])|0) are independent of gauge and of choice of *O* and *e^α*.

- Quantization: $g_{\mu\nu} \rightarrow \eta_{\mu\nu} + \hat{h}_{\mu\nu}$, fix gauge, Fock space.
- Quantum model of experiment: add apparatus physical degrees freedom, take limit where irrelevant internal dynamics and back reaction on the geometry become negligible. Use ideas of [Page & Wootters (1983)] and [Gambini & Pullin (2009)].
- Time delay observable: $\tau(s) \rightarrow \hat{\tau}(s) = se^{-\theta}(1 + r[\hat{h}] + \cdots)$.
- The correction r[ĥ] is invariant under linearized diffeomorphisms fixing O and e^α.
- Fock vacuum $|0\rangle$ is invariant under Poincaré transformations.
- Expectation values $\langle 0|F(r[\hat{h}])|0\rangle$ are independent of gauge and of choice of *O* and e^{α} .

- Quantization: $g_{\mu\nu} \rightarrow \eta_{\mu\nu} + \hat{h}_{\mu\nu}$, fix gauge, Fock space.
- Quantum model of experiment: add apparatus physical degrees freedom, take limit where irrelevant internal dynamics and back reaction on the geometry become negligible. Use ideas of [Page & Wootters (1983)] and [Gambini & Pullin (2009)].
- Time delay observable: $\tau(s) \rightarrow \hat{\tau}(s) = se^{-\theta}(1 + r[\hat{h}] + \cdots)$.
- The correction r[ĥ] is invariant under linearized diffeomorphisms fixing O and e^α.
- Fock vacuum $|0\rangle$ is invariant under Poincaré transformations.
- Expectation values $\langle 0|F(r[\hat{h}])|0\rangle$ are independent of gauge and of choice of *O* and e^{α} .

• Quantization: $g_{\mu\nu} \rightarrow \eta_{\mu\nu} + \hat{h}_{\mu\nu}$, fix gauge, Fock space.

- Quantum model of experiment: add apparatus physical degrees freedom, take limit where irrelevant internal dynamics and back reaction on the geometry become negligible. Use ideas of [Page & Wootters (1983)] and [Gambini & Pullin (2009)].
- Time delay observable: $\tau(s) \rightarrow \hat{\tau}(s) = se^{-\theta}(1 + r[\hat{h}] + \cdots)$.
- The correction r[ĥ] is invariant under linearized diffeomorphisms fixing O and e^α.
- Fock vacuum $|0\rangle$ is invariant under Poincaré transformations.
- Expectation values (0|F(r[ĥ])|0) are independent of gauge and of choice of O and e^α.

For a classical, everywhere small h, $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$ is Lorentzian.

For *h* arbitrary, $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$ may be not Lorentzian: causal bounds may not hold!

Spectral Density of state ψ with respect to observable \hat{A}

$$m{P}_{\psi}(m{a}) = \langle \psi | \delta(\hat{m{A}} - m{a}) | \psi
angle$$

- —observable, operator on a Hilbert space
- $|\psi\rangle$ —state, element of a Hilbert space
- $\delta(\hat{A} a)$ —spectral projection
- For linear perturbations, P_{ψ} is Gaussian with respect to $\hat{h}_{\mu\nu}(x)$ for Fock vacuum and thermal states.

For a classical, everywhere small h, $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$ is Lorentzian.

For *h* arbitrary, $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$ may be not Lorentzian: causal bounds may not hold!

Spectral Density of state ψ with respect to observable \hat{A} $P_{\psi}(a) = \langle \psi | \delta(\hat{A} - a) | \psi \rangle$

• \hat{A} —observable, operator on a Hilbert space

- $|\psi\rangle$ —state, element of a Hilbert space
- $\delta(\hat{A} a)$ —spectral projection
- For linear perturbations, P_{ψ} is Gaussian with respect to $\hat{h}_{\mu\nu}(x)$ for Fock vacuum and thermal states.

For a classical, everywhere small h, $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$ is Lorentzian.

For *h* arbitrary, $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$ may be not Lorentzian: causal bounds may not hold!

Spectral Density of state ψ with respect to observable \hat{A}

$$m{P}_{\psi}(m{a}) = \langle \psi | \delta(\hat{m{A}} - m{a}) | \psi
angle$$

- —observable, operator on a Hilbert space
- $|\psi\rangle$ —state, element of a Hilbert space
- $\delta(\hat{A} a)$ —spectral projection
- For linear perturbations, P_{ψ} is Gaussian with respect to $\hat{h}_{\mu\nu}(x)$ for Fock vacuum and thermal states.

For a classical, everywhere small h, $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$ is Lorentzian.

For *h* arbitrary, $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$ may be not Lorentzian: causal bounds may not hold!

Spectral Density of state ψ with respect to observable \hat{A}

$$m{P}_{\psi}(m{a}) = \langle \psi | \delta(\hat{m{A}} - m{a}) | \psi
angle$$

- —observable, operator on a Hilbert space
- $|\psi\rangle$ —state, element of a Hilbert space
- $\delta(\hat{A} a)$ —spectral projection
- For linear perturbations, P_{ψ} is Gaussian with respect to $\hat{h}_{\mu\nu}(x)$ for Fock vacuum and thermal states.

Gaussian states

► The correction r[ĥ] is linear in ĥ. Therefore, the spectral density of the Fock vacuum |0⟩ with respect to r[ĥ] is a Gaussian.

$$\hat{\tau}(s) = se^{- heta}(1 + r[\hat{h}] + \cdots), \quad P(\tau) = \langle 0|\delta(\hat{\tau}(s) - \tau)|0
angle$$

- Causal bounds on the spectrum of $\hat{\tau}(s)$ are generically violated!
- ► At linear level, $g \rightarrow \eta + h$, Lorentz signature not preserved. Same holds to any finite perturbative order.

Igor Khavkine (ITF, Utrecht)

Time delay observable

Gaussian states

The correction r[ĥ] is linear in ĥ. Therefore, the spectral density of the Fock vacuum |0⟩ with respect to r[ĥ] is a Gaussian.

$$\hat{\tau}(s) = se^{-\theta} (1 + r[\hat{h}] + \cdots), \quad P(\tau) = \langle 0 | \delta(\hat{\tau}(s) - \tau) | 0 \rangle$$

• Causal bounds on the spectrum of $\hat{\tau}(s)$ are generically violated!

At linear level, g → η + h, Lorentz signature not preserved. Same holds to any finite perturbative order.

Gaussian states

The correction r[ĥ] is linear in ĥ. Therefore, the spectral density of the Fock vacuum |0⟩ with respect to r[ĥ] is a Gaussian.

$$\hat{\tau}(s) = se^{-\theta}(1 + r[\hat{h}] + \cdots), \quad P(\tau) = \langle 0|\delta(\hat{\tau}(s) - \tau)|0\rangle$$

$$\uparrow^{P(\tau)}_{\langle (\Delta \tau)^2 \rangle} \xrightarrow{\tau_{cl}(s) \ s} s$$
Causal bounds on the spectrum of $\hat{\tau}(s)$ are generically violated!

At linear level, g → η + h, Lorentz signature not preserved. Same holds to any finite perturbative order.

Igor Khavkine (ITF, Utrecht)

Gaussian states

► The correction r[ĥ] is linear in ĥ. Therefore, the spectral density of the Fock vacuum |0⟩ with respect to r[ĥ] is a Gaussian.

$$\hat{\tau}(s) = se^{-\theta} (1 + r[\hat{h}] + \cdots), \quad P(\tau) = \langle 0 | \delta(\hat{\tau}(s) - \tau) | 0 \rangle$$

- Causal bounds on the spectrum of $\hat{\tau}(s)$ are generically violated!
- ► At linear level, $g \rightarrow \eta + h$, Lorentz signature not preserved. Same holds to any finite perturbative order.

- Speculation, proposals, phenomenology over the years:
 - space-time foam
 - generalized uncertainty principles
 - non-locality
 - discreteness
- Almost no direct investigation without presupposing the answer.
- Notable exception: light cone fluctuations in quantum linearized gravity [Ford et al (1995,1999,2005,2006)] [Roura & Arteaga (priv. comm.)]
- Ford's work has many loose ends: gauge invariance, regularization, linearization artifacts.
 This work and independent work by Roura & Arteaga aims to clarify these issues.
- Lorentz signature violation in naïve perturbation theory obscures possible quantum causality violation, or lack thereof.
- What other QG model + approximation method is available?

- Speculation, proposals, phenomenology over the years:
 - space-time foam
 - generalized uncertainty principles
 - non-locality
 - discreteness
- Almost no direct investigation without presupposing the answer.
- Notable exception: light cone fluctuations in quantum linearized gravity [Ford et al (1995,1999,2005,2006)] [Roura & Arteaga (priv. comm.)]
- Ford's work has many loose ends: gauge invariance, regularization, linearization artifacts.
 This work and independent work by Roura & Arteaga aims to clarify these issues.
- Lorentz signature violation in naïve perturbation theory obscures possible quantum causality violation, or lack thereof.
- What other QG model + approximation method is available?

- Speculation, proposals, phenomenology over the years:
 - space-time foam
 - generalized uncertainty principles
 - non-locality
 - discreteness
- Almost no direct investigation without presupposing the answer.
- Notable exception: light cone fluctuations in quantum linearized gravity [Ford et al (1995,1999,2005,2006)] [Roura & Arteaga (priv. comm.)]
- Ford's work has many loose ends: gauge invariance, regularization, linearization artifacts.
 This work and independent work by Roura & Arteaga aims to clarify these issues.
- Lorentz signature violation in naïve perturbation theory obscures possible quantum causality violation, or lack thereof.
- What other QG model + approximation method is available?

- Speculation, proposals, phenomenology over the years:
 - space-time foam
 - generalized uncertainty principles
 - non-locality
 - discreteness
- Almost no direct investigation without presupposing the answer.
- Notable exception: light cone fluctuations in quantum linearized gravity [Ford et al (1995,1999,2005,2006)] [Roura & Arteaga (priv. comm.)]
- Ford's work has many loose ends: gauge invariance, regularization, linearization artifacts.
 This work and independent work by Roura & Arteaga aims to clarify these issues.
- Lorentz signature violation in naïve perturbation theory obscures possible quantum causality violation, or lack thereof.
- What other QG model + approximation method is available?

- Speculation, proposals, phenomenology over the years:
 - space-time foam
 - generalized uncertainty principles
 - non-locality
 - discreteness
- Almost no direct investigation without presupposing the answer.
- Notable exception: light cone fluctuations in quantum linearized gravity [Ford et al (1995,1999,2005,2006)] [Roura & Arteaga (priv. comm.)]
- Ford's work has many loose ends: gauge invariance, regularization, linearization artifacts.
 This work and independent work by Roura & Arteaga aims to clarify these issues.
- Lorentz signature violation in naïve perturbation theory obscures possible quantum causality violation, or lack thereof.
- What other QG model + approximation method is available?

- Speculation, proposals, phenomenology over the years:
 - space-time foam
 - generalized uncertainty principles
 - non-locality
 - discreteness
- Almost no direct investigation without presupposing the answer.
- Notable exception: light cone fluctuations in quantum linearized gravity [Ford et al (1995,1999,2005,2006)] [Roura & Arteaga (priv. comm.)]
- Ford's work has many loose ends: gauge invariance, regularization, linearization artifacts.
 This work and independent work by Roura & Arteaga aims to clarify these issues.
- Lorentz signature violation in naïve perturbation theory obscures possible quantum causality violation, or lack thereof.
- What other QG model + approximation method is available?

basic idea

What to calculate?

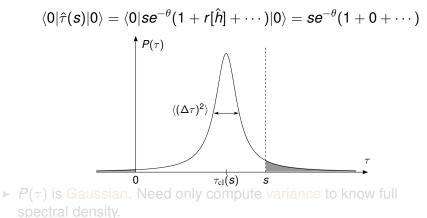
$$\langle 0|\hat{\tau}(s)|0
angle = \langle 0|se^{- heta}(1+r[\hat{h}]+\cdots)|0
angle = se^{- heta}(1+0+\cdots)$$

► P(τ) is Gaussian. Need only compute variance to know full spectral density.

$$\langle (\Delta \tau)^2 \rangle = s^2 e^{-2\theta} (\langle 0|r[\hat{h}]^2|0\rangle + \cdots)$$

basic idea

What to calculate?



$$\langle (\Delta \tau)^2 \rangle = s^2 e^{-2\theta} (\langle 0|r[\hat{h}]^2|0\rangle + \cdots)$$

basic idea

What to calculate?

$$\langle (\Delta au)^2
angle = s^2 e^{-2\theta} (\langle 0 | r [\hat{h}]^2 | 0
angle + \cdots)$$

basic idea

► Variance needs the Hadamard 2-point function G(x, y). With $\hat{r}^2 = (r[\hat{h}])^2$:

$$\langle 0|\hat{r}^2|0\rangle = \frac{1}{2}\langle \{\hat{r},\hat{r}\}\rangle = \frac{1}{2}r^x r^y \langle \{\hat{h}_x,\hat{h}_y\}\rangle = \frac{1}{2}r^x r^y G(x,y)$$

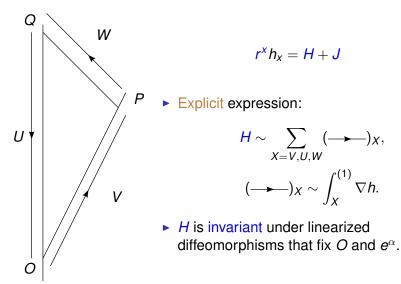
Integrals in r^x are not sufficient to tame the x − y → 0 divergence of G(x, y) ~ l_p²/(x − y)². Need to use smeared fields h̃:

$$\widetilde{r} = r^{X}\widetilde{h}_{X} = r^{X}\langle\!\langle \hat{h}_{X-Z}
angle
angle,$$

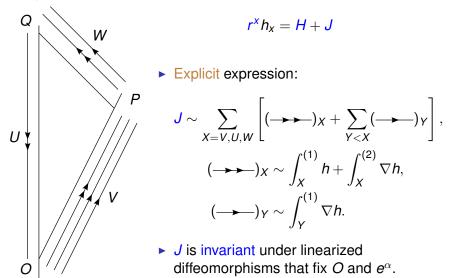
 $\langle\!\langle f(Z)
angle\!
angle = \int \mathrm{d} Z \, f(Z) \widetilde{g}(Z),$

where $\tilde{g}(z)$ is a smearing function, localized at z = 0, of spread $\mu \ll s$: $\langle \langle z^n \rangle \rangle \sim \mu^n$.

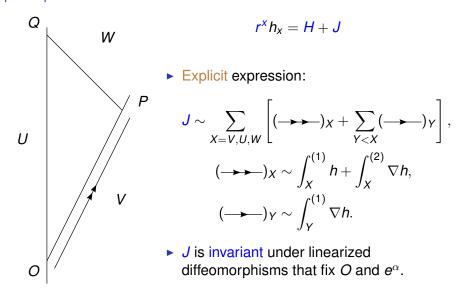
explicit expressions



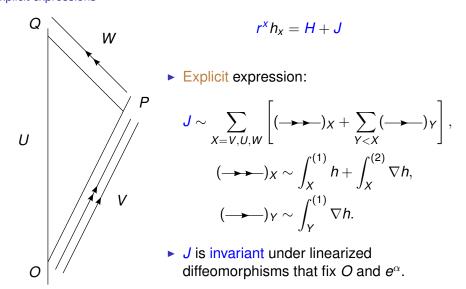
explicit expressions



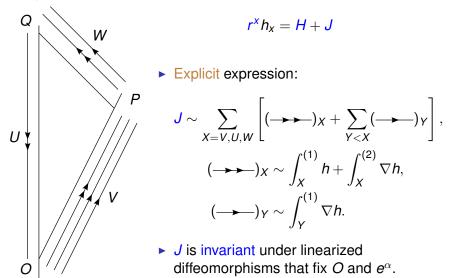
Time Delay in Quantum Linearized Gravity explicit expressions



Time Delay in Quantum Linearized Gravity explicit expressions



explicit expressions



basic idea

► Variance needs the Hadamard 2-point function G(x, y). With $\hat{r}^2 = (r[\hat{h}])^2$:

$$\langle 0|\hat{r}^2|0\rangle = \frac{1}{2}\langle \{\hat{r},\hat{r}\}\rangle = \frac{1}{2}r^x r^y \langle \{\hat{h}_x,\hat{h}_y\}\rangle = \frac{1}{2}r^x r^y G(x,y)$$

Integrals in r^x are not sufficient to tame the x − y → 0 divergence of G(x, y) ~ l_p²/(x − y)². Need to use smeared fields h̃:

$$\widetilde{r} = r^{X}\widetilde{h}_{X} = r^{X}\langle\!\langle \hat{h}_{X-Z}
angle
angle,$$

 $\langle\!\langle f(Z)
angle\!
angle = \int \mathrm{d} Z \, f(Z) \widetilde{g}(Z),$

where $\tilde{g}(z)$ is a smearing function, localized at z = 0, of spread $\mu \ll s$: $\langle \langle z^n \rangle \rangle \sim \mu^n$.

basic idea

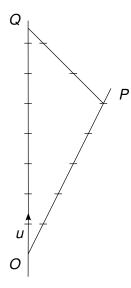
► Variance needs the Hadamard 2-point function G(x, y). With $\hat{r}^2 = (r[\hat{h}])^2$:

$$\langle 0|\hat{r}^2|0\rangle = \frac{1}{2}\langle \{\hat{r},\hat{r}\}\rangle = \frac{1}{2}r^x r^y \langle \{\hat{h}_x,\hat{h}_y\}\rangle = \frac{1}{2}r^x r^y G(x,y)$$

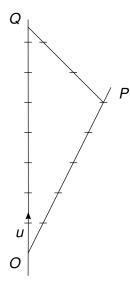
Integrals in r^x are not sufficient to tame the x − y → 0 divergence of G(x, y) ~ l_p²/(x − y)². Need to use smeared fields h̃:

$$\widetilde{r} = r^{x}\widetilde{h}_{x} = r^{x}\langle\!\langle \hat{h}_{x-z}
angle\!
angle, \ \langle\!\langle f(z)
angle\!
angle = \int \mathrm{d} z\, f(z)\widetilde{g}(z),$$

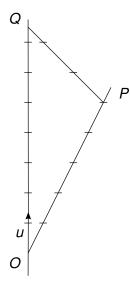
where $\tilde{g}(z)$ is a smearing function, localized at z = 0, of spread $\mu \ll s$: $\langle \langle z^n \rangle \rangle \sim \mu^n$.



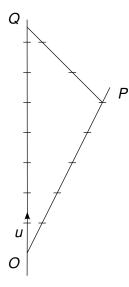
- In QED, ⟨E(x)²⟩ diverges, but ⟨Ẽ(x)²⟩ is finite and represents the vacuum noise in a detector of sensitivity profile g̃(x).
- ► Physically speaking, µ, the spread of g̃(x), is the spatial resolution of the detector.
- We can back-of-envelope estimate μ as the wavelength of the light/radio signals exchanged between lab and probe.
- A more detailed detector model should unambiguously fix *g̃*(*x*) for each leg of △*OPQ*.
- ▶ Provisionally, set $\tilde{g}(x) \sim \delta(u \cdot x)g(x_{\perp}^2)$ everywhere.



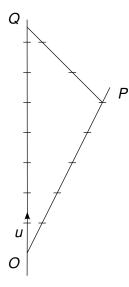
- In QED, ⟨E(x)²⟩ diverges, but ⟨Ẽ(x)²⟩ is finite and represents the vacuum noise in a detector of sensitivity profile g̃(x).
- Physically speaking, µ, the spread of g̃(x), is the spatial resolution of the detector.
- We can back-of-envelope estimate μ as the wavelength of the light/radio signals exchanged between lab and probe.
- A more detailed detector model should unambiguously fix *g̃*(*x*) for each leg of △*OPQ*.
- ▶ Provisionally, set $\tilde{g}(x) \sim \delta(u \cdot x)g(x_{\perp}^2)$ everywhere.



- In QED, ⟨E(x)²⟩ diverges, but ⟨Ẽ(x)²⟩ is finite and represents the vacuum noise in a detector of sensitivity profile g̃(x).
- Physically speaking, μ, the spread of g̃(x), is the spatial resolution of the detector.
- We can back-of-envelope estimate μ as the wavelength of the light/radio signals exchanged between lab and probe.
- A more detailed detector model should unambiguously fix *g̃*(*x*) for each leg of △*OPQ*.
- ▶ Provisionally, set $\tilde{g}(x) \sim \delta(u \cdot x)g(x_{\perp}^2)$ everywhere.



- In QED, ⟨E(x)²⟩ diverges, but ⟨Ẽ(x)²⟩ is finite and represents the vacuum noise in a detector of sensitivity profile g̃(x).
- Physically speaking, µ, the spread of g̃(x), is the spatial resolution of the detector.
- We can back-of-envelope estimate μ as the wavelength of the light/radio signals exchanged between lab and probe.
- A more detailed detector model should unambiguously fix *g̃*(*x*) for each leg of △*OPQ*.
- ▶ Provisionally, set $\tilde{g}(x) \sim \delta(u \cdot x)g(x_{\perp}^2)$ everywhere.



- In QED, ⟨E(x)²⟩ diverges, but ⟨Ẽ(x)²⟩ is finite and represents the vacuum noise in a detector of sensitivity profile g̃(x).
- Physically speaking, µ, the spread of g̃(x), is the spatial resolution of the detector.
- We can back-of-envelope estimate μ as the wavelength of the light/radio signals exchanged between lab and probe.
- A more detailed detector model should unambiguously fix *g̃*(*x*) for each leg of △*OPQ*.
- ▶ Provisionally, set $\tilde{g}(x) \sim \delta(u \cdot x)g(x_{\perp}^2)$ everywhere.

computational strategy

• Start with
$$r^{x} = \sum_{|K|mX} r_{mX}^{K} \int_{X}^{(m)} \nabla_{K}$$
 and conclude that
 $\langle \tilde{r}^{2} \rangle = \sum_{|K|mX} \sum_{|L|nY} r_{mX}^{K} r_{nY}^{L} \tilde{I}_{K\cup L}^{mn}(X; Y),$
 $\tilde{I}_{K}^{mn}(X; Y) = \langle \langle \nabla_{K} I^{mn}(X; Y + z) \rangle \rangle$
 $I^{mn}(X; Y) = \int_{X}^{(m)} d\sigma \int_{Y}^{(n)} d\tau \ G(x(\sigma), y(\tau))$

• Expand in moments of $\tilde{g}(x)$:

$$\tilde{I}_{K}^{mn}(X;Y) \sim \sum_{N,\bar{N}} \ell_{p}^{2} s^{N-2} \frac{(\ln s/\mu)^{\bar{N}}}{\mu^{N}} \tilde{I}_{K,N,\bar{N}}^{mn}(X;Y)$$

• What is the leading order in μ and $\ln(s/\mu)$?

computational strategy

► Start with
$$r^{x} = \sum_{|K|mX} r_{mX}^{K} \int_{X}^{(m)} \nabla_{K}$$
 and conclude that
 $\langle \tilde{r}^{2} \rangle = \sum_{|K|mX} \sum_{|L|nY} r_{mX}^{K} r_{nY}^{L} \tilde{I}_{K\cup L}^{mn}(X; Y),$
 $\tilde{I}_{K}^{mn}(X; Y) = \langle \langle \nabla_{K} I^{mn}(X; Y + z) \rangle \rangle$
 $I^{mn}(X; Y) = \int_{X}^{(m)} d\sigma \int_{Y}^{(n)} d\tau G(x(\sigma), y(\tau))$

• Expand in moments of $\tilde{g}(x)$:

$$ilde{I}^{mn}_{K}(X;Y)\sim \sum_{N,ar{N}}\ell_{p}^{2}s^{N-2}rac{(\ln s/\mu)^{ar{N}}}{\mu^{N}} ilde{I}^{mn}_{K,N,ar{N}}(X;Y)$$

• What is the leading order in μ and $\ln(s/\mu)$?

computational strategy

► Start with
$$r^{x} = \sum_{|K|mX} r_{mX}^{K} \int_{X}^{(m)} \nabla_{K}$$
 and conclude that
 $\langle \tilde{r}^{2} \rangle = \sum_{|K|mX} \sum_{|L|nY} r_{mX}^{K} r_{nY}^{L} \tilde{I}_{K\cup L}^{mn}(X; Y),$
 $\tilde{I}_{K}^{mn}(X; Y) = \langle \langle \nabla_{K} I^{mn}(X; Y + z) \rangle \rangle$
 $I^{mn}(X; Y) = \int_{X}^{(m)} d\sigma \int_{Y}^{(n)} d\tau G(x(\sigma), y(\tau))$

• Expand in moments of $\tilde{g}(x)$:

$$ilde{I}^{mn}_K(X;Y)\sim \sum_{N,ar{N}}\ell_p^2 s^{N-2}rac{(\ln s/\mu)^{ar{N}}}{\mu^N} ilde{I}^{mn}_{K,N,ar{N}}(X;Y)$$

► What is the leading order in µ and ln(s/µ)?

dimensional analysis

▶ Dimensional analysis: $[\mu] = [\ell_p] = [z] = 1$, $[\nabla] = -1$, $G \sim \ell_p^2/z^2$.

$$egin{aligned} &\langle ilde{r}^2
angle \sim s^2 \langle\!\langle \int_X \int_Y
abla^2 G(z)
angle\!
angle \sim s^2 \langle\!\langle \int_X \int_Y rac{\ell_p^2}{z^4}
angle\!
angle \ &\sim s^2 \langle\!\langle rac{\ell_p^2}{s^2 z^2}
angle\!
angle \sim rac{\ell_p^2}{\mu^2} \end{aligned}$$

Detailed calculations confirm the structure

$$\langle \tilde{r}^2 \rangle = \frac{\ell_p^2}{\mu^2} \left(\rho_0 + \rho_1 \frac{\mu}{s} + \rho_2 \frac{\mu^2}{s^2} + O\left(\frac{\mu}{s}\right)^3 \right) + O\left(\frac{\ell_p^2}{\mu^2}\right)$$

► rms fluctuation in $\hat{\tau}(s) \sim s\sqrt{\langle \tilde{r}^2 \rangle} \sim s\frac{\ell_p}{\mu}$, $\mu \sim 1$ nm (X-rays) laboratory: $s \sim 1$ m $\sim 10^{-9}$ s, $\frac{\ell_p}{\mu} \sim 10^{-26}$: 10^{-35} s cosmology: $s \sim 1$ Mpc $\sim 10^{14}$ s, $\frac{\ell_p}{\mu} \sim 10^{-26}$: 10^{-12} s

dimensional analysis

▶ Dimensional analysis: $[\mu] = [\ell_p] = [z] = 1$, $[\nabla] = -1$, $G \sim \ell_p^2/z^2$.

$$egin{aligned} &\langle ilde{r}^2
angle \sim s^2 \langle\!\langle \int_X \int_Y
abla^2 G(z)
angle\!
angle \sim s^2 \langle\!\langle \int_X \int_Y rac{\ell_p^2}{z^4}
angle\!
angle \ &\sim s^2 \langle\!\langle rac{\ell_p^2}{s^2 z^2}
angle\!
angle \sim rac{\ell_p^2}{\mu^2} \end{aligned}$$

Detailed calculations confirm the structure

$$\langle \tilde{r}^2 \rangle = \frac{\ell_p^2}{\mu^2} \left(\rho_0 + \rho_1 \frac{\mu}{s} + \rho_2 \frac{\mu^2}{s^2} + O\left(\frac{\mu}{s}\right)^3 \right) + O\left(\frac{\ell_p^2}{\mu^2}\right)$$

► rms fluctuation in $\hat{\tau}(s) \sim s\sqrt{\langle \tilde{r}^2 \rangle} \sim s\frac{\ell_p}{\mu}$, $\mu \sim 1$ nm (X-rays) laboratory: $s \sim 1$ m $\sim 10^{-9}$ s, $\frac{\ell_p}{\mu} \sim 10^{-26}$: 10^{-35} s cosmology: $s \sim 1$ Mpc $\sim 10^{14}$ s, $\frac{\ell_p}{\mu} \sim 10^{-26}$: 10^{-12} s

dimensional analysis

▶ Dimensional analysis: $[\mu] = [\ell_p] = [z] = 1$, $[\nabla] = -1$, $G \sim \ell_p^2/z^2$.

$$egin{aligned} &\langle ilde{r}^2
angle \sim s^2 \langle\!\langle \int_X \int_Y
abla^2 G(z)
angle\!
angle \sim s^2 \langle\!\langle \int_X \int_Y rac{\ell_p^2}{z^4}
angle\!
angle \ &\sim s^2 \langle\!\langle rac{\ell_p^2}{s^2 z^2}
angle\!
angle \sim rac{\ell_p^2}{\mu^2} \end{aligned}$$

Detailed calculations confirm the structure

$$\langle \tilde{r}^2 \rangle = \frac{\ell_p^2}{\mu^2} \left(\rho_0 + \rho_1 \frac{\mu}{s} + \rho_2 \frac{\mu^2}{s^2} + O\left(\frac{\mu}{s}\right)^3 \right) + O\left(\frac{\ell_p^2}{\mu^2}\right)$$

► rms fluctuation in $\hat{\tau}(s) \sim s \sqrt{\langle \tilde{r}^2 \rangle} \sim s \frac{\ell_p}{\mu}$, $\mu \sim 1$ nm (X-rays) laboratory: $s \sim 1$ m $\sim 10^{-9}$ s, $\frac{\ell_p}{\mu} \sim 10^{-26}$: 10^{-35} s cosmology: $s \sim 1$ Mpc $\sim 10^{14}$ s, $\frac{\ell_p}{\mu} \sim 10^{-26}$: 10^{-12} s

dimensional analysis

▶ Dimensional analysis: $[\mu] = [\ell_p] = [z] = 1$, $[\nabla] = -1$, $G \sim \ell_p^2/z^2$.

$$egin{aligned} &\langle ilde{r}^2
angle \sim s^2 \langle\!\langle \int_X \int_Y
abla^2 G(z)
angle\!
angle \sim s^2 \langle\!\langle \int_X \int_Y rac{\ell_p^2}{z^4}
angle\!
angle \ &\sim s^2 \langle\!\langle rac{\ell_p^2}{s^2 z^2}
angle\!
angle \sim rac{\ell_p^2}{\mu^2} \end{aligned}$$

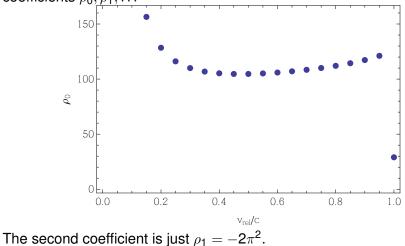
Detailed calculations confirm the structure

$$\langle \tilde{r}^2 \rangle = \frac{\ell_p^2}{\mu^2} \left(\rho_0 + \rho_1 \frac{\mu}{s} + \rho_2 \frac{\mu^2}{s^2} + O\left(\frac{\mu}{s}\right)^3 \right) + O\left(\frac{\ell_p^2}{\mu^2}\right)$$

► rms fluctuation in $\hat{\tau}(s) \sim s \sqrt{\langle \tilde{r}^2 \rangle} \sim s \frac{\ell_p}{\mu}$, $\mu \sim 1$ nm (X-rays) laboratory: $s \sim 1$ m $\sim 10^{-9}$ s, $\frac{\ell_p}{\mu} \sim 10^{-26}$: 10^{-35} s cosmology: $s \sim 1$ Mpc $\sim 10^{14}$ s, $\frac{\ell_p}{\mu} \sim 10^{-26}$: 10^{-12} s

result [B. Bonga, MSc thesis]

All dependence on geometry (relative lab-probe speed v_{rel}/c) is in the coefficients ρ_0, ρ_1, \ldots



- Observables in Quantum Gravity can be constructed by carefully modeling (thought) experiments.
- The time delay is an interesting example, especially sensitive to the causal structure of spacetime.
- ► The time delay is only one member of a larger class: *Quantum Astrometric Observables*.
- Question: Are non-perturbative calculations possible? (improved perturbation theory, 2 + 1, CDT, ...)
- Question: Is minimal matter content necessary? (astrometry + Komar-Bergmann observables)
- Future application: Which observable can tell us the "size" of a Black Hole? And what can it say about BH evaporation?

- Observables in Quantum Gravity can be constructed by carefully modeling (thought) experiments.
- The time delay is an interesting example, especially sensitive to the causal structure of spacetime.
- ► The time delay is only one member of a larger class: *Quantum Astrometric Observables*.
- Question: Are non-perturbative calculations possible? (improved perturbation theory, 2 + 1, CDT, ...)
- Question: Is minimal matter content necessary? (astrometry + Komar-Bergmann observables)
- Future application: Which observable can tell us the "size" of a Black Hole? And what can it say about BH evaporation?

- Observables in Quantum Gravity can be constructed by carefully modeling (thought) experiments.
- The time delay is an interesting example, especially sensitive to the causal structure of spacetime.
- The time delay is only one member of a larger class: Quantum Astrometric Observables.
- Question: Are non-perturbative calculations possible? (improved perturbation theory, 2 + 1, CDT, ...)
- Question: Is minimal matter content necessary? (astrometry + Komar-Bergmann observables)
- Future application: Which observable can tell us the "size" of a Black Hole? And what can it say about BH evaporation?

- Observables in Quantum Gravity can be constructed by carefully modeling (thought) experiments.
- The time delay is an interesting example, especially sensitive to the causal structure of spacetime.
- The time delay is only one member of a larger class: Quantum Astrometric Observables.
- Question: Are non-perturbative calculations possible? (improved perturbation theory, 2 + 1, CDT, ...)
- Question: Is minimal matter content necessary? (astrometry + Komar-Bergmann observables)
- Future application: Which observable can tell us the "size" of a Black Hole? And what can it say about BH evaporation?

- Observables in Quantum Gravity can be constructed by carefully modeling (thought) experiments.
- The time delay is an interesting example, especially sensitive to the causal structure of spacetime.
- The time delay is only one member of a larger class: Quantum Astrometric Observables.
- Question: Are non-perturbative calculations possible? (improved perturbation theory, 2 + 1, CDT, ...)
- Question: Is minimal matter content necessary? (astrometry + Komar-Bergmann observables)
- Future application: Which observable can tell us the "size" of a Black Hole? And what can it say about BH evaporation?

- Observables in Quantum Gravity can be constructed by carefully modeling (thought) experiments.
- The time delay is an interesting example, especially sensitive to the causal structure of spacetime.
- The time delay is only one member of a larger class: Quantum Astrometric Observables.
- Question: Are non-perturbative calculations possible? (improved perturbation theory, 2 + 1, CDT, ...)
- Question: Is minimal matter content necessary? (astrometry + Komar-Bergmann observables)
- Future application: Which observable can tell us the "size" of a Black Hole? And what can it say about BH evaporation?

- Observables in Quantum Gravity can be constructed by carefully modeling (thought) experiments.
- The time delay is an interesting example, especially sensitive to the causal structure of spacetime.
- The time delay is only one member of a larger class: Quantum Astrometric Observables.
- Question: Are non-perturbative calculations possible? (improved perturbation theory, 2 + 1, CDT, ...)
- Question: Is minimal matter content necessary? (astrometry + Komar-Bergmann observables)
- Future application: Which observable can tell us the "size" of a Black Hole? And what can it say about BH evaporation?

Thank you for your attention!