Higgslike dilatons

Csaba Csáki (Cornell)
with
Brando Bellazzini (Padua)
Jay Hubisz (Syracuse)
Javi Serra (Cornell)
John Terning (Davis)

Particle Theory Seminar
UC Davis, January 7, 2013
Discovery of 126 GeV Higgs

- A new particle at ~ 126 GeV that behaves very similarly to SM Higgs
Discovery of 126 GeV Higgs

- Couplings compatible with SM values, but at this point could also be quite off.
Higgsless
Pure MSSM
Higgs sector
• Do we really have to completely do away with strong EWSB?

• Couplings of Higgs in SM: determined by approximate conformal symmetry of SM

• In absence of Higgs mass parameter SM approximately conformal until QCD scale, and \(<H> = v \) breaks conformality spontaneously

• Higgs = dilaton, with \(f = v \), Higgs couplings determined a la Shifman, Vainshtein, Voloshin, Zakharov ’79-’80
• Can have a higgs-like dilaton in more complicated models of dynamical EWSB

• Need strong sector to be approximately conformal

• Conformality should be broken spontaneously at scale $f \sim v$

• Aim here:
 • Examine what it takes for dilaton to be light $<< \Lambda$
 • SUSY, RS examples
 • Examine if dilaton couplings can fit LHC data
Dilaton basics

• Scale transformations
 \[x \rightarrow x' = e^{-\alpha x} \]

• Operators transform
 \[\mathcal{O}(x) \rightarrow \mathcal{O}'(x) = e^{\alpha \Delta} \mathcal{O}(e^\alpha x) \]

• \(\Delta \) is full dimension, classical plus quantum corrections

• Change in action:
 \[S = \sum_i \int d^4x \ g_i \mathcal{O}_i(x) \rightarrow S' = \sum_i \int d^4x \ e^{\alpha (\Delta_i - 4)} g_i \mathcal{O}_i(x) \]

• Assume spontaneous breaking of scale inv. (SBSI)
 \[\langle \mathcal{O} \rangle = f^n \]
Dilaton basics

• Dilaton: Goldstone of SBSI, \(\sigma \), transforms non-linearly under scale transf.:
\[
\sigma(x) \rightarrow \sigma(e^\alpha x) + \alpha f
\]

• Restore scale invariance by replacing VEV
\[
f \rightarrow f \chi \equiv f e^{\sigma/f}
\]

• Effective dilaton Lagrangian is then (using NDA for coeffs)
\[
\mathcal{L}_{\text{eff}} = \sum_{n,m \geq 0} \frac{a_{n,m}}{(4\pi)^{2(n-1)} f^{2(n-2)} \chi^{2n+m-4}} \frac{\partial^{2n} \chi^m}{\chi^{2n+m-4}}
\]
\[
= -a_{0,0} (4\pi)^2 f^4 \chi^4 + \frac{f^2}{2} (\partial_\mu \chi)^2 + \frac{a_{2,4}}{(4\pi)^2} \frac{(\partial \chi)^4}{\chi^4} + \ldots
\]
Dilaton dynamics

- **Main point of dilaton:** effective action can have non-derivative χ^4 term - just the cosmological constant in the composite sector

$$ S = \int d^4 x \frac{f^2}{2} (\partial \chi)^2 - a f^4 \chi^4 + \text{higher derivatives} $$

- Generically $a \neq 0$. Will make SBSI difficult:
 - $a > 0$: VEV at $f=0$, no SBSI
 - $a < 0$: runaway vacuum $f \rightarrow \infty$
 - $a = 0$ arbitrary f

- Need to add additional almost-marginal operator to generate dilaton potential
Dilaton dynamics

• Perturbation:

\[\delta S = \int d^4 x \lambda(\mu) \mathcal{O} \]

\[af^4 \rightarrow f^4 F(\lambda(f)) \]

• Dilaton potential:

\[V(\chi) = f^4 F(\lambda(f)) \text{ vacuum energy in units of } f \]

• To have a VEV:

\[V' = f^3 [4F(\lambda(f)) + \beta F'(\lambda(f))] = 0 \]

\[\beta = \frac{d\lambda}{d \log \mu} \]

• Dilaton mass:

\[m_{dil}^2 = f^2 \beta [\beta F'' + 4F' + \beta' F'] \approx 4f^2 \beta F'(\lambda(f)) = -16f^2 F(\lambda(f)) \]
Dilaton dynamics

- We need $m_{dil} \sim 125\text{ GeV}$

- With $f \sim v = 246\text{ GeV}$, $\Lambda = 4\pi f \sim 3\text{ TeV}$

- So $m_{dil} \sim f/2 \ll \Lambda$

- But dilaton mass:

 $$m_{dil}^2 = f^2 \beta [\beta F'' + 4F' + \beta' F'] \approx 4f^2 \beta F'(\lambda(f)) = -16f^2 F(\lambda(f))$$

- Naive expectation: one loop vacuum energy

 $$F_{NDA} \sim \frac{\Lambda^4}{16\pi^2 f^4} \sim 16\pi^2$$

 $$m_{dil} \sim \Lambda$$
Dilaton dynamics

• Generically **DO NOT** expect a light dilaton, need the dilaton quartic to be suppressed vs. NDA size

• If quartic **not** suppressed, need **large** β to stabilize, **large explicit** breaking a la QCD and TC, **no light** dilaton

• Need to start with an **almost flat** direction

• Dynamics should not generate a large contribution to the vacuum energy...

• **Natural** in SUSY theories - have flat or almost flat directions

• Not natural in non-SUSY theories
Dilaton dynamics

To find a (non-SUSY) solution we need

• Small vacuum energy (tuning), $a \ll 16\pi^2$

• δF dynamically cancels vs. a

• Perturbation should be close to marginal
Dilaton dynamics

• Detailed examination of the dynamics

• Assume small deviation ϵ from marginality, and coupling λ:

$$\beta(\lambda) = \frac{d\lambda}{d \ln \mu} = \epsilon \lambda + \frac{b_1}{4\pi} \lambda^2 + O(\lambda^3)$$

• Assume λ perturbative $\lambda<4\pi$, and dilaton quartic very small

$$F(\lambda) = (4\pi)^2 \left[c_0 + \sum_n c_n \left(\frac{\lambda}{4\pi} \right)^n \right], \quad c_0 \ll c_n \sim 1, \quad a = (4\pi)^2 c_0$$

• Coleman-Weinberg type potential for dilaton
Dilaton dynamics

• For perturbative λ can introduce large hierarchies

$$f \sim M \left(\frac{-4\pi c_0}{\lambda(M)c_1} \right)^{1/\varepsilon}$$

if ε small and negative $f<<M$ (if positive more tuning)

• The dilaton mass:

$$\frac{m_{dil}^2}{\Lambda^2} \sim \frac{\beta}{\pi} \sim \frac{\lambda}{\pi}$$

• Could make it very small by taking $\varepsilon\rightarrow0$?
Dilaton dynamics

• When ϵ very small, λ^2 term in β-function dominates

$$\frac{m^2_{dil}}{\Lambda^2} \sim \frac{\beta}{\pi} \sim \frac{\lambda^2}{4\pi^2}$$

• Shows need perturbative coupling for light dilaton

• QCD and (walking)-TC will not have a light dilaton, since there $\lambda=\tilde{g} \sim 4\pi$

• Fine-tuning in weakly coupled models: min. condition gives

$$\lambda(f) \sim 4\pi c_0/c_1 \equiv 4\pi/\Delta \quad \text{where } \Delta \text{ is FT}$$

$$\Delta \gtrsim 2\Lambda/m_{dil} \simeq 50 \left(\frac{f}{246\text{GeV}} \right) \left(\frac{125\text{GeV}}{m_{dil}} \right)$$
A SUSY example for a light dilaton

- Look at 3-2 model

<table>
<thead>
<tr>
<th></th>
<th>$SU(3)$</th>
<th>$SU(2)$</th>
<th>$U(1)$</th>
<th>$U(1)_R$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>□</td>
<td>□</td>
<td>1/3</td>
<td>1</td>
</tr>
<tr>
<td>L</td>
<td>1</td>
<td>□</td>
<td>-1</td>
<td>-3</td>
</tr>
<tr>
<td>\bar{U}</td>
<td>□</td>
<td>1</td>
<td>$-4/3$</td>
<td>-8</td>
</tr>
<tr>
<td>\bar{D}</td>
<td>□</td>
<td>1</td>
<td>$2/3$</td>
<td>4</td>
</tr>
</tbody>
</table>

- Classical flat directions $Q\bar{D}L$, $Q\bar{U}L$ and $\det(Q\bar{Q})$

- Lifted by superpotential $W = \lambda Q\bar{D}L$

- Dynamical ADS superpotential $W_{\text{dyn}} = \frac{\Lambda_3^7}{\det(Q\bar{Q})}$

- Will push fields to large VEVs $>>\Lambda_3$ as long as $\lambda<<1$

- Spontaneous conformality breaking, expect light dilaton
A SUSY example for a light dilaton

- The potential \(V \approx \frac{\Lambda_3^{14}}{f^{10}} + \lambda \frac{\Lambda_3^7}{f^3} + \lambda^2 f^4 \)

- VEVs: \(f \approx \frac{\Lambda_3}{\lambda^{1/7}} \), \(V \approx \lambda^{10/7} \Lambda_3^4 \)

- Dilaton mass: \(m_{\text{dil}} \approx \lambda f \approx \lambda^{6/7} \Lambda_3 \)

- Of course here SUSY is playing the essential role of keeping the dilaton light, unlike in the non-SUSY examples we are interested in
The radion in RS/GW

- The effective potential w/o stabilization

\[V_{eff} = V_0 + V_1 \left(\frac{R}{R'} \right)^4 + \Lambda_5 R \left(1 - \left(\frac{R}{R'} \right)^4 \right) \]

- With f=1/R’ get a characteristic SBSI potential with quartic

\[V_{eff}(\chi) = V_0 + \Lambda_5 R + f^4 \left(V_1 R^4 - \Lambda_5 R^5 \right) \]

CC, FT1 \quad quartic, FT2

- Natural size of quartic: NDA in 5D like in 4D EFT

\[\delta a_{bulk} \sim \Lambda_5 R^5 \sim \frac{12\frac{5}{2}}{24\pi^3} \sim O(1) \]

\[\delta a_{IR} = -V_1 R^4 = -V_1 \left(\frac{R}{R'} \right)^4 R'^4 = \frac{\tilde{V}_1}{\left(\frac{\Lambda}{4\pi} \right)^4} \sim 16\pi^2 \]
The radion in RS/GW

• Assumption for GW: quartic is set to zero/very small, then bulk scalar added with non-trivial profile and small bulk mass

• Potential:

\[V = f^4 \left\{ (4 + 2\epsilon) \left[v_1 - v_0 (fR)^\epsilon \right]^2 - \epsilon v_1^2 + \delta a + O(\epsilon^2) \right\} = f^4 F(f) \]

• \(\epsilon \) is bulk mass, \(v_{1,0} \) IR/UV VEVs in units of AdS curvature, \(\delta a \) the remaining quartic

• VEV:

\[f = \frac{1}{R} \left(\frac{v_1 + \sqrt{-\delta a/4}}{v_0} + O(\epsilon) \right)^{1/\epsilon} \]

• Tuning determined by \(\sqrt{-\delta a/4} \lesssim v_1 \)

• Amount:

\[\Delta = \frac{a}{|\delta a|} \gtrsim \frac{4\pi^2}{v_1^2} \sim 4000 \text{ for } v_1 \sim 0.1. \]
Radion as Higgs?

- Radion kinetic term normalization gives
 \[f^{(RS)} = \frac{1}{R'} \sqrt{12(M_* R)^3} \]

- For calculability need \(N = \sqrt{12(M_* R)^3} \gg 1 \), so

- For higgsless:
 \[\frac{v}{f^{(RS)}} = \frac{2}{g \sqrt{\log \frac{R'}{R}}} \]

- For models with very heavy higgs:
 \[\frac{v}{f^{(RS)}} = \frac{v R'}{N} \]

- Both cases couplings very suppressed, but mass light
 \[m_{dil} \sim M_{KK} \frac{2v_1 \sqrt{\epsilon}}{\sqrt{12(M_* R)^3}} \]
Dilaton couplings

• **Assumption**: composite sector + elementary sector

• **Composite** sector close to conformal, breaks scale inv. spontaneously

• **Elementary** sector is external to composite, but weak couplings

• **Dilaton coupling in composite sector**: assume in UV

\[
L_{CFT}^{UV} = \sum_i g_i \mathcal{O}_i^{UV}
\]

• **All operators dim 4 or small explicit breaking**
 \[[g_i] = 4 - \Delta_i^{UV} \]

• **Generic IR Lagrangian**
 \[
 L_{CFT}^{IR} = \sum_i c_j (\prod g_i^{n_i}) \mathcal{O}_j^{IR} \chi^{m_j}
 \]
Dilaton couplings I. Composites

- Power of χ fixed
 \[\mathcal{L}_{CFT}^{IR} = \sum_i c_j \left(\Pi g_i^{n_i} \right) \mathcal{O}_j^{IR} \chi^{m_j} \]

- $m_j = 4 - \Delta_j^{IR} - \sum_i n_i (4 - \Delta_i^{UV})$

- Single coupling:
 \[\mathcal{L}_{breaking}^{IR} = \sum_j c_j g_i \left(\Delta_i^{UV} - \Delta_j^{IR} \right) \mathcal{O}_j^{IR} \frac{\sigma}{f} \]

- If no explicit breaking
 \[\mathcal{L}_{symmetric}^{IR} = \sum_j c_j \left(4 - \Delta_j^{IR} \right) \mathcal{O}_j^{IR} \frac{\sigma}{f} \]

- Coupling to Tr of energy-momentum tensor:
 \[\mathcal{L}_{eff} = -\frac{\sigma}{f} \mathcal{T}_\mu^\mu \]

- Trace anomaly included, for
 \[\mathcal{O}_j^{IR} = -\left(F_{\mu\nu} \right)^2 / (4g^2) \]

\[4 - \Delta_j^{IR} = 2\gamma(g) = \frac{2\beta(g)}{g} \]
Dilaton couplings II. Partially composite

- **Mixing** between composite and elementary sectors

\[\mathcal{L}^{UV} = \mathcal{L}_{CFT}^{UV} + \mathcal{L}_{elem} + \sum_i y_i \mathcal{O}_{elem,i} \mathcal{O}_{CFT,i}^{UV} \]

- Treat \(y \) as **spurion** with dimension \([y_i] = 4 - \Delta_{elem,i}^{UV} - \Delta_{CFT,i}^{UV} \)

- **Effective Lagrangian**

\[\mathcal{L}_{eff} = \mathcal{L}_{CFT}^{IR} + \mathcal{L}_{elem} + \sum_j c_j y_i \mathcal{O}_{elem,i} \mathcal{O}_{CFT,j}^{IR} \chi^{m_j} + \mathcal{O}(y^2) \]

- **Power of \(\chi \):**

\[\Delta_{elem,i}^{UV} - \Delta_{elem,i}^{IR} + \Delta_{CFT,i}^{UV} - \Delta_{CFT,j}^{IR} \]
Example I: Partially comp. fermions

![Diagram](image)

- **Mixing** between elementary and composite fermions:
 \[
 \mathcal{L}_{int} = y_L \psi_L \Theta_R + y_R \psi_R \Theta_L + h.c.
 \]

- **Spurion dimensions:**
 \[
 [y_L] = 4 - \Delta_{\psi_L}^{UV} - \Delta_{\Theta_R}^{UV}, \quad [y_R] = 4 - \Delta_{\psi_R}^{UV} - \Delta_{\Theta_L}^{UV}
 \]

- **The effective fermion mass:**
 \[
 \mathcal{L}_{eff} = - M y_L y_R \psi_L \psi_R \chi^m + h.c.
 \]

- **Coupling to dilaton:**
 \[
 \Delta_{\Theta_L}^{UV} = 2 + c_L, \quad \Delta_{\Theta_R}^{UV} = 2 - c_R,
 \]

- **In RS language:**
 \[
 \mathcal{L}_{eff} = - M y_L y_R \psi_L \psi_R \chi^{c_L - c_R}
 \]
Example II: Partially comp. gauge field

- **Mixing** between gauge field and composite current:

\[\mathcal{L} = -\frac{1}{4g_{UV}^2} F_{\mu\nu} F^{\mu\nu} + A_\mu \mathcal{J}^\mu \]

- **Spurion dimension**: \([g_{UV}] = \Delta_A^{UV} - 1\)

- **Low energy coupling**: \(\mathcal{L}_{eff} = -\frac{1}{4g^2} F_{\mu\nu} F^{\mu\nu} \chi^m\)

- **Coupling**: \(m = 4 - 2[1 + \Delta_A^{IR}] + 2[g] = 2\left(\frac{\beta_{IR}}{g} - \frac{\beta_{UV}}{g}\right)\)
Example II: Partially comp. gauge field

• Can also find this from matching of coupling

\[
\frac{1}{g^2(\mu)} = \frac{1}{g^2(\mu_0)} - \frac{b_{UV}}{8\pi^2} \ln \frac{\mu_0}{f} - \frac{b_{IR}}{8\pi^2} \ln \frac{f}{\mu}
\]

• With replacement \(f \rightarrow fe^{\frac{\sigma}{f}} \)

• Coupling again

\[
\frac{g^2}{32\pi^2} (b_{IR} - b_{UV}) F^{\mu\nu} F_{\mu\nu} \frac{\sigma}{f}
\]
Dilaton coupling to SM

- **Couplings to massive fields:**

 \[\delta \mathcal{L}_{mass} = \left(2 m_W^2 W^+_\mu W^-\mu + m_Z^2 Z^2_\mu \right) \frac{\sigma}{f} - Y_\psi \frac{v}{\sqrt{2}} \psi_L \psi_R (1 + \gamma_L + \gamma_R) \frac{\sigma}{f} + h.c. \]

- **Anomalous dimensions** \(\gamma_{L,R} \) might be flavor dependent. Assume flavor symmetry to tame dilaton mediated FCNCs.

- **Coupling to massless gauge bosons:**

 \[\delta \mathcal{L}_{kin} = \frac{g_A^2}{32 \pi^2} \left(b^{(A)}_{IR} - b^{(A)}_{UV} \right) \left(F^{(A)}_{\mu \nu} \right)^2 \frac{\sigma}{f} \]

- **Assuming photon, gluon partially composite**

 \[- \left(b^{(3)}_{UV} + b^{(3)}_{tL} \right) \frac{\alpha_s}{8 \pi} G^2_{\mu \nu} \frac{\chi}{f} - \left(b^{(EM)}_{UV} + b^{(EM)}_{W_T^\pm} + N_c b^{(EM)}_{tL} \right) \frac{\alpha}{8 \pi} A^2_{\mu \nu} \frac{\chi}{f} \]

Friday, March 15, 2013
Dilaton coupling to SM

- In terms of generic parametrization

\[\mathcal{L}_{\text{eff}} = c_V \left(\frac{2m_W^2}{v} W^+_\mu W^-\mu + \frac{m_Z^2}{v} Z_\mu \right) h - c_t \frac{m_t}{v} tt h - c_b \frac{m_b}{v} bb h - c_\tau \frac{m_\tau}{v} \bar{\tau}\tau h + c_g \frac{\alpha_s}{8\pi v} G_{\mu\nu}^2 h + c_\gamma \frac{\alpha}{8\pi v} A_{\mu\nu}^2, \]

- For massive fields

\[c_{t,\chi} = \frac{v}{f} (1 + \gamma_t), \quad c_{b,\chi} = \frac{v}{f} (1 + \gamma_b), \quad c_{\tau,\chi} = \frac{v}{f} (1 + \gamma_\tau), \]

- For massless GBs including top and W loops:

\[\hat{c}_{g,\chi} \simeq \frac{v}{f} \left(b_{IR}^{(3)} - b_{UV}^{(3)} + \frac{1}{2} F_{1/2}(x_t) \right) \equiv \frac{v}{f} b_{\text{eff}}^{(3)}, \]

\[\hat{c}_{\gamma,\chi} \simeq \frac{v}{f} \left(b_{IR}^{(EM)} - b_{UV}^{(EM)} + \frac{4}{3} F_{1/2}(x_t) - F_1(x_W) \right) \equiv \frac{v}{f} b_{\text{eff}}^{(EM)} \]
Dilaton rates and production

- **Decay rates:**
 \[
 \frac{\Gamma_{WW}}{\Gamma_{WW,SM}} \approx |c_V|^2, \quad \frac{\Gamma_{bb}}{\Gamma_{bb,SM}} \approx |c_b|^2, \quad \frac{\Gamma_{\tau\tau}}{\Gamma_{\tau\tau,SM}} \approx |c_\tau|^2
 \]
 \[
 \frac{\Gamma_{gg}}{\Gamma_{gg,SM}} \approx \frac{|\hat{c}_g|^2}{|\hat{c}_{g,SM}|^2}, \quad \frac{\Gamma_{\gamma\gamma}}{\Gamma_{\gamma\gamma,SM}} \approx \frac{|\hat{c}_\gamma|^2}{|\hat{c}_{\gamma,SM}|^2}
 \]

- **Production rates:**
 \[
 \frac{\sigma_{GF}}{\sigma_{GF,SM}} \approx \frac{|\hat{c}_g|^2}{|\hat{c}_{g,SM}|^2}, \quad \frac{\sigma_{VBF}}{\sigma_{VBF,SM}} \approx |c_V|^2, \quad \frac{\sigma_{Vh}}{\sigma_{Vh,SM}} \approx |c_V|^2
 \]

- **Rates for individual channels:**
 \[R \approx (\sigma \Gamma)/(\sigma \Gamma)_{SM} \times |C_{tot}|^{-2} \]
 \[
 R_{GF,(WW,ZZ)} \approx \frac{v^2}{f^2} \frac{1}{C^2} \left(\frac{b_{eff}^{(3)}}{b_t^{(3)}} \right)^2, \quad R_{GF,\gamma\gamma} \approx \frac{v^2}{f^2} \frac{1}{C^2} \left(\frac{b_{eff}^{(3)} b_{eff}^{(EM)}}{b_t^{(3)} b_{t+W}^{(EM)}} \right)^2, \\
 R_{GF,\tau\tau} \approx \frac{v^2}{f^2} \frac{1}{C^2} \left(\frac{b_{eff}^{(3)} (1 + \gamma_\tau)}{b_t^{(3)}} \right)^2, \quad R_{VBF,\gamma\gamma} \approx \frac{v^2}{f^2} \frac{1}{C^2} \left(\frac{b_{eff}^{(EM)}}{b_{t+W}^{(EM)}} \right)^2, \\
 R_{VBF,(WW,ZZ)} \approx \frac{v^2}{f^2} \frac{1}{C^2}, \quad R_{VBF,\tau\tau} \approx \frac{v^2}{f^2} \frac{1}{C^2} (1 + \gamma_\tau)^2, \quad R_{Vh,bb} \approx \frac{v^2}{f^2} \frac{1}{C^2} (1 + \gamma_b)^2
 \]

- **where**
 \[C = \left[BR_{WW,SM} + BR_{ZZ,SM} + (1 + \gamma_b)BR_{bb,SM} + \frac{(b_{eff}^{(3)})^2}{(b_t^{(3)})^2} BR_{gg,SM} \right] \]
LHC and EWPT constraints

\(\gamma_i = 0 \)

\(v/f = 1, \gamma_i = 0 \)

Drive \(v/f \sim 1 \)
Enhancement in $h \rightarrow \gamma\gamma$

Figure: Dilaton predictions for the rates $R_{\text{incl.}}, ZZ$, green line, $R_{\text{incl.}}, \gamma\gamma$, orange line, and R_{VH}, bb, blue line as a function of b_{UV} for $v/f = 1, \gamma_i = 0$ and $v/f = 0.8, \gamma_i = 0$.

Rates for $h \rightarrow \gamma\gamma$, $h \rightarrow ZZ$, $h \rightarrow bb$ can be easily enhanced for large b's.
• Dilaton well-motivated alternative to 125 GeV higgs

• Large quartic expected for dilaton in non-SUSY models

• Hard to stabilize at hierarchically small VEVs and a light dilaton mass $<< \Lambda$, typically a tuning of a few percent - 0.01 percent involved

• Once radion light couplings predicted up to few parameters

• v/f suppressed vs. Higgs, β functions determine rest

• Can fit LHC data, and explain potential deviations from SM predictions