

Gordan Krnjaic Perimeter Institute

w / Daniel Stolarski JHU & UMD

arXiv:1212.4860

HEFTI Seminar, UC Davis April 1, 2013

• Preliminaries: SM & SUSY

Overview

• Preliminaries: SM & SUSY

• SUSY survival guide : "what's left ?"

Overview

- Preliminaries: SM & SUSY
- SUSY survival guide : "what's left ?"
- MFV SUSY : philosophy vs. tradition

Overview

- Preliminaries: SM & SUSY
- SUSY survival guide : "what's left ?"
- MFV SUSY : philosophy vs. tradition
- Gauged flavor: inverted hierarchy

Overview

- Preliminaries: SM & SUSY
- SUSY survival guide : "what's left ?"
- MFV SUSY : philosophy vs. tradition
- Gauged flavor: inverted hierarchy
- "MFV" SUSY : gauged, inverted scenario

SM describes all short distance phenomena down to ~ 10⁻¹⁸ cm.

$$\mathcal{L}_{quark} = i\bar{Q}_i \not D Q_i + i\bar{u}_i \not D u_i + i\bar{d}_i \not D d_i + \mathcal{Y}^u_{ij} Q_i \phi^{\dagger} u_j + \mathcal{Y}^d_{ij} Q_i \phi d_j + h.c.$$

Without Yukawa couplings, SM possesses a large global flavor symmetry $SU(3)_Q \times SU(3)_u \times SU(3)_d$

$$\mathcal{L}_{quark} = i\bar{Q}_i \not D Q_i + i\bar{u}_i \not D u_i + i\bar{d}_i \not D d_i + \mathcal{Y}^u_{ij} Q_i \phi^{\dagger} u_j + \mathcal{Y}^d_{ij} Q_i \phi d_j + h.c.$$

Without Yukawa couplings, SM possesses a large global flavor symmetry $SU(3)_Q \times SU(3)_u \times SU(3)_d$

With Yukawa couplings, flavor structure still very predicative, supressed FCNC's, small CP violation, lepton and baryon number conservation, etc.

Tremendous experimental support for CKM flavor picture (2008 Nobel Prize)

Tightly constrains "new physics" that doesn't feature the same structure

Why New Physics?

$$\mathcal{L}_{\text{Higgs}} = |D_{\mu}\phi|^2 - m^2 \phi^{\dagger}\phi - \frac{\lambda}{4} (\phi^{\dagger}\phi)^2$$

Higgs potential has only dimensionful parameter in SM

Quantum corrections make the mass parameter unstable Fine tuning ~ 16 decimals for weak scale Higgs

Motivates searches for new particles to cancel bad stuff

Why SUSY?

Quadratic divergences cancel with superpartner loops

Gauge couplings unify better than SM w/ SU(5) or SO(10)

Dark matter for free (if R-parity is imposed)

Important ingredient in UV physics

In short: a highly motivated scenario

Not So Fast!

ATLAS SUSY Searches* - 95% CL Lower Limits (Status: HCP 2012)	
MSUGRA/CMSSM : 0 lep + j's + $E_{T,miss}$ L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-109] 1.50 TeV $\tilde{q} = \tilde{g}$ mass	Bounds ~ ToV
MSUGRA/CMSSM : 1 lep + j's + $E_{T,\text{miss}}$ L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-104] 1.24 TeV $\tilde{q} = \tilde{g}$ mass	Dounus Itv
Pheno model : 0 lep + j's + $E_{T,miss}$ L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-109] 1.18 TeV \tilde{g} mass $(m(\tilde{q}) < 2$ TeV, light $\tilde{\chi}_{1}^{(0)}$ AILAS	
Pheno model : 0 lep + J's + $E_{T,miss}$ L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-109] 1.38 TeV q mass (m(g) < 2 TeV, light χ°) Preliminary	
Gluino med. χ (g \rightarrow qq χ) : 1 lep + J's + $E_{T,miss}$ $L=4.7 \text{ fb}^{-7}, 7 \text{ TeV} [1208.4688]$ 900 GeV g mass $(m(\chi_1) < 200 \text{ GeV}, m(\chi^-) = \frac{1}{2}(m(\chi_1) + m(g))$	
$ \begin{array}{c} \sigma \\ \sigma $	
$GGM (bino NI SP) : yy + F^{T,miss}$	
$GGM (wino NLSP) : y + lep + E^{T,miss}$ $Lat = (2.1 - 13.0) \text{ fb}^{-1}$ $Lat = (2.1 - 13.0) \text{ fb}^{-1}$	Waakans
$= GGM \text{ (higgsino-bino NLSP) : } y + b + E^{T, \text{miss}} = \frac{1-4.8 \text{ fb}^{-1} \text{ 7 TeV [1211 1167]}}{1-4.8 \text{ fb}^{-1} \text{ 7 TeV [1211 1167]}} = 900 \text{ GeV} \widetilde{g} \text{ mass} (m\widetilde{\chi}^0) > 220 \text{ GeV} $	Wantis
GGM (higgsino NI SP) : $7 + \text{iets} + F_{\pi}$	
Gravitino LSP : 'monoiet' + E_T miss $L=10.5$ fb ⁻¹ . 8 TeV [ATLAS-CONF-2012-147] 645 GeV $F^{1/2}$ Scale $(m(G) > 10^4$ eV)	
$\vec{\alpha} \rightarrow \vec{b} \vec{v}^{0}$ (virtual \vec{b}): $0 \text{ lep } + 3 \text{ b-i's } + F_{\pi}$ $L=12.8 \text{ fb}^{-1}.8 \text{ TeV } [ATLAS-CONF-2012-145]$ 1.24 TeV \vec{q} mass $(m(\vec{v})) < 200 \text{ GeV}$	naturalness
$\widetilde{\mathbf{G}} \rightarrow \widetilde{\mathbf{t}}_{\mathcal{Y}}^{(1)}$ (virtual $\widetilde{\mathbf{t}}$) : 2 lep (SS) + i's + E_{τ} is \mathbf{L} =5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-105] 850 GeV $\widetilde{\mathbf{G}}$ mass ($m(\widetilde{\chi}^0) < 300$ GeV)	matur anness
$ \begin{array}{c} \overbrace{Q} \\ \overbrace{Virtual t} \\ \overbrace{U} \\ \overbrace{S} \\ [i] \\ i] \\ [i] \\$	
$\tilde{g} \rightarrow \tilde{t} \tilde{\chi}_{1}^{0}$ (virtual \tilde{t}) : 0 lep + multi-j's + $E_{T \text{ miss}}^{1,\text{miss}}$ L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-103] 1.00 TeV \tilde{g} mass $(m(\tilde{\chi}_{1}^{0}) < 300 \text{ GeV})$ 7 TeV results	
$\widetilde{G} \rightarrow \widetilde{G}$ $\widetilde{g} \rightarrow \widetilde{T}_{\chi}^{0}$ (virtual \widetilde{T}): 0 lep + 3 b-j's + $E_{T,miss}$ L=12.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-145] 1.15 TeV \widetilde{g} mass ($m(\widetilde{\chi}^{0}) < 200$ GeV)	motivation
$bb, \widetilde{b}, \rightarrow \widetilde{b\chi_1}$: 0 lep + 2-b-jets + $E_{T \text{ miss}}$ L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-106] 480 GeV b mass $(m(\widetilde{\chi_1}^0) < 150 \text{ GeV})$	
$\sum_{i=1}^{\infty} \widetilde{b}\widetilde{b}, \widetilde{b}_{1} \rightarrow t\widetilde{\chi}_{\pm}^{\pm} : 3 \text{ lep } + j's + E_{T,\text{miss}} \xrightarrow{L=13.0 \text{ fb}^{-1}, 8 \text{ TeV [ATLAS-CONF-2012-151]}} \xrightarrow{405 \text{ GeV}} b \text{ mass } (m(\widetilde{\chi}_{\pm}^{\pm}) = 2 m(\widetilde{\chi}_{\pm}^{0}))$	
$\sum_{t=4.7 \text{ fb}^{-1}, 7 \text{ TeV} [1208.4305]} 130 \text{ GeV} t \text{ mass} (m(\tilde{\chi}_1) < 70 \text{ GeV})$	
$\delta = \sum_{i=1}^{\infty} \frac{1}{2} \ln t = \frac{1}{2} \ln t $	
$\int_{0}^{\infty} \int_{0}^{\infty} tt (medium), t \to t\chi_{0}^{*}: 2 \text{ lep } + b \text{ -jet } + E_{T, \text{miss}} $ $L=4.7 \text{ fb}^{-1}, 7 \text{ TeV} [1209.4186] $ 298-305 GeV t mass (m($\chi_{1}^{*}) = 0$)	
$\begin{array}{c} \text{S}_{0} \\ \text{C}_{0} \\ \text{C}$	Comonio*
\mathfrak{H} (neavy), $\mathfrak{t} \to \mathfrak{l}\chi$: 0 lep + b-jet + $E_{T,\text{miss}}$ \mathfrak{H} (neavy), $\mathfrak{t} \to \mathfrak{l}\chi$: 0 lep + b-jet + $E_{T,\text{miss}}$ \mathfrak{H} (neavy), $\mathfrak{t} \to \mathfrak{l}\chi$: 0 lep + b-jet + $E_{T,\text{miss}}$ \mathfrak{H} (neavy), $\mathfrak{t} \to \mathfrak{l}\chi$: 0 lep + b-jet + $E_{T,\text{miss}}$	Generic"
$[1 (1d U d G V SD) : 2(\neg 1) + D - jel + E = 2.1 \text{ to } , 7 \text{ lev } [1204.6736] 310 \text{ GeV} = 1 \text{ IIIdSS} (115 < m(\chi) < 230 \text{ GeV}) = 1 - 2.30 \text{ GeV} = 1 $	
$\sum_{i=1, j \in \mathbb{N}} [L_{i}, j] = 0 $	
$ = \underbrace{\chi_{1}}_{\chi_{2}} \underbrace{\chi_{2}}_{\chi_{1}} \underbrace{\chi_{2}}_{\chi_{1}} \underbrace{\chi_{2}}_{\chi_{1}} \underbrace{\chi_{2}}_{\chi_{1}} \underbrace{\chi_{2}}_{\chi_{1}} \underbrace{\chi_{2}}_{\chi_{1}} \underbrace{\chi_{2}}_{\chi_{1}} \underbrace{\chi_{2}}_{\chi_{2}} \underbrace{\chi_{2}}_{\chi_{1}} \underbrace{\chi_{2}}_{\chi_{2}} \underbrace{\chi_{2}}_{\chi_{1}} \underbrace{\chi_{2}}_{\chi_{2}} \underbrace{\chi_{2}}_{\chi_{1}} \underbrace{\chi_{2}}_{\chi_{2}} \underbrace{\chi_{2}} \underbrace{\chi_{2}} \underbrace{\chi_{2}} \underbrace{\chi_{2}} \underbrace{\chi_{2}} \underbrace{\chi_{2}$	for
$\chi_{1}^{2} \xrightarrow{\chi_{1}^{+}} \longrightarrow W^{(*)} \xrightarrow{\chi_{2}^{-}} \xrightarrow{\chi_{2}^{+}} \xrightarrow{\chi_{2}^{$	broblem for
Direct $\tilde{\chi}_{1}^{\pm}$ pair prod. (AMSB): long-lived $\tilde{\chi}_{2}^{\pm}$ L=4.7 fb ⁻¹ .7 TeV [1210.2852] 220 GeV $\tilde{\chi}_{1}^{\pm}$ mass. (1 < $\tau(\tilde{\chi}_{1}^{\pm})$ < 10 ns)	L
Stable $\tilde{\alpha}$ B-hadrons low β β_{v} (full detector) $L=4.7$ fb ⁻¹ .7 TeV [1211.1597] 985 GeV $\tilde{\alpha}$ mass	
Stable \tilde{f} B-hadrons : low β , β_V (full detector) L=4.7 fb ⁻¹ , 7 TeV [1211.1597] 683 GeV \tilde{t} mass	
$GMSB : stable \tilde{\tau} \qquad L=4.7 \text{ fb}^{-1}, 7 \text{ TeV} [1211.1597] \qquad 300 \text{ GeV} \tilde{\tau} \text{ mass} (5 < \tan\beta < 20)$	weak scale
$\tilde{\chi}_{.}^{0} \rightarrow qq\mu (RPV)$: $\mu + heavy displaced vertex$ L=4.4 fb ⁻¹ , 7 TeV [1210.7451] 700 GeV \tilde{q} mass (0.3×10 ⁻⁵ < λ_{211}^{-1} < 1.5×10 ⁻⁵ , 1 mm < ct < 1 m, \tilde{g} decoupled)	weak scale
LFV : pp $\rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e + \mu$ resonance L=4.6 fb ⁻¹ , 7 TeV [Preliminary] 1.61 TeV \tilde{v}_{τ} mass ($\lambda_{311}^{*}=0.10, \lambda_{132}^{*}=0.05$)	
LFV : pp $\rightarrow \tilde{v}_{\tau} + X$, $\tilde{v}_{\tau} \rightarrow e(\mu) + \tau$ resonance L=4.6 fb ⁻¹ , 7 TeV [Preliminary] 1.10 TeV \tilde{v}_{τ} mass ($\lambda_{311}^{2}=0.10, \lambda_{1(2)33}=0.05$)	~
Bilinear RPV CMSSM : 1 lep + 7 j's + $E_{T,miss}$ L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-140] 1.2 TeV $\tilde{q} = \tilde{g} mass (c\tau_{LSP} < 1 mm)$	CIICV
$\mathbb{C} \qquad \widetilde{\chi}_{1}^{\prime} \widetilde{\chi}_{2}^{\prime} \widetilde{\chi}_{1}^{\prime} \widetilde{\chi}_{1}^$	5051
$ L_{L}, L_{L} \rightarrow \chi_{1}, \chi_{1} \rightarrow eev_{\mu}, e\muv_{e} : 4 \text{ lep } + E_{T, \text{miss}} $ $L = 13.0 \text{ fb}^{-1}, 8 \text{ TeV [ATLAS-CONF-2012-153]} $ $430 \text{ GeV} \text{ mass} (m(\chi_{1}) > 100 \text{ GeV}, m(l_{e}) = m(l_{u}), \lambda_{121} \text{ or } \lambda_{122} > 0)$	
$g \rightarrow qqq$; 3-jet resonance pair L=4.6 fb ', 7 TeV [1210.4813] 666 GeV g mass	
Social gluon: 2-jet resonance pair $L=4.6$ fb; 7 TeV [1210.4826] 100-287 GeV Sgluon mass (incl. limit from 1110.2693) WIMP interaction (D5, Dirac γ); 'monoiet' + E	
10^{-1} 1 10	
*Only a selection of the available mass limits on new states or phenomena shown. Mass scale [Iev]	

*Only a selection of the available mass limits on new states or phenomena shown. All limits quoted are observed minus 1σ theoretical signal cross section uncertainty.

Not So Fast!

All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

- Light 3rd generation (heavy 1st & 2nd)
 - Reduces number of predicted signal events
 - Stops/sbottoms still solve hierarchy problem
 - Some tension with recent results

- Light 3rd generation (heavy 1st & 2nd)
 - Reduces number of predicted signal events
 - Stops/sbottoms still solve hierarchy problem
 - Some tension with recent results
- Compressed Sparticle Spectra $m_{LSP} pprox m_{NLSP}$
 - "Stealth SUSY" : reduces MET, hides signal

- Light 3rd generation (heavy 1st & 2nd)
 - Reduces number of predicted signal events
 - Stops/sbottoms still solve hierarchy problem
 - Some tension with recent results
- Compressed Sparticle Spectra $m_{LSP} \approx m_{NLSP}$
 - "Stealth SUSY" : reduces MET, hides signal
- R-Parity Violation (LSP decays)
 - Kills MET, evades most LHC searches
 - Scalars can still be light ~ 100s of GeV
 - Generates dangerous L and B violating interactions

- Light 3rd generation (heavy 1st & 2nd)
 - Reduces number of predicted signal events
 - Stops/sbottoms still solve hierarchy problem
 - Some tension with recent results
- Compressed Sparticle Spectra $m_{LSP} \approx m_{NLSP}$
 - "Stealth SUSY" : reduces MET, hides signal
- R-Parity Violation (LSP decays)
 - Kills MET, evades most LHC searches
 - Scalars can still be light ~ 100s of GeV
 - Generates dangerous L and B violating interactions

$$W_{\rm RPV} = \frac{1}{2} \lambda^{ijk} L_i L_j e_k + \lambda^{\prime ijk} L_i Q_j d_k + \mu^{\prime i} L_i H_u + \frac{1}{2} \lambda^{\prime\prime ijk} u_i d_j d_k \ \big\} \ \Delta B = 1$$

Saves you from MET searches, but flavor problem is worse!

RPV = Trouble

$$W_{\text{RPV}} = \frac{1}{2} \lambda^{ijk} L_i L_j e_k + \lambda^{\prime ijk} L_i Q_j d_k + \mu^{\prime i} L_i H_u$$
$$+ \frac{1}{2} \lambda^{\prime\prime ijk} u_i d_j d_k \ \big\} \ \Delta B = 1$$

Saves you from MET searches, but flavor problem is worse!

Couplings can be generic in flavor space (FCNCs etc.)

RPV = Trouble

$$W_{\rm RPV} = \frac{1}{2} \lambda^{ijk} L_i L_j e_k + \lambda^{\prime ijk} L_i Q_j d_k + \mu^{\prime i} L_i H_u$$
$$+ \frac{1}{2} \lambda^{\prime\prime ijk} u_i d_j d_k \ \big\} \ \Delta B = 1$$

Saves you from MET searches, but flavor problem is worse!

Couplings can be generic in flavor space (FCNCs etc.)

Unlike RPC MSSM, now we violate both L and B

RPV = Trouble

$$W_{\rm RPV} = \frac{1}{2} \lambda^{ijk} L_i L_j e_k + \lambda^{\prime ijk} L_i Q_j d_k + \mu^{\prime i} L_i H_u + \frac{1}{2} \lambda^{\prime\prime ijk} u_i d_j d_k \ \big\} \ \Delta B = 1$$

Saves you from MET searches, but flavor problem is worse!

Couplings can be generic in flavor space (FCNCs etc.)

Unlike RPC MSSM, now we violate both L and B

Totally ruled out unless there's structure in couplings

Nikolidakis and Smith (arXiv:0710.3129) Csaki, Grossman, Hedenreich (arXiv:111.1239) Motivation: SUSY models usually assume:

- 1) **R-Parity conservation**
- 2) Flavor blind mediation

Nikolidakis and Smith (arXiv:0710.3129) Csaki, Grossman, Hedenreich (arXiv:111.1239) Motivation: SUSY models usually assume:

R-Parity conservation
 Flavor blind mediation

Strategy: abandon both for holoporphic MFV hypothesis

Nikolidakis and Smith (arXiv:0710.3129) Csaki, Grossman, Hedenreich (arXiv:111.1239) Motivation: SUSY models usually assume:

R-Parity conservation
 Flavor blind mediation

Strategy: abandon both for holoporphic MFV hypothesis

Yukawa matrices $\mathcal{Y}_{u,d,e}$

- only source of flavor violation

Nikolidakis and Smith (arXiv:0710.3129) Csaki, Grossman, Hedenreich (arXiv:111.1239) **Motivation:** SUSY models usually assume:

1) **R-Parity conservation** 2) Flavor blind mediation

Strategy: abandon both for holoporphic MFV hypothesis

Yukawa matrices $\mathcal{Y}_{u,d,e}$ $\begin{cases} -\text{ only source of flavor violation} \\ -\text{ holomorphic in superpotential} \end{cases}$

Nikolidakis and Smith (arXiv:0710.3129) Csaki, Grossman, Hedenreich (arXiv:111.1239) Motivation: SUSY models usually assume:

R-Parity conservation
 Flavor blind mediation

Strategy: abandon both for holoporphic MFV hypothesis

Yukawa matrices $\mathcal{Y}_{u,d,e}$ $\begin{cases} - \text{ only source of flavor violation} \\ - \text{ holomorphic in superpotential} \\ - \text{ suppress baryon & lepton violation} \end{cases}$

$G_F \equiv SU(3)_Q$	$\times SU(3)_u$	\times SU(3) _d \times	$\langle SU(3)_L$	$\times SU(3)_{\epsilon}$
----------------------	------------------	--------------------------------------	-------------------	---------------------------

	SU(3) _Q	$\mathrm{SU}(3)_u$	$\mathrm{SU}(3)_d$	$\mathrm{SU}(3)_L$	$\mathrm{SU}(3)_e$	$ \mathrm{U}(1)_{B-L} $	$\mathrm{U}(1)_H$
Q		1	1	1	1	1/3	0
\bar{u}	1		1	1	1	-1/3	0
\bar{d}	1	1		1	1	-1/3	0
L	1	1	1		1	-1	0
\bar{e}	1	1	1	1		1	0
H_u	1	1	1	1	1	0	1
H_d	1	1	1	1	1	0	-1
Y_u			1	1	1	0	-1
Y_d		1		1	1	0	1
Y_e	1	1	1			0	1

$G_F \equiv SU(3)_Q$	$\times SU(3)_u$	\times SU(3) _d \times	$SU(3)_L$	$\times SU(3)_e$
----------------------	------------------	--------------------------------------	-----------	------------------

	SU(3) _Q	$\mathrm{SU}(3)_u$	$\mathrm{SU}(3)_d$	$\mathrm{SU}(3)_L$	$\mathrm{SU}(3)_e$	U(1) _{B-L}	$\mathrm{U}(1)_H$
\overline{Q}		1	1	1	1	1/3	0
\bar{u}	1		1	1	1	-1/3	0
\bar{d}	1	1		1	1	-1/3	0
L	1	1	1		1	-1	0
\bar{e}	1	1	1	1		1	0
H_u	1	1	1	1	1	0	1
H_d	1	1	1	1	1	0	-1
Y_u			1	1	1	0	-1
Y_d		1		1	1	0	1
Y_e	1	1	1			0	1

In massless neutrino limit, a $\mathbb{Z}_3^L \in \mathrm{SU}(3)_L \times \mathrm{SU}(3)_e$ symmetry $L \to \omega L$, $\bar{e} \to \omega^{-1} \bar{e}$, $Y_e \to Y_e$ $\omega \equiv e^{2\pi i/3}$

forbids dangerous lepton violating terms

 $LL\bar{e}, QL\bar{d}, LH_u$

Baryon violation highly yukawa suppressed

 $W_{\rm BNV} \propto (\mathcal{Y}_u \bar{u}) (\mathcal{Y}_d \bar{d}) (\mathcal{Y}_d \bar{d})$

Baryon violation highly yukawa suppressed

 $W_{\rm BNV} \propto (\mathcal{Y}_u \bar{u}) (\mathcal{Y}_d \bar{d}) (\mathcal{Y}_d \bar{d})$

Soft masses flavor diagonal up to yukawa insertions

$$\mathcal{L}_{\mathcal{S}} \supset m_{\mathcal{S}}^{2} \tilde{Q}^{*} \left(\mathcal{Y}_{u} \mathcal{Y}_{u}^{\dagger} + \mathcal{Y}_{d} \mathcal{Y}_{d}^{\dagger} \right) Q + \cdots$$

Baryon violation highly yukawa suppressed

 $W_{\rm BNV} \propto (\mathcal{Y}_u \bar{u}) (\mathcal{Y}_d \bar{d}) (\mathcal{Y}_d \bar{d})$

Soft masses flavor diagonal up to yukawa insertions

$$\mathcal{L}_{\mathcal{S}} \supset m_{\mathcal{S}}^{2} \tilde{Q}^{*} \left(\mathcal{Y}_{u} \mathcal{Y}_{u}^{\dagger} + \mathcal{Y}_{d} \mathcal{Y}_{d}^{\dagger} \right) Q + \cdots$$

Typical SUSY flavor constraints ameliorated by MFV

Strongest constraints from \triangle **B** = 2 **processes**

- Dinucleon decay $pp \to K^+K^+$

-Neutron-antineutron oscillations $n-ar{n}$

Features

- Allows light (~ few 100 GeV) scalars consistent with LHC

Features

- Allows light (~ few 100 GeV) scalars consistent with LHC
- Including see-saw mechanism induces suppressed
 LLe, LQd; model retains quantitatively similar bounds

Features

- Allows light (~ few 100 GeV) scalars consistent with LHC
- Including see-saw mechanism induces suppressed
 LLe, LQd; model retains quantitatively similar bounds
 - Yukawa structure of soft terms allows large A-terms for 3rd generation. Naturally allows stop/sbottom LSPs

Features

- Allows light (~ few 100 GeV) scalars consistent with LHC
- Including see-saw mechanism induces suppressed
 LLe, LQd; model retains quantitatively similar bounds
 - Yukawa structure of soft terms allows large A-terms for 3rd generation. Naturally allows stop/sbottom LSPs

Is there a plausible UV story?

Digression: General Considerations

The SM enjoys a large global symmetry w/o Yukawas $G_F \equiv SU(3)_Q \times SU(3)_u \times SU(3)_d \times SU(3)_L \times SU(3)_e$ Q: why not a global UV group?

Digression: General Considerations

The SM enjoys a large global symmetry w/o Yukawas $G_F \equiv SU(3)_Q \times SU(3)_u \times SU(3)_d \times SU(3)_L \times SU(3)_e$ Q: why not a global UV group? A: Lots and lots of NGBs – i.e. long range forces

Digression: General Considerations

The SM enjoys a large global symmetry w/o Yukawas $G_F \equiv SU(3)_Q \times SU(3)_u \times SU(3)_d \times SU(3)_L \times SU(3)_e$ Q: why not a global UV group? A: Lots and lots of NGBs – i.e. long range forces

Naive gauging has a similar problem:

If yukawas $\propto \langle y \rangle$ VEV of a scalar, gauge boson masses $\propto g \langle y \rangle \implies$ unsuppressed FCNCs for light quarks

Inverted hierarchy : Grinstein, Redi, Villadoro (arXiv: 1009.2049)

- Gauge flavor group $SU(3)_Q \times SU(3)_u \times SU(3)_d \times SU(3)_L \times SU(3)_e$
- Add minimal field content to cancel flavor anomalies
- Displace the flavor breaking fields

Inverted hierarchy : Grinstein, Redi, Villadoro (arXiv: 1009.2049)

- Gauge flavor group $SU(3)_Q \times SU(3)_u \times SU(3)_d \times SU(3)_L \times SU(3)_e$
- Add minimal field content to cancel flavor anomalies
- Displace the flavor breaking fields

 $\mathcal{L} \supset \lambda_u \tilde{H} \bar{Q} \psi_{uR} + \lambda'_u Y_u \bar{\psi}_u \psi_{uR} + M_u \bar{\psi}_u \bar{U}_R + (u \leftrightarrow d)$

		$SU(3)_{Q_L}$	$\mathrm{SU}(3)_{U_R}$	$\mathrm{SU}(3)_{D_R}$	$\mathrm{SU}(3)_c$	$\mathrm{SU}(2)_L$	$\mathrm{U}(1)_Y$
(Q_L	3	1	1	3	2	1/6
Ouarks {	U_R	1	3	1	3	1	2/3
~~~~ (	$D_R$	1	1	3	3	1	-1/3
(	$\Psi_{uR}$	3	1	1	3	1	2/3
	$\Psi_{dR}$	3	1	1	3	1	-1/3
Exotics 5	$\Psi_u$	1	3	1	3	1	2/3
C	$\Psi_d$	1	1	3	3	1	-1/3
	$Y_u$	3	3	1	1	1	0
Flavons <	$Y_d$	3	1	3	1	1	0
	Н	1	1	1	1	2	1/2
awful notation		to see a second					



Integrate out (diagonalize) fermions after SSB:

 $\mathcal{L} \supset \lambda_u \tilde{H} \overline{Q} \psi_{uR} + \lambda'_u Y_u \overline{\psi}_u \psi_{uR} + M_u \overline{\psi}_u U_R + (u \to d)$ 

$$\longrightarrow \quad \frac{\lambda_u M_u}{\lambda'_u \langle Y_u \rangle} \tilde{H} \overline{Q} U_R \qquad \mathcal{Y}_u \equiv \frac{\lambda_u M_u}{\lambda'_u \langle Y_u \rangle}$$



Integrate out (diagonalize) fermions after SSB:

 $\mathcal{L} \supset \lambda_u \tilde{H} \overline{Q} \psi_{uR} + \lambda'_u Y_u \overline{\psi}_u \psi_{uR} + M_u \overline{\psi}_u U_R + (u \to d)$ 

$$\rightarrow \quad \frac{\lambda_u M_u}{\lambda'_u \langle Y_u \rangle} \tilde{H} \overline{Q} U_R \qquad \mathcal{Y}_u \equiv \frac{\lambda_u M_u}{\lambda'_u \langle Y_u \rangle}$$

Light generations:  $\langle Y \rangle \gg M$  exotic fermion masses  $\sim \langle Y \rangle$ 



Integrate out (diagonalize) fermions after SSB:

 $\mathcal{L} \supset \lambda_u \tilde{H} \overline{Q} \psi_{uR} + \lambda'_u Y_u \overline{\psi}_u \psi_{uR} + M_u \overline{\psi}_u U_R + (u \to d)$ 

$$\rightarrow \quad \frac{\lambda_u M_u}{\lambda'_u \langle Y_u \rangle} \tilde{H} \overline{Q} U_R \qquad \mathcal{Y}_u \equiv \frac{\lambda_u M_u}{\lambda'_u \langle Y_u \rangle}$$

Light generations:  $\langle Y \rangle \gg M$  exotic fermion masses  $\sim \langle Y \rangle$ 

Gauge boson masses feature inverse-yukawa hierarchy

$$\mathcal{L}_{gauge} \supset \frac{g_Q^2}{2} |A_Q Y_u|^2 + \frac{g_u^2}{2} |A_u Y_u|^2 + (u \longleftrightarrow d)$$
$$\rightarrow M_A^2 \sim g^2 \langle Y_u \rangle^2 = \left(\frac{g\lambda M_u}{\lambda'}\right)^2 \frac{1}{y_u^2}$$



Integrate out (diagonalize) fermions after SSB:

 $\mathcal{L} \supset \lambda_u \tilde{H} \overline{Q} \psi_{uR} + \lambda'_u Y_u \overline{\psi}_u \psi_{uR} + M_u \overline{\psi}_u U_R + (u \to d)$ 

$$\rightarrow \quad \frac{\lambda_u M_u}{\lambda'_u \langle Y_u \rangle} \tilde{H} \overline{Q} U_R \qquad \mathcal{Y}_u \equiv \frac{\lambda_u M_u}{\lambda'_u \langle Y_u \rangle}$$

Light generations:  $\langle Y \rangle \gg M$  exotic fermion masses  $\sim \langle Y \rangle$ 

Gauge boson masses feature inverse-yukawa hierarchy

$$\mathcal{L}_{gauge} \supset \frac{g_Q^2}{2} |A_Q Y_u|^2 + \frac{g_u^2}{2} |A_u Y_u|^2 + (u \longleftrightarrow d)$$
$$\rightarrow M_A^2 \sim g^2 \langle Y_u \rangle^2 = \left(\frac{g\lambda M_u}{\lambda'}\right)^2 \frac{1}{y_u^2}$$

**Strongly suppresses FCNCs for light flavors** 

 $\sim \frac{1}{\langle Y_u^2 \rangle} (\overline{Q} \gamma^\mu Q)^2$ 



### **Some Features**

 $-\lambda_{u,d}, \lambda'_{u,d}, M_{u,d}$  are universal free parameters.



- $\lambda_{u,d}, \lambda'_{u,d}, M_{u,d}$  are universal free parameters.
- $Y_{u,d}$  carry flavor structure, overall scale is free parameter



- $\lambda_{u,d}, \lambda'_{u,d}, M_{u,d}$  are universal free parameters.
- $Y_{u,d}$  carry flavor structure, overall scale is free parameter
- Model not quite MFV : gauge induced FCNCs persist even when yukawas are turned off in the  $M \to 0$  limit.

# -

- $\lambda_{u,d}, \lambda'_{u,d}, M_{u,d}$  are universal free parameters.
- $Y_{u,d}$  carry flavor structure, overall scale is free parameter
- Model not quite MFV : gauge induced FCNCs persist even when yukawas are turned off in the  $M\to 0~$  limit.
- Gauge bosons that mediate 3rd generation transitions can be light  $\sim \mathcal{O}({\rm TeV})\,$  and might be LHC accessible.



- $\lambda_{u,d}, \lambda'_{u,d}, M_{u,d}$  are universal free parameters.
- $Y_{u,d}$  carry flavor structure, overall scale is free parameter
- Model not quite MFV : gauge induced FCNCs persist even when yukawas are turned off in the  $M\to 0~$  limit.
- Gauge bosons that mediate 3rd generation transitions can be light  $\sim \mathcal{O}({\rm TeV})\,$  and *might* be LHC accessible.
- Strongest bounds from modified Zbb coupling, 4th gen searches
   Lightest exotics > 400-500 GeV

# **Finally Add SUSY**



#### Let's Supersymmetrize the gauged model

	$SU(3)_Q$	$SU(3)_U$	$SU(3)_D$	$SU(3)_c$	$SU(2)_L$	$U(1)_Y$
Q	3	1	1	3	2	+1/6
$\overline{u}$	1	3	1	$\overline{3}$	1	-2/3
$\overline{d}$	1	1	3	3	1	+1/3
$\psi_{u^c}$	$\overline{3}$	1	1	$\overline{3}$	1	-2/3
$\psi_{d^c}$	$\overline{3}$	1	1	$\overline{3}$	1	+1/3
$\psi_u$	1	$\overline{3}$	1	3	1	+2/3
$\psi_d$	1	1	$\overline{3}$	3	1	-1/3
$Y_u$	3	3	1	1	1	0
$Y_u^c$	$\overline{3}$	$\overline{3}$	1	1	1	0
$Y_d$	3	1	3	1	1	0
$Y_d^c$	$\overline{3}$	1	$\overline{3}$	1	1	0

Note:  $Y_{u,d}^c$  superfields added to cancel flavor anomalies As before : flavor spurions are *not* the yukawas, despite the notation



**Superpotential** 

 $W \supset H_u Q \psi_{u^c} + Y_u \psi_u \psi_{u^c} + M_u \psi_u \bar{u} + Y_u Y_u Y_u + \mu_Y Y_u Y_u^c$ 

# **Generating Yukawas**

#### **Superpotential**

 $W \supset H_u Q \psi_{u^c} + Y_u \psi_u \psi_{u^c} + M_u \psi_u \bar{u} + Y_u Y_u Y_u + \mu_Y Y_u Y_u^c$ 

Flavor "Higgses" get VEVs  $\langle Y_u \rangle = \langle Y_u^c \rangle \neq 0$ and induce mixing among interaction eigenstates  $(\psi_u, \psi_{u^c}, \bar{u})$ 

# Generating Yukawas

#### **Superpotential**

 $W \supset H_u Q \psi_{u^c} + Y_u \psi_u \psi_{u^c} + M_u \psi_u \bar{u} + Y_u Y_u Y_u + \mu_Y Y_u Y_u^c$ 

Flavor "Higgses" get VEVs  $\langle Y_u \rangle = \langle Y_u^c \rangle \neq 0$ and induce mixing among interaction eigenstates  $(\psi_u, \psi_{u^c}, \bar{u})$ 

Transforming to the mass basis  $(\Psi_u, \Psi_{u^c}, \overline{U})$  yields  $\Psi_u, \Psi_{u^c}$ states with masses of order  $M_{\Psi} \sim \langle Y_u \rangle$ 

# Generating Yukawas

#### **Superpotential**

 $W \supset H_u Q \psi_{u^c} + Y_u \psi_u \psi_{u^c} + M_u \psi_u \bar{u} + Y_u Y_u Y_u + \mu_Y Y_u Y_u^c$ 

Flavor "Higgses" get VEVs  $\langle Y_u \rangle = \langle Y_u^c \rangle \neq 0$ and induce mixing among interaction eigenstates  $(\psi_u, \psi_{u^c}, \bar{u})$ 

Transforming to the mass basis  $(\Psi_u, \Psi_{u^c}, \overline{U})$  yields  $\Psi_u, \Psi_{u^c}$ states with masses of order  $M_{\Psi} \sim \langle Y_u \rangle$ 

and a massless MSSM triplet  $\bar{U}$   $\implies H_u Q(\mathcal{V}\bar{U}) + H_u Q(\mathcal{W}\Psi_{u^c})$ with Yukawa couplings  $\mathcal{Y}_u \propto \mathcal{V} \sim \mathcal{O}(M_u/\langle Y_u \rangle)$ 

### "Exotic" BNV



**R-Parity is not imposed by hand, but**  $\bar{u}d\bar{d}$  is forbidden since  $\bar{u} \sim (3,1), \bar{d} \sim (1,3)$  under  $SU(3)_U \times SU(3)_D$ 

### "Exotic" BNV



**R-Parity is not imposed by hand, but**  $\bar{u}d\bar{d}$  is forbidden since  $\bar{u} \sim (3,1), \bar{d} \sim (1,3)$  under  $SU(3)_U \times SU(3)_D$ 

However, both up and down type  $\psi_{u^c,d^c} \sim \overline{3}$  under  $SU(3)_Q$  $\implies W_{BNV} = \psi_{u^c} \psi_{d^c} \psi_{d^c}$ 

### "Exotic" BNV



**R-Parity is not imposed by hand, but**  $\bar{u}d\bar{d}$  is forbidden since  $\bar{u} \sim (3,1), \bar{d} \sim (1,3)$  under  $SU(3)_U \times SU(3)_D$ 

However, both up and down type  $\psi_{u^c,d^c} \sim \overline{3}$  under  $SU(3)_Q$  $\implies W_{BNV} = \psi_{u^c} \psi_{d^c} \psi_{d^c}$ 



### **Deviations From MFV**

Before breaking SUSY, we also have flavor violation from

$$\frac{\partial W}{\partial Y_u}\Big|^2 \supset \mu_Y^* \left\langle Y_u^c \right\rangle^* \tilde{\psi}_u \tilde{\psi}_{u^c} + (u \to d) + c.c.$$

which is not MFV:  $\langle Y_u^c \rangle$  doesn't set Yukawa couplings but as long as  $\mu_Y \ll \langle Y \rangle$  this is strongly suppressed

### **Deviations From MFV**

Before breaking SUSY, we also have flavor violation from

$$\frac{\partial W}{\partial Y_u}\Big|^2 \supset \mu_Y^* \left\langle Y_u^c \right\rangle^* \tilde{\psi}_u \tilde{\psi}_{u^c} + (u \to d) + c.c.$$

which is not MFV:  $\langle Y_u^c \rangle$  doesn't set Yukawa couplings but as long as  $\mu_Y \ll \langle Y \rangle$  this is strongly suppressed

#### D-terms are also not of Yukawa form

$$\frac{g_Q^2}{2} \left| \tilde{Q}^* T_Q^a \tilde{Q} - \tilde{\psi}_{u^c}^* T_Q^a \tilde{\psi}_{u^c} + Y_u^* T_Q^a Y_u - Y_u^{c*} T_Q^a Y_u^c + (u \to d) \right|^2$$

and similar terms for  $SU(3)_{U,D}$  which will constrain the gauge couplings later...





Thus far, everything assumes exact SUSY



### Thus far, everything assumes exact SUSY

Minimizing D Terms forces :  $\langle Y_u 
angle = \langle Y_u^c 
angle$  up to small corrections





Minimizing D Terms forces :  $\langle Y_u \rangle = \langle Y_u^c \rangle$  up to small corrections If  $\mu_Y \to 0$  the "exotic"  $\Psi$  fermions/bosons are mass degenerate



### Thus far, everything assumes exact SUSY

Minimizing D Terms forces :  $\langle Y_u \rangle = \langle Y_u^c \rangle$  up to small corrections If  $\mu_Y \to 0$  the "exotic"  $\Psi$  fermions/bosons are mass degenerate

**SUSY breaking and EWSB spoil both features :** 



#### **SUSY breaking and EWSB spoil both features :**

- The D-term masses will only cancel to  $\mathcal{O}(gm_{\mathcal{S}})$ 



#### **SUSY breaking and EWSB spoil both features :**

- The D-term masses will only cancel to  $O(gm_{\mathcal{S}})$
- Mass non-degeneracy arises explicitly from soft terms

Thus far, everything assumes exact SUSY Minimizing D Terms forces :  $\langle Y_u \rangle = \langle Y_u^c \rangle$  up to small corrections If  $\mu_Y \to 0$  the "exotic"  $\Psi$  fermions/bosons are mass degenerate

**SUSY breaking and EWSB spoil both features :** 

- The D-term masses will only cancel to  $\mathcal{O}(gm_{\mathcal{S}})$
- Mass non-degeneracy arises explicitly from soft terms

However, if the flavor scale satisfies  $\langle Y \rangle \gg m_S$ these problems are tamed



Furthermore, we want the mediation scale to satisfy

 $M_* \gg \langle Y \rangle \gg m_S$ 



Furthermore, we want the mediation scale to satisfy

$$M_* \gg \langle Y \rangle \gg m_S$$

- SUSY breaking mediated while the flavor symmetry is exact.



Furthermore, we want the mediation scale to satisfy

 $M_* \gg \langle Y \rangle \gg m_S$ 

- SUSY breaking mediated while the flavor symmetry is exact.
- Flavor symmetry will constrain structure of soft terms



Furthermore, we want the mediation scale to satisfy

 $M_* \gg \langle Y \rangle \gg m_S$ 

- SUSY breaking mediated while the flavor symmetry is exact.

- Flavor symmetry will constrain structure of soft terms

- Approximate mass degeneracy ensures the same matrices diagonalize both the soft terms and fermions



Furthermore, we want the mediation scale to satisfy

 $M_* \gg \langle Y \rangle \gg m_S$ 

- SUSY breaking mediated while the flavor symmetry is exact.

- Flavor symmetry will constrain structure of soft terms

 Approximate mass degeneracy ensures the same matrices diagonalize both the soft terms and fermions

### Now let's break SUSY ...


**SUSY Breaking spurion :**  $X = F\theta^2$ 

$$\mathcal{L}_{\mathcal{S}} \supset \int d^4\theta \frac{X^{\dagger} X}{M_*^2} \left( \Phi^{\dagger} \Phi + \cdots \right) + \int d^2\theta \frac{X}{M_*} \left( H_u Q \psi_{u^c} + Y_u \psi_u \psi_{u^c} + M_u \psi_u \bar{u} + \cdots \right)$$



**SUSY Breaking spurion :**  $X = F\theta^2$ 

$$\mathcal{L}_{\mathcal{S}} \supset \int d^4\theta \frac{X^{\dagger} X}{M_*^2} \left( \Phi^{\dagger} \Phi + \cdots \right) + \int d^2\theta \frac{X}{M_*} \left( H_u Q \psi_{u^c} + Y_u \psi_u \psi_{u^c} + M_u \psi_u \bar{u} + \cdots \right)$$

Initially generates *flavor universal* soft terms of order

$$m_{\mathcal{S}} \sim \mathcal{A}_{\mathcal{S}} \sim \mathcal{B}_{\mathcal{S}} \sim F/M_*$$



**SUSY Breaking spurion :**  $X = F\theta^2$ 

$$\mathcal{L}_{\mathcal{S}} \supset \int d^4\theta \frac{X^{\dagger} X}{M_*^2} \left( \Phi^{\dagger} \Phi + \cdots \right) + \int d^2\theta \frac{X}{M_*} \left( H_u Q \psi_{u^c} + Y_u \psi_u \psi_{u^c} + M_u \psi_u \bar{u} + \cdots \right)$$

Initially generates flavor universal soft terms of order  $m_S \sim A_S \sim B_S \sim F/M_*$ 

#### **Recall:**

- Flavor "Higgses" Y couple only to exotic matter



**SUSY Breaking spurion :**  $X = F\theta^2$ 

$$\mathcal{L}_{\mathcal{S}} \supset \int d^4\theta \frac{X^{\dagger} X}{M_*^2} \left( \Phi^{\dagger} \Phi + \cdots \right) + \int d^2\theta \frac{X}{M_*} \left( H_u Q \psi_{u^c} + Y_u \psi_u \psi_{u^c} + M_u \psi_u \bar{u} + \cdots \right)$$

Initially generates flavor universal soft terms of order  $m_S \sim A_S \sim B_S \sim F/M_*$ 

#### **Recall:**

- Flavor "Higgses" Y couple only to exotic matter
- Degeneracy = same diagonalization matrices for scalars



**SUSY Breaking spurion :**  $X = F\theta^2$ 

$$\mathcal{L}_{\mathcal{S}} \supset \int d^4\theta \frac{X^{\dagger} X}{M_*^2} \left( \Phi^{\dagger} \Phi + \cdots \right) + \int d^2\theta \frac{X}{M_*} \left( H_u Q \psi_{u^c} + Y_u \psi_u \psi_{u^c} + M_u \psi_u \bar{u} + \cdots \right)$$

Initially generates flavor universal soft terms of order  $m_{\mathcal{S}} \sim \mathcal{A}_{\mathcal{S}} \sim \mathcal{B}_{\mathcal{S}} \sim F/M_*$ 

#### **Recall:**

- Flavor "Higgses" Y couple only to exotic matter
- Degeneracy = same diagonalization matrices for scalars

**MSSM** scalar flavor violation is proportional to Yukawa matrices

$$\implies \tilde{\psi}_{u^c} \to \mathcal{V}\bar{\bar{U}} + \mathcal{W}\,\tilde{\Psi}_{u^c} \quad , \quad \mathcal{V} \propto \mathcal{Y}_u$$

### **A Terms**



Leading diagrams exactly MFV in degenerate mass limit



### **A Terms**



Leading diagrams exactly MFV in degenerate mass limit



SUSY breaking insertions induce non MFV corrections



- Deviations under theoretical control

### **A Terms**



Leading diagrams exactly MFV in degenerate mass limit



SUSY breaking insertions induce non MFV corrections



- Deviations under theoretical control

- Similar corrections from MSSM Higgs VEVs



Similar story for other soft parameters



### **Soft Masses**

Similar story for other soft parameters



$$\mathcal{L}_{\mathcal{S}} \supset m_{\mathcal{S}}^{2} \tilde{Q}^{\dagger} \left\{ 1 + \frac{v^{2}}{m_{\mathcal{S}}^{2}} f\left(\mathcal{Y}_{u}^{\dagger} \mathcal{Y}_{u}, \mathcal{Y}_{d} \mathcal{Y}_{d}^{\dagger}\right) + \mathcal{O}\left(\frac{v^{2}}{\langle Y_{u,d} \rangle^{2}}\right) + \mathcal{O}\left(\frac{v^{2} m_{\mathcal{S}}^{2}}{\langle Y_{u,d} \rangle^{4}}\right) \right\} \tilde{Q} + \cdots$$

- Leading behavior diagonal from coupling to X

### Soft Masses

Similar story for other soft parameters



$$\mathcal{L}_{\mathcal{S}} \supset m_{\mathcal{S}}^{2} \tilde{Q}^{\dagger} \left\{ 1 + \frac{v^{2}}{m_{\mathcal{S}}^{2}} f\left(\mathcal{Y}_{u}^{\dagger} \mathcal{Y}_{u}, \mathcal{Y}_{d} \mathcal{Y}_{d}^{\dagger}\right) + \mathcal{O}\left(\frac{v^{2}}{\langle Y_{u,d} \rangle^{2}}\right) + \mathcal{O}\left(\frac{v^{2} m_{\mathcal{S}}^{2}}{\langle Y_{u,d} \rangle^{4}}\right) \right\} \tilde{Q} + \cdots$$

- Leading behavior diagonal from coupling to X

- MFV term gives largest correction

### Soft Masses

Similar story for other soft parameters



$$\mathcal{L}_{\mathcal{S}} \supset m_{\mathcal{S}}^{2} \tilde{Q}^{\dagger} \left\{ 1 + \frac{v^{2}}{m_{\mathcal{S}}^{2}} f\left(\mathcal{Y}_{u}^{\dagger} \mathcal{Y}_{u}, \mathcal{Y}_{d} \mathcal{Y}_{d}^{\dagger}\right) + \mathcal{O}\left(\frac{v^{2}}{\langle Y_{u,d} \rangle^{2}}\right) + \mathcal{O}\left(\frac{v^{2} m_{\mathcal{S}}^{2}}{\langle Y_{u,d} \rangle^{4}}\right) \right\} \tilde{Q} + \cdots$$

- Leading behavior diagonal from coupling to X
- MFV term gives largest correction
- Higher order terms from EWSB and SUSY breaking
  (diagonalization matrices not identical for fermions/bosons)



Direct Production: comparable to inverted, gauged model



Direct Production: comparable to inverted, gauged model

- 4th gen searches bound lightest exotics > 400-500 GeV



Direct Production: comparable to inverted, gauged model

- 4th gen searches bound lightest exotics > 400-500 GeV
- -W'Z' searches bound lightest gauge boson > 1-3 TeV

Direct Production: comparable to inverted, gauged model

- 4th gen searches bound lightest exotics > 400-500 GeV
- -W'Z' searches bound lightest gauge boson > 1-3 TeV

"Flavorful" SUSY : *Nomura*, *Stolarski*, *Papucci* (arXiv:0712.2074) Low energy constraints on soft terms *not* aligned with Yukawas

Direct Production: comparable to inverted, gauged model

- 4th gen searches bound lightest exotics > 400-500 GeV
- -W'Z' searches bound lightest gauge boson > 1-3 TeV

"Flavorful" SUSY : Nomura, Stolarski, Papucci (arXiv:0712.2074) Low energy constraints on soft terms not aligned with Yukawas

- Constraints on LL squark transitions from D-terms  $g_F < 10^{-1} - 10^{-2}$ 

Direct Production: comparable to inverted, gauged model

- 4th gen searches bound lightest exotics > 400-500 GeV
- -W'Z' searches bound lightest gauge boson > 1-3 TeV

"Flavorful" SUSY : Nomura, Stolarski, Papucci (arXiv:0712.2074) Low energy constraints on soft terms not aligned with Yukawas

- Constraints on LL squark transitions from D-terms  $g_F < 10^{-1} - 10^{-2}$ 

- Since gauge boson masses  $\sim O(g_F \langle Y \rangle)$  production constraints require  $\langle Y \rangle > O(10 \text{ TeV})$  for lightest VEV

Direct Production: comparable to inverted, gauged model

- 4th gen searches bound lightest exotics > 400-500 GeV
- -W'Z' searches bound lightest gauge boson > 1-3 TeV
- "Flavorful" SUSY : Nomura, Stolarski, Papucci (arXiv:0712.2074) Low energy constraints on soft terms not aligned with Yukawas
- Constraints on LL squark transitions from D-terms  $g_F < 10^{-1} 10^{-2}$
- Since gauge boson masses  $\sim O(g_F \langle Y \rangle)$  production constraints require  $\langle Y \rangle > O(10 \text{ TeV})$  for lightest VEV

- For weak-scale soft masses, this automatically satisfies LR bounds

Messenger Scale (gravitino mass)

$$M_* > (10^{10} \,\mathrm{GeV}) \left(\frac{300 \,\mathrm{GeV}}{m_{\mathcal{S}}}\right)^3 \left(\frac{\tan\beta}{10}\right)^4$$

**Messenger Scale** (gravitino mass)

$$M_* > (10^{10} \,\mathrm{GeV}) \left(\frac{300 \,\mathrm{GeV}}{m_{\mathcal{S}}}\right)^3 \left(\frac{\tan\beta}{10}\right)^4$$

Approximate exotic  $\begin{cases} M_* \gg \langle Y \rangle \gg m_S \sim \mathcal{O}(100 \,\text{GeV}) \\ \langle Y \rangle \gg \mu_Y \end{cases}$ 

Messenger Scale (gravitino mass)

$$M_* > (10^{10} \,\mathrm{GeV}) \left(\frac{300 \,\mathrm{GeV}}{m_{\mathcal{S}}}\right)^3 \left(\frac{\tan\beta}{10}\right)^4$$

Approximate exotic degeneracy

$$M_* \gg \langle Y \rangle \gg m_S \sim \mathcal{O}(100 \,\mathrm{GeV})$$
  
 $\langle Y \rangle \gg \mu_Y$ 

D-term flavor bounds (LL squark masses)

$$g_F < 10^{-1} - 10^{-2}$$

Messenger Scale (gravitino mass)

$$M_* > (10^{10} \,\mathrm{GeV}) \left(\frac{300 \,\mathrm{GeV}}{m_{\mathcal{S}}}\right)^3 \left(\frac{\tan\beta}{10}\right)^4$$

Approximate exotic degeneracy

$$M_* \gg \langle Y \rangle \gg m_S \sim \mathcal{O}(100 \,\mathrm{GeV})$$
  
 $\langle Y \rangle \gg \mu_Y$ 

D-term flavor bounds (LL squark masses)

$$g_F < 10^{-1} - 10^{-2}$$

**Smallest VEVs**  $\langle Y \rangle > \mathcal{O}(10 \,\mathrm{TeV})$ (gauge boson production)



- MFV SUSY : attractive framework for SUSY model building. RPV saves SUSY, MFV tames flavor problems.



- MFV SUSY : attractive framework for SUSY model building. RPV saves SUSY, MFV tames flavor problems.

- Gauged model: effective yukawas, minimal extra field content new states: inverted mass hierarchy = suppressed FCNCs



- MFV SUSY : attractive framework for SUSY model building. RPV saves SUSY, MFV tames flavor problems.
- Gauged model: effective yukawas, minimal extra field content new states: inverted mass hierarchy = suppressed FCNCs
- SUSY gauged model generates naturally suppressed BNV operator



- MFV SUSY : attractive framework for SUSY model building. RPV saves SUSY, MFV tames flavor problems.
- Gauged model: effective yukawas, minimal extra field content new states: inverted mass hierarchy = suppressed FCNCs
- SUSY gauged model generates naturally suppressed BNV operator
  - approximate exotic degeneracy mimics MFV behavior for scalars



- MFV SUSY : attractive framework for SUSY model building. RPV saves SUSY, MFV tames flavor problems.
- Gauged model: effective yukawas, minimal extra field content new states: inverted mass hierarchy = suppressed FCNCs
- SUSY gauged model generates naturally suppressed BNV operator
  - approximate exotic degeneracy mimics MFV behavior for scalars
  - generate controlled deviations from MFV. Vanish in extreme limit.



- MFV SUSY : attractive framework for SUSY model building. RPV saves SUSY, MFV tames flavor problems.
- Gauged model: effective yukawas, minimal extra field content new states: inverted mass hierarchy = suppressed FCNCs
- SUSY gauged model generates naturally suppressed BNV operator
  - approximate exotic degeneracy mimics MFV behavior for scalars
  - generate controlled deviations from MFV. Vanish in extreme limit.
  - need to impose hierarchy of scales/VEVs by hand, but W only has O(1) couplings : no new tuning



- MFV SUSY : attractive framework for SUSY model building. RPV saves SUSY, MFV tames flavor problems.
- Gauged model: effective yukawas, minimal extra field content new states: inverted mass hierarchy = suppressed FCNCs
- SUSY gauged model generates naturally suppressed BNV operator
  - approximate exotic degeneracy mimics MFV behavior for scalars
  - generate controlled deviations from MFV. Vanish in extreme limit.
  - need to impose hierarchy of scales/VEVs by hand, but W only has O(1) couplings : no new tuning
  - Yukawa structure in A-terms allows light 3rd generation MSSM squarks



- MFV SUSY : attractive framework for SUSY model building. RPV saves SUSY, MFV tames flavor problems.
- Gauged model: effective yukawas, minimal extra field content new states: inverted mass hierarchy = suppressed FCNCs
- SUSY gauged model generates naturally suppressed BNV operator
  - approximate exotic degeneracy mimics MFV behavior for scalars
  - generate controlled deviations from MFV. Vanish in extreme limit.
  - need to impose hierarchy of scales/VEVs by hand, but W only has O(1) couplings : no new tuning
  - Yukawa structure in A-terms allows light 3rd generation MSSM squarks

#### **Thanks!**

#### **Flavor VEVs**



The simplest way to get VEVs :

$$W \supset S(Y_u Y_u^c - w^2)$$

**Minimizing D-term potential forces**  $\langle Y_u \rangle = \langle Y_u^c \rangle \neq 0$ 

#### **Flavor VEVs**



The simplest way to get VEVs :

$$W \supset S(Y_u Y_u^c - w^2)$$

Minimizing D-term potential forces  $\langle Y_u \rangle = \langle Y_u^c \rangle \neq 0$ Like Grinstein et. al. getting right textures requires multiple fields  $\lambda_{S_i} S^i \left( C_{ijk} Y_u^j (Y_u^c)^k - C'_{ij} (w^j)^2 \right) + (u \to d)$ , flavor VEVs are actually linear combinations of these

#### **Flavor VEVs**



The simplest way to get VEVs :

$$W \supset S(Y_u Y_u^c - w^2)$$

Minimizing D-term potential forces  $\langle Y_u \rangle = \langle Y_u^c \rangle \neq 0$ Like Grinstein et. al. getting right textures requires multiple fields  $\lambda_{S_i} S^i \left( C_{ijk} Y_u^j (Y_u^c)^k - C'_{ij} (w^j)^2 \right) + (u \to d) ,$ 

flavor VEVs are actually linear combinations of these

Equality of VEVs at leading order ensures D-term squark masses vanish up to corrections from Y's soft masses

$$g_F^2 \left| \tilde{Q}^* T \tilde{Q} + \tilde{Y}_u^* T \tilde{Y}_u - \tilde{Y}_u^c T \tilde{Y}_u^{c*} + \cdots \right|^2 \supset g_F^2 m_S^2 Q^* T Q$$