Higgslike dilatons

Csaba Csáki (Cornell) with

Brando Bellazzini (Padua) Jay Hubisz (Syracuse)
Javi Serra (Cornell) John Terning (Davis)
Particle Theory Seminar
UC Davis, January 7, 2013

Friday, March 15, 2013

Discovery of 126 GeV Higgs

-A new particle at $\sim 126 \mathrm{GeV}$ that behaves very similarly to SM Higgs

Discovery of 126 GeV Hiqgs

-Couplings compatible with SM values, but at this point could also be quite off.

-Do we really have to completely do away with strong EWSB?
-Couplings of Higgs in SM: determined by approximate conformal symmetry of SM
-In absence of Higgs mass parameter SM approximately conformal until QCD scale, and <H>=v breaks conformality spontaneously
-Higgs = dilaton, with $\mathrm{f}=\mathrm{v}$, Higgs couplings determined a la Shifman, Vainshtein, Voloshin, Zakharov '79-'80
-Can have a higgs-like dilaton in more complicated models of dynamical EWSB

- Need strong sector to be approximately conformal
-Conformality should be broken spontaneously at scale $\mathrm{f} \sim \mathrm{v}$
-Aim here:
-Examine what it takes for dilaton to be light $\ll \Lambda$
-SUSY, RS examples
-Examine if dilaton couplings can fit LHC data

Dilaton basics

- Scale transformations $\quad x \rightarrow x^{\prime}=e^{-\alpha} x$
- Operators transform

$$
\mathcal{O}(x) \rightarrow \mathcal{O}^{\prime}(x)=e^{\alpha \Delta} \mathcal{O}\left(e^{\alpha} x\right)
$$

- Δ is full dimension, classical plus quantum corrections
-Change in action:

$$
S=\sum_{i} \int d^{4} x g_{i} \mathcal{O}_{i}(x) \longrightarrow S^{\prime}=\sum_{i} \int d^{4} x e^{\alpha\left(\Delta_{i}-4\right)} g_{i} \mathcal{O}_{i}(x)
$$

-Assume spontaneous breaking of scale inv. (SBSI)

$$
\langle\mathcal{O}\rangle=f^{n}
$$

Dilaton basics

-Dilaton: Goldstone of SBSI, σ, transforms non-linearly under scale transf.:

$$
\sigma(x) \rightarrow \sigma\left(e^{\alpha} x\right)+\alpha f
$$

-Restore scale invariance by replacing VEV

$$
f \rightarrow f \chi \equiv f e^{\sigma / f}
$$

-Effective dilaton Lagrangian is then (using NDA for coeffs)

$$
\begin{aligned}
\mathcal{L}_{e f f} & =\sum_{n, m \geqslant 0} \frac{a_{n, m}}{(4 \pi)^{2(n-1)} f^{2(n-2)}} \frac{\partial^{2 n} \chi^{m}}{\chi^{2 n+m-4}} \\
& =-a_{0,0}(4 \pi)^{2} f^{4} \chi^{4}+\frac{f^{2}}{2}\left(\partial_{\mu} \chi\right)^{2}+\frac{a_{2,4}}{(4 \pi)^{2}} \frac{(\partial \chi)^{4}}{\chi^{4}}+\ldots
\end{aligned}
$$

Dilaton dynamics

-Main point of dilaton: effective action can have non-derivative X^{4} term - just the cosmological constant in the composite sector

$$
S=\int d^{4} x \frac{f^{2}}{2}(\partial \chi)^{2}-a f^{4} \chi^{4}+\text { higher derivatives }
$$

- Generically $a \neq 0$. Will make SBSI difficult:
-a>0: VEV at $\mathrm{f}=0$, no SBSI
-a<0: runaway vacuum $f \rightarrow \infty$

-a=0 arbitrary f

$$
f=?{\underset{a=0}{\longrightarrow}}^{\substack{a=0}}
$$

- Need to add additional almost-marginal operator to generate dilaton potential

Dilaton dynamics

-Perturbation:

$$
\delta S=\int d^{4} x \lambda(\mu) \mathcal{O}
$$

$$
a f^{4} \rightarrow f^{4} F(\lambda(f))
$$

-Dilaton potential: $\quad V(\chi)=f^{4} F(\lambda(f))$ vacuum energy in units of f
-Dilaton mass:

$$
\begin{aligned}
& \text {-To have a VEV: } \quad V^{\prime}=f^{3}\left[4 F(\lambda(f))+\beta F^{\prime}(\lambda(f))\right]=0 \\
& \text {-Dilaton mass: }
\end{aligned}
$$

$m_{d i l}^{2}=f^{2} \beta\left[\beta F^{\prime \prime}+4 F^{\prime}+\beta^{\prime} F^{\prime}\right] \simeq 4 f^{2} \beta F^{\prime}(\lambda(f))=-16 f^{2} F(\lambda(f))$

Dilaton dynamics

-We need $m_{\text {dil }} \sim 125 \mathrm{GeV}$
-With $f \sim v=246 \mathrm{GeV}, \Lambda=4 \pi f \sim 3 \mathrm{TeV}$

- So $m_{d i l} \sim f / 2 \ll \Lambda$
-But dilaton mass:

$$
m_{d i l}^{2}=f^{2} \beta\left[\beta F^{\prime \prime}+4 F^{\prime}+\beta^{\prime} F^{\prime}\right] \simeq 4 f^{2} \beta F^{\prime}(\lambda(f))=-16 f^{2} F(\lambda(f))
$$

- Naive expectation: one loop vacuum energy

$$
F_{N D A} \sim \frac{\Lambda^{4}}{16 \pi^{2} f^{4}} \sim 16 \pi^{2}
$$

$$
m_{d i l} \sim \Lambda
$$

Dilaton dynamics

-Generically DO NOT expect a light dilaton, need the dilaton quartic to be suppressed vs. NDA size
-If quartic not suppressed, need large β to stabilize, large explicit breaking a la QCD and TC, no light dilaton
-Need to start with an almost flat direction
-Dynamics should not generate a large contribution to the vacuum energy...

- Natural in SUSY theories - have flat or almost flat directions
-Not natural in non-SUSY theories

Dilaton dynamics

To find a (non-SUSY) solution we need

-Small vacuum energy (tuning), $a \ll 16 \pi^{2}$

- δ F dynamically cancels vs. a
-Perturbation should be close to marginal

Dilaton dynamics

-Detailed examination of the dynamics
-Assume small deviation ε from marginality, and coupling λ :

$$
\beta(\lambda)=\frac{d \lambda}{d \ln \mu}=\epsilon \lambda+\frac{b_{1}}{4 \pi} \lambda^{2}+O\left(\lambda^{3}\right)
$$

-Assume λ perturbative $\lambda<4 \pi$, and dilaton quartic very small

$$
F(\lambda)=(4 \pi)^{2}\left[c_{0}+\sum_{n} c_{n}\left(\frac{\lambda}{4 \pi}\right)^{n}\right], \quad c_{0} \ll c_{n} \sim 1, \quad a=(4 \pi)^{2} c_{0}
$$

-Coleman-Weinberg type potential for dilaton

Dilaton dynamics

-For perturbative λ can introduce large hierarchies

$$
f \simeq M\left(\frac{-4 \pi c_{0}}{\lambda(M) c_{1}}\right)^{1 / \epsilon}
$$

if ε small and negative $\mathrm{f} \ll \mathrm{M}$ (if positive more tuning)
-The dilaton mass:

$$
\frac{m_{d i l}^{2}}{\Lambda^{2}} \sim \frac{\beta}{\pi} \simeq \epsilon \frac{\lambda}{\pi}
$$

-Could make it very small by taking $\varepsilon \rightarrow 0$?

Dilaton dynamics

-When ε very small, λ^{2} term in β-function dominates

$$
\frac{m_{d i l}^{2}}{\Lambda^{2}} \sim \frac{\beta}{\pi} \sim \frac{\lambda^{2}}{4 \pi^{2}}
$$

- Shows need perturbative coupling for light dilaton
-QCD and (walking)-TC will not have a light dilaton, since there $\lambda=g \sim 4 \pi$
-Fine-tuning in weakly coupled models: min. condition gives $\lambda(f) \sim 4 \pi c_{0} / c_{1} \equiv 4 \pi / \Delta \quad$ where Δ is FT

$$
\Delta \gtrsim 2 \Lambda / m_{d i l} \simeq 50\left(\frac{f}{246 \mathrm{GeV}}\right)\left(\frac{125 \mathrm{GeV}}{m_{d i l}}\right)
$$

A SUSY example for a light dilaton

- Look at 3-2 model

	$S U(3)$	$S U(2)$	$U(1)$	$U(1)_{R}$
Q	\square	\square	$1 / 3$	1
L	$\mathbf{1}$	\square	-1	-3
\bar{U}	\square	$\mathbf{1}$	$-4 / 3$	-8
\bar{D}	\square	$\mathbf{1}$	$2 / 3$	4

- Classical flat directions $Q \bar{D} L, Q \bar{U} L$ and $\operatorname{det}(\bar{Q} Q)$
-Lifted by superpotential $W=\lambda Q \bar{D} L$
-Dynamical ADS superpotential

$$
W_{\mathrm{dyn}}=\frac{\Lambda_{3}^{7}}{\operatorname{det}(\bar{Q} Q)}
$$

-Will push fields to large VEVs $\gg \wedge_{3}$ as long as $\lambda \ll 1$

- Spontaneous conformality breaking, expect light dilaton

A SUSY example for a light dilaton

- The potential $\quad V \approx \frac{\Lambda_{3}^{14}}{f^{10}}+\lambda \frac{\Lambda_{3}^{7}}{f^{3}}+\lambda^{2} f^{4}$
-VEVs: $\quad f \approx \frac{\Lambda_{3}}{\lambda^{1 / 7}}, \quad V \approx \lambda^{10 / 7} \Lambda_{3}^{4}$
-Dilaton mass: $\quad m_{\text {dil }} \approx \lambda f \approx \lambda^{\frac{6}{7}} \Lambda_{3}$
- Of course here SUSY is playing the essential role of keeping the dilaton light, unlike in the non-SUSY examples we are interested in

The radion in RS/GW

- The effective potential w/o stabilization

$$
V_{e f f}=V_{0}+V_{1}\left(\frac{R}{R^{\prime}}\right)^{4}+\Lambda_{(5)} R\left(1-\left(\frac{R}{R^{\prime}}\right)^{4}\right)
$$

-With $\mathrm{f}=1 /$ R' get a characteristic SBSI potential with quartic

$$
V_{e f f}(\chi)=\underbrace{V_{0}+\Lambda_{(5)}}_{\text {CC, FT1 }} R \underbrace{}_{\text {quartic, FT2 }} R \underbrace{f^{4}}(\underbrace{}_{V_{1} R^{4}-\Lambda_{(5)} R^{5}})
$$

- Natural size of quartic: NDA in 5D $\quad \delta a_{(\text {(bulk })} \sim \Lambda_{(5)} R^{5} \sim \frac{12^{\frac{5}{2}}}{24 \pi^{3}} \sim \mathcal{O}(1)$ like in 4D EFT

$$
\delta a_{(I R)}=-V_{1} R^{4}=-V_{1}\left(\frac{R}{R^{\prime}}\right)^{4} R^{4}=\frac{\widetilde{V}_{1}}{\left(\frac{\Lambda}{4 \pi}\right)^{4}} \sim 16 \pi^{2}
$$

The radion in RS/GW

-Assumption for GW: quartic is set to zero/very small, then bulk scalar added with non-trivial profile and small bulk mass
-Potential:

$$
V=f^{4}\left\{(4+2 \epsilon)\left[v_{1}-v_{0}(f R)^{\epsilon}\right]^{2}-\epsilon v_{1}^{2}+\delta a+O\left(\epsilon^{2}\right)\right\}=f^{4} F(f)
$$

- ε is bulk mass, $\mathrm{v}_{1,0} \mathrm{IR} / \mathrm{UV}$ VEVs in units of AdS curvature, δa the remaining quartic
-VEV:

$$
f=\frac{1}{R}\left(\frac{v_{1}+\sqrt{-\delta a / 4}}{v_{0}}+O(\epsilon)\right)^{1 / \epsilon}
$$

-Tuning determined by $\sqrt{-\delta a / 4} \lesssim v_{1}$
-Amount: $\quad \Delta=\frac{a}{|\delta a|} \gtrsim \frac{4 \pi^{2}}{v_{1}^{2}} \sim 4000$ for $\mathrm{v}_{1} \sim 0.1$.

Radion as Higgs?

-Radion kinetic term normalization gives

$$
f^{(R S)}=\frac{1}{R^{\prime}} \sqrt{12\left(M_{*} R\right)^{3}}
$$

-For calculability need $N=\sqrt{12\left(M_{*} R\right)^{3}} \gg 1$, so
-For higgsless: $\quad \frac{v}{f^{(R S)}}=\frac{2}{g} \frac{1}{N \sqrt{\log \frac{R^{\prime}}{R}}}$

- For models with very heavy higgs: $\quad \frac{v}{f^{(R S)}}=\frac{v R^{\prime}}{N}$
-Both cases couplings very suppressed, but mass light

$$
m_{\text {dil }} \sim M_{K K} \frac{2 v_{1} \sqrt{\epsilon}}{\sqrt{12\left(M_{*} R\right)^{3}}}
$$

Dilaton couplings

-Assumption: composite sector + elementary sector
-Composite sector close to conformal, breaks scale inv. spontaneously

- Elementary sector is external to composite, but weak couplings
-Dilaton coupling in composite sector: assume in UV

$$
\mathcal{L}_{C F T}^{U V}=\sum_{i} g_{i} \mathcal{O}_{i}^{U V}
$$

-All operators dim 4 or small explicit breaking $\quad\left[g_{i}\right]=4-\Delta_{i}^{U V}$

- Generic IR Lagrangian

$$
\mathcal{L}_{C F T}^{I R}=\sum_{i} c_{j}\left(\Pi g_{i}^{n_{i}}\right) \mathcal{O}_{j}^{I R} \chi^{m_{j}}
$$

Dilaton couplings I. Composites

-Power of X fixed $\quad \mathcal{L}_{C F T}^{I R}=\sum_{i} c_{j}\left(\Pi g_{i}^{n_{i}}\right) \mathcal{O}_{j}^{I R} \chi^{m_{j}}$

- $m_{j}=4-\Delta_{j}^{I R}-\sum_{i} n_{i}\left(4-\Delta_{i}^{U V}\right)$
\bullet Single coupling: $\quad \mathcal{L}_{\text {breaking }}^{I R}=\sum_{j} c_{j} g_{i}\left(\Delta_{i}^{U V}-\Delta_{j}^{I R}\right) \mathcal{O}_{j}^{I R} \frac{\sigma}{f}$
-If no explicit breaking $\mathcal{L}_{\text {symmetric }}^{I R}=\sum_{j} c_{j}\left(4-\Delta_{j}^{I R}\right) \mathcal{O}_{j}^{I R} \frac{\sigma}{f}$
-Coupling to Tr of energy-momentum tensor: $\mathcal{L}_{\text {eff }}=-\frac{\sigma}{f} \mathcal{T}_{\mu}^{\mu}$
-Trace anomaly included, for $\mathcal{O}_{j}^{I R}=-\left(F_{\mu \nu}\right)^{2} /\left(4 g^{2}\right)$

$$
4-\Delta_{j}^{I R}=2 \gamma(g)=\frac{2 \beta(g)}{g}
$$

Dilaton couplings II. Partially composite

- Mixing between composite and elementary sectors

$$
\mathcal{L}^{U V}=\mathcal{L}_{C F T}^{U V}+\mathcal{L}_{\text {elem }}+\sum_{i} y_{i} O_{\text {elem }, i} \mathcal{O}_{C F T, i}^{U V}
$$

-Treat y as spurion with dimension $\quad\left[y_{i}\right]=4-\Delta_{\text {elem }, i}^{U V}-\Delta_{C F T, i}^{U V}$
-Effective Lagrangian

$$
\mathcal{L}_{e f f}=\mathcal{L}_{C F T}^{I R}+\mathcal{L}_{\text {elem }}+\sum_{j} c_{j} y_{i} O_{\text {elem }, i} \mathcal{O}_{C F T, j}^{I R} \chi^{m_{j}}+\mathcal{O}\left(y^{2}\right)
$$

-Power of X :

$$
\Delta_{e l e m, i}^{U V}-\Delta_{e l e m, i}^{I R}+\Delta_{C F T, i}^{U V}-\Delta_{C F T, j}^{I R}
$$

Example I: Partially comp. fermions

-Mixing between elementary and composite fermions:

$$
\mathcal{L}_{i n t}=y_{L} \psi_{L} \Theta_{R}+y_{R} \psi_{R} \Theta_{L}+\text { h.c. }
$$

- Spurion dimensions: $\left[y_{L}\right]=4-\Delta_{\psi_{L}}^{U V}-\Delta_{\Theta_{R}}^{U V}, \quad\left[y_{R}\right]=4-\Delta_{\psi_{R}}^{U V}-\Delta_{\Theta_{L}}^{U V}$
-The effective fermion mass: $\mathcal{L}_{e f f}=-M y_{L} y_{R} \psi_{L} \psi_{R} \chi^{m}+$ h.c.

$$
\Delta_{\psi_{L}}^{U V}-\Delta_{\psi_{L}}^{I R}+\Delta_{\psi_{R}}^{U V}-\Delta_{\psi_{R}}^{I R}+\Delta_{\theta_{L}}^{U V}+\Delta_{\theta_{R}}^{U V}-4
$$

-Coupling to dilaton: $\quad \Delta_{\Theta_{L}}^{U V}=2+c_{L}, \quad \Delta_{\Theta_{R}}^{U V}=2-c_{R}$,
-In RS language:

$$
\mathcal{L}_{e f f}=-M y_{L} y_{R} \psi_{L} \psi_{R} \chi^{c_{L}-c_{R}}
$$

Example II: Partially comp. gauge field

- Mixing between gauge field and composite current:

$$
\mathcal{L}=-\frac{1}{4 g_{U V}^{2}} F_{\mu \nu} F^{\mu \nu}+A_{\mu} \mathcal{J}^{\mu}
$$

-Spurion dimension: $\left[g_{U V}\right]=\Delta_{A}^{U V}-1$
-Low energy coupling: $\quad \mathcal{L}_{e f f}=-\frac{1}{4 g^{2}} F_{\mu \nu} F^{\mu \nu} \chi^{m}$
-Coupling:

$$
m=4-2\left[1+\Delta_{A}^{I R}\right]+2[g]=2\left(\frac{\beta_{I R}}{g}-\frac{\beta_{U V}}{g}\right)
$$

Example II: Partially comp. gauge field

-Can also find this from matching of coupling

$$
\frac{1}{g^{2}(\mu)}=\frac{1}{g^{2}\left(\mu_{0}\right)}-\frac{b_{U V}}{8 \pi^{2}} \ln \frac{\mu_{0}}{f}-\frac{b_{I R}}{8 \pi^{2}} \ln \frac{f}{\mu}
$$

- With replacement $\quad f \rightarrow f e^{\frac{\sigma}{f}}$
- Coupling again

$$
\frac{g^{2}}{32 \pi^{2}}\left(b_{I R}-b_{U V}\right) F^{\mu \nu} F_{\mu \nu} \frac{\sigma}{f}
$$

Dilaton coupling to SM

-Couplings to massive fields:

$$
\delta \mathcal{L}_{\text {mass }}=\left(2 m_{W}^{2} W_{\mu}^{+} W^{-\mu}+m_{Z}^{2} Z_{\mu}^{2}\right) \frac{\sigma}{f}-Y_{\psi} \frac{v}{\sqrt{2}} \psi_{L} \psi_{R}\left(1+\gamma_{L}+\gamma_{R}\right) \frac{\sigma}{f}+\text { h.c. }
$$

-Anomalous dimensions $ү \mathrm{~L}, \mathrm{R}$ might be flavor dependent. Assume flavor symmetry to tame dilaton mediated FCNCs
-Coupling to massless gauge bosons:

$$
\delta \mathcal{L}_{k i n}=\frac{g_{A}^{2}}{32 \pi^{2}}\left(b_{I R}^{(A)}-b_{U V}^{(A)}\right)\left(F_{\mu \nu}^{(A)}\right)^{2} \frac{\sigma}{f}
$$

-Assuming photon, gluon partially composite
$-\left(b_{U V}^{(3)}+b_{t_{L}}^{(3)}\right) \frac{\alpha_{s}}{8 \pi} G_{\mu \nu}^{2} \frac{\chi}{f}-\left(b_{U V}^{(E M)}+b_{W_{T}^{ \pm}}^{(E M)}+N_{c} b_{t_{L}}^{(E M)}\right) \frac{\alpha}{8 \pi} A_{\mu \nu}^{2} \frac{\chi}{f}$

Dilaton coupling to SM

-In terms of generic parametrization

$$
\begin{aligned}
\mathcal{L}_{e f f}= & c_{V}\left(\frac{2 m_{W}^{2}}{v} W_{\mu}^{+} W^{-\mu}+\frac{m_{Z}^{2}}{v} Z_{\mu}^{2}\right) h \\
& -c_{t} \frac{m_{t}}{v} \bar{t} t h-c_{b} \frac{m_{b}}{v} \bar{b} b h-c_{\tau} \frac{m_{\tau}}{v} \bar{\tau} \tau h \\
& +c_{g} \frac{\alpha_{s}}{8 \pi v} G_{\mu \nu}^{2} h+c_{\gamma} \frac{\alpha}{8 \pi v} A_{\mu \nu}^{2}
\end{aligned}
$$

-For massive fields

$$
c_{t, \chi}=\frac{v}{f}\left(1+\gamma_{t}\right), \quad c_{b, \chi}=\frac{v}{f}\left(1+\gamma_{b}\right), \quad c_{\tau, \chi}=\frac{v}{f}\left(1+\gamma_{\tau}\right),
$$

-For massless GBs including top and W loops:

$$
\begin{aligned}
\hat{c}_{g, \chi} & \simeq \frac{v}{f}\left(b_{I R}^{(3)}-b_{U V}^{(3)}+\frac{1}{2} F_{1 / 2}\left(x_{t}\right)\right) \equiv \frac{v}{f} b_{e f f}^{(3)} \\
\hat{c}_{\gamma, \chi} & \simeq \frac{v}{f}\left(b_{I R}^{(E M)}-b_{U V}^{(E M)}+\frac{4}{3} F_{1 / 2}\left(x_{t}\right)-F_{1}\left(x_{W}\right)\right) \equiv \frac{v}{f} b_{e f f}^{(E M)}
\end{aligned}
$$

Dilaton rates and production

-Decay rates:

$$
\begin{gathered}
\frac{\Gamma_{W W}}{\Gamma_{W W, S M}}=\frac{\Gamma_{Z Z}}{\Gamma_{Z Z, S M}} \simeq\left|c_{V}\right|^{2}, \frac{\Gamma_{b b}}{\Gamma_{b b, S M}} \simeq\left|c_{b}\right|^{2}, \frac{\Gamma_{\tau \tau}}{\Gamma_{\tau \tau, S M}} \simeq\left|c_{\tau}\right|^{2} \\
\frac{\Gamma_{g g}}{\Gamma_{g g, S M}} \simeq \frac{\left|\hat{c}_{g}\right|^{2}}{\left|\hat{c}_{g, S M}\right|^{2}}, \quad \frac{\Gamma_{\gamma \gamma}}{\Gamma_{\gamma \gamma, S M}} \simeq \frac{\left|\hat{c}_{\gamma}\right|^{2}}{\left|\hat{c}_{\gamma, S M}\right|^{2}}
\end{gathered}
$$

-Production rates: $\frac{\sigma_{G F}}{\sigma_{G F, S M}} \simeq \frac{\left|\hat{c}_{g}\right|^{2}}{\left|\hat{c}_{G, S M}\right|^{2}}, \frac{\sigma_{V B F}}{\sigma_{V B, S, S}} \simeq\left|c_{V}\right|^{2}, \frac{\sigma_{V h}}{\sigma_{V h, S M}} \simeq\left|c_{V}\right|^{2}$

- Rates for individual channels: $\quad R \simeq(\sigma \Gamma) /(\sigma \Gamma)_{S M} \times\left|C_{\text {tot }}\right|^{-2}$

$$
\begin{aligned}
& R_{G F,(W W, Z Z)} \simeq \frac{v^{2}}{f^{2}} \frac{1}{C^{2}}\left(\frac{b_{e f f}^{(3)}}{b_{t}^{(3)}}\right)^{2}, R_{G F, \gamma \gamma} \simeq \frac{v^{2}}{f^{2}} \frac{1}{C^{2}}\left(\frac{b_{e f f}^{(3)} b_{e f f}^{(E M)}}{b_{t}^{(3)} b_{t+W}^{(E M)}}\right)^{2}, \\
& R_{G F, \tau \tau} \simeq \frac{v^{2}}{f^{2}} \frac{1}{C^{2}}\left(\frac{b_{e f f}^{(3)}\left(1+\gamma_{\tau}\right)}{b_{t}^{(3)}}\right)^{2}, R_{V B F, \gamma \gamma} \simeq \frac{v^{2}}{f^{2}} \frac{1}{C^{2}}\left(\frac{b_{e f f}^{(E M)}}{b_{t+W}^{(E M)}}\right)^{2}, \\
& R_{V B F,(W W, Z Z)} \simeq \frac{v^{2}}{f^{2}} \frac{1}{C^{2}}, \quad R_{V B F, \tau \tau} \simeq \frac{v^{2}}{f^{2}} \frac{1}{C^{2}}\left(1+\gamma_{\tau}\right)^{2}, \quad R_{V h, b b} \simeq \frac{v^{2}}{f^{2}} \frac{1}{C^{2}}\left(1+\gamma_{b}\right)^{2}
\end{aligned}
$$

-where $\mathbf{C}=\left[\mathrm{BR}_{W W, S M}+\mathrm{BR}_{Z Z, S M}+\left(1+\gamma_{b}\right) \mathrm{BR}_{b b, S M}+\frac{\left(b_{e f f}^{(3)}\right)^{2}}{\left(b_{t}^{(3)}\right)^{2}} \mathrm{BR}_{g g, S M}\right]$

LHC and EWPT constraints

Enhancement in $\mathrm{h} \rightarrow \mathrm{vy}$

Rates for
$h \rightarrow Y Y\}$ Can be easily enhanced for $h \rightarrow Z Z\}$ largish b's
$\mathrm{h} \rightarrow \mathrm{bb}$

Summary

-Dilaton well-motivated alternative to 125 GeV higgs
-Large quartic expected for dilaton in non-SUSY models
-Hard to stabilize at hierarchically small VEVs and a light dilaton mass $\ll \wedge$, typically a tuning of a few percent - 0.01 percent involved

- Once radion light couplings predicted up to few parameters
$\bullet v / f$ suppressed vs. Higgs, β functions determine rest
-Can fit LHC data, and explain potential deviations from SM predictions

