Baryogenesis & Superpartner Oscillations in Minimal R-symmetric SSM

Yuhsin Tsai

In collaboration with Ricky Fox, Graham Kribs, and Adam Martin arXiv: 1208.2784

In collaboration with Yuval Grossman, and Bibhushan Shakya working in progress

UC Davis, 15 Oct 2012

Things that can happen in MRSSM

- Earlier Universe: Electroweak baryogenesis
- Collider: Superpartner oscillations

Minimal *R*-Symmetric SUSY Standard Model

G. Kribs, E. Poppitz and N. Weiner (08)

Field	$(SU(3)_c, SU(2)_L)_{U(1)_Y}$	$U(1)_R$
Q_L	$({f 3},{f 2})_{1/6}$	1
U_R	$(ar{3},1)_{-2/3}$	1
D_R	$({f \bar 3},{f 1})_{1/3}$	1
L_L	$({f 1},{f 2})_{-1/2}$	1
E_R	$(1, 1)_1$	1
$\Phi_{ ilde{B}}$	$(1, 1)_0$	0
$\Phi_{\tilde{W}}$	$({f 1},{f 3})_0$	0
$\Phi_{ ilde{g}}$	$({\bf 8},{\bf 1})_0$	0
H_u	$(1,2)_{1/2}$	0
H_d	$(1,2)_{-1/2}$	0
R_u	$(1,2)_{-1/2}$	2
R_d	$({f 1},{f 2})_{+1/2}$	2

 $U(1)_R$ forbids

• $M_{\lambda}\lambda\lambda$

•
$$W \supset \mu H_u H_d$$

•
$$A \tilde{\mathbf{Q}}_L^* y_u H_u \tilde{\mathbf{U}}_R^*$$

Instead,

- $M_{\lambda}\lambda \psi_{\lambda}$
- $W \supset \mu H_u R_d$
- additional term $W \supset \lambda_{\mu} H_{\mu} \Phi_{BW} R_{\mu}$

Significantly relax the flavor constraints

Most of the FCNC processes in MSSM are induced by Majorana mass and LR mixing scalar masses. e.g. $\mu \rightarrow e\gamma$ and EDM

 $\mu \rightarrow e\gamma, b \rightarrow s\gamma, \overline{K} - K$, EDM and strong CP all come from higher order diagrams and give no significant constraints in MRSSM. G. Kribs, E. Poppitz and N. Weiner (08)

Gaugino mass

 $M_D \lambda \psi_{\lambda}$ is given by the *D*-type spurion, $\Phi_a \equiv (\psi_a, A_a)$

$$\int d^2\theta \, \frac{\theta_{\alpha} \mathbf{D}}{M} \, W_i^{\alpha} \, \Phi_i + h.c., \qquad \mathbf{D}/M = M_D$$

 $\frac{\mathbf{D}}{M}\left(\lambda\psi+h.c.+D_{a}(A^{a}+A^{a*})\right)=M_{D}\left(\lambda\psi+h.c.+2D_{a}\operatorname{Re}(A^{a})\right)$

Gaugino mass

 $M_D \,\lambda\,\psi_\lambda$ is given by the *D*-type spurion, $\Phi_a \equiv (\psi_a, A_a)$

$$\int d^2\theta \, \frac{\theta_\alpha \mathbf{D}}{M} \, W_i^\alpha \, \Phi_i + h.c., \qquad \mathbf{D}/M = M_D$$

 $\frac{\mathbf{D}}{M}\left(\lambda\psi+h.c.+D_{a}(A^{a}+A^{a*})\right)=M_{D}\left(\lambda\psi+h.c.+2D_{a}\operatorname{Re}(A^{a})\right)$

For M_D ≫ µ, m_s, the leading order D_a = 0.
 There are light CP odd scalars Im A^a.

The superpotential contains

 $\lambda_B^u \Phi_B H_u R_u + \lambda_B^d \Phi_B R_d H_d + \lambda_W^u \Phi_W^a H_u \tau^a R_u + \lambda_W^d \Phi_W^a R_d \tau^a H_d$

$V \supset \mu^* \lambda_u^{*B} A_B^* |H_u|^2 + \mu^* \lambda_d^{*B} A_B^* |H_d|^2 + c.c.$

This gives an important contribution to phase transition.

EWPM constraints on gaugino mass

The SU(2) triplet acquires a vev $\langle A_W \rangle = \frac{\sqrt{2} g v^2 \cos 2\beta}{8 m_D}$, which gives a correction to the ρ parameter. The precision measurement sets a bound

 $m_{ ilde{W}} > 1 \, {
m TeV}$

EWPM constraints on gaugino mass

The SU(2) triplet acquires a vev $\langle A_W \rangle = \frac{\sqrt{2} g v^2 \cos 2\beta}{8 m_D}$, which gives a correction to the ρ parameter. The precision measurement sets a bound

 $m_{ ilde{VV}} > 1 \, {
m TeV}$

For simplicity, we take all the gaugino masses to be above TeV.

Yuhsin Tsai vhtsai@ucdavis.edu

EWPM constraints on gaugino mass

The SU(2) triplet acquires a vev $\langle A_W \rangle = \frac{\sqrt{2} g v^2 \cos 2\beta}{8 m_D}$, which gives a correction to the ρ parameter. The precision measurement sets a bound

 $m_{ ilde{W}} > 1 \, {
m TeV}$

For simplicity, we take all the gaugino masses to be above TeV.

SUSY production is suppressed and squark-initiated: Graham Kribs, Adam Martin (12)

Light Higgs mass

$$m_h^2 = m_{h,\,{
m tree}}^2 + \delta m_{h,\,{
m ilde t}}^2 + \delta m_{h,\,{
m ilde t}}^2$$

MRSSM has

- a small D-term
- a new tree-level contribution (λ -term)

The λ term gives

$$\lambda \, \mu \, \langle A \rangle |H|^2 \sim \lambda \, \mu \, \frac{g}{M_D} \, |H|^2 |H|^2 = \frac{\lambda \, \mu \, g}{M_D} \, |H|^4$$

 $m_h = 125 \text{ GeV}$ requires $\lambda \sim 1.5$, $m_{\tilde{t}} > 3 \text{ TeV}$.

Short conclusion

The *R*-symmetric model has following features:

- Dirac mass terms for gauginos and higgsinos
- *m*_{W̃} > TeV from EWPM
- a suppressed D-term
- a light CP odd scalar (Im A)
- a 125 GeV Higgs with large λ and $m_{\rm \tilde{q}}$

Electroweak Baryogenesis

Dynamically generate

$$\eta_{s}\equivrac{n_{B}-n_{\overline{B}}}{s}\simeq 6\cdot 10^{-10}$$

see also, P. Kumar and E. Ponton, JHEP 1111, 037 (2011)

Yuhsin Tsai yhtsai@ucdavis.edu

Baryogenesis and Superpartner Oscillations in MRSSM

As usual: Sakharov conditions

Conditions for dynamically generating the B-asymmetry:

- baryon number violation
- C and CP violation
- out of thermal equilibrium

To get these, we have

- sphaleron effect
- chiral theory, CPV coupling
- strong 1st order phase transition

EW baryogenesis

Ist order phase transition in MRSSM

To quantify the "strength" of phase transition: ϕ_c / T_c

Ist order phase transition in MRSSM

To quantify the "strength" of phase transition: $\phi_c \ T_c$

The "flatter" R-symm potential generates a strong PT.

Yuhsin Tsai yhtsai@ucdavis.edu

Baryogenesis and Superpartner Oscillations in MRSSM

EWBG in MSSM gets some trouble!

M. Carena, G. Nardini, M. Quiros and C. E. M. Wagner (08)

The ONLY realization of EWBG in MSSM

Requires a mostly right-handed stop lighter than tops.

EWBG in MSSM gets some trouble!

M. Carena, G. Nardini, M. Quiros and C. E. M. Wagner (08)

The ONLY realization of EWBG in MSSM Requires a mostly right-handed stop lighter than tops.

Has been excluded by the Higgs related searches to 95% C.L.. D. Curtin, P. Jaiswal and P. Meade ; T. Cohen, D. Morrissey and A. Pierce (12)

Baryogenesis and Superpartner Oscillations in MRSSM

MRSSM has the following advantages:

- stronger phase transition
- thermal correction from additional color-neutral particles
- does not require a light stop
- no CP violation bound from EDM

The importance of the CP odd scalars

$$V = V_{tree} + V_{CW} + V_T + V_{ring}$$

The finite temperature term, V_T , is the most important one

$$V_{T} (boson) = \begin{cases} \frac{-|n_{i}|T^{4}\pi^{2}}{90} & T \gg m \\ -|n_{i}|T^{4} \left(\frac{m^{2}}{2\pi T^{2}}\right)^{3/2} e^{-m/T} & T \ll m \end{cases}$$

- fields with $m\propto\phi$ lower the potential in the symmetric vacuum
- the more these fields are, the stronger the phase transition is

The light CP odd scalars carring $m^2 \propto \lambda^2 \phi^2$ give large thermal corrections

Numerical scan: ϕ_c/T_c and m_{Higgs}

- integrating out the gauginos
- consider the $m^2 \propto \phi^2$ fields only
- the only important parameters are μ , λ_B , λ_W

Numerical scan: ϕ_c/T_c and m_{Higgs}

Zoom in to the interesting region

 $M_D = 1$ TeV

 $M_D = 2 \text{ TeV}$

/32

Numerical scan: the μ dependence

Baryogenesis and Superpartner Oscillations in MRSSM

/ 32

Can generate a large asymmetry while having the right m_{Higgs} .

- the phase $Arg(\mu M \lambda_{B,W})$ source CP violation in the higgsino sector
- the higgsino-higgs interactions generates the asymmetry
- e.g., for $\lambda_W = -\lambda_B = 2$, $M_D = 1$ TeV, $\mu = 200$ GeV, $m_A = 300$ GeV, tan $\beta = 4$, $m_S = 0$ GeV and $\Delta q = \pi$

rightarrow $T_c\simeq$ 135 GeV and $\eta\simeq4 imes10^{-10}$

Superpartner Oscillations

Baryogenesis and Superpartner Oscillations in MRSSM

Gaugino oscillation in the MRSSM

Gaugino mass

 $M_D \lambda \psi$

32

Gaugino oscillation in the MRSSM

Gaugino mass

$$M_D \lambda \psi + M_M \lambda \lambda$$

 $M_M = \frac{\beta(g^2)}{2g^2} m_{3/2}$ is the anomaly-mediated Majorana mass G. F. Giudice, M. A. Luty, H. Murayama and R. Rattazzi (98); L. Randall and R. Sundrum (98)

$$\mathcal{H} = \begin{pmatrix} \lambda & \overline{\psi} \end{pmatrix} \begin{pmatrix} M_{M} & M_{D} \\ M_{D} & 0 \end{pmatrix} \begin{pmatrix} \lambda \\ \psi \end{pmatrix}, \qquad M_{M} \ll M_{D}$$

e.g. SUSY breaking with $\sqrt{F} = 100$ TeV has

$$M_{M}^{-1} = (5 \cdot 10^{-14} \, {
m TeV})^{-1} \sim 0.04 \; {
m mm}$$

Gaugino oscillation in the MRSSM

 $M_M \ll M_D \Rightarrow$ Maximal mixing!

 λ , ψ oscillate in the interacting basis with frequency $\sim M_M$.

$$\begin{split} P(\lambda \to \lambda(t_{lab})) &\propto e^{-2\,\Gamma\,t_{lab}}\left[1 + \cos(M_M\,t_{lab})\right] \\ P(\lambda \to \psi(t_{lab})) &\propto e^{-2\,\Gamma\,t_{lab}}\left[1 - \cos(M_M\,t_{lab})\right] \end{split}$$

If λ decays only, the decay probability oscillates

Yuhsin Tsai yhtsai@ucdavis.edu

Baryogenesis and Superpartner Oscillations in MRSSM

32

Higgsino oscillation in the MRSSM

Higgsino gets mass splitting between (\tilde{h}, R) by mixing to gauginos:

$$\Delta m_{\tilde{h}} = \left(\frac{\sin\beta\,\sin\theta_{w}\,v\,\mu}{M_{D}^{2}}\right)^{2}\,M_{M}$$

For $\sqrt{F}=100$ TeV, $M_D=1$ TeV and $\mu\sim v$,

 $\Delta m_{ ilde{h}}^{-1} \sim 10 \; {
m cm}$

Higgsino oscillation in the MRSSM

Higgsino gets mass splitting between (\tilde{h}, R) by mixing to gauginos:

$$\Delta m_{\tilde{h}} = \left(\frac{\sin\beta\,\sin\theta_{w}\,v\,\mu}{M_{D}^{2}}\right)^{2}\,M_{M}$$

For $\sqrt{\textit{F}}=$ 100 TeV, $\textit{M}_{\textit{D}}=$ 1 TeV and $\mu\sim\textit{v}$,

 $\Delta m_{ ilde{h}}^{-1} \sim 10 \; {
m cm}$

A macroscopic distance that can be seen at colliders!

Decay of h as the NLSP

Consider the following decay,

2

assume

- gauge-mediation type of model with a higgsino NLSP
- heavy scalars \Rightarrow *R*-fermion does not decay
- the following mass spectrum

	$\overline{\tilde{g}}\tilde{g}'$	$\overline{\tilde{W}} \widetilde{W}'$	$\overline{\tilde{B}}\widetilde{B}'$	$\overline{\tilde{h}_d} \widetilde{h}_d'$	$\overline{\tilde{h}_u}\tilde{h}_u'$	$\tilde{t}_{L,R}^*\tilde{t}_{L,R}$	$\overline{\tilde{G}} \widetilde{G}'$
m _{Dirac} (TeV)	3	1	0.5	0.13	0.12	0.6	$F/M_{\rm pl}$

The oscillation

The above spectrum gives

- the oscillation length $\Delta m_{ ilde{b}}^{-1}\simeq 5$ mm
- the decay length

$$c\tau \simeq \left(\frac{\sqrt{F}}{100 \text{ TeV}}\right)^4 \left(\frac{100 \text{ GeV}}{m_{\chi_1^0}}\right)^5 \left(1 - \frac{m_Z^2}{m_{\chi_1^0}^2}\right)^{-4} \times 0.2 \text{ mm} \simeq 18 \text{ cm}$$

The displaced vertex can be well constructed at ATLAS and CMS.

P. Meade, M. Reece and D. Shih (10) ; P. W. Graham, D. E. Kaplan, S. Rajendran and P. Saraswat

The smearing effect

Assuming the SM BG is well studied, we expect to see the higgsino decay as

Baryogenesis and Superpartner Oscillations in MRSSM

The smearing effect

Assuming the SM BG is well studied, we expect to see the higgsino decay as

The smearing comes from

- uncertainty when measuring the angles (can be improved)
- time dilation (cannot be improved)

Event simulation

Decay probability P(r) in the lab frame

$$P(r) = N \int_{1}^{\infty} d\gamma \operatorname{Prob}(\gamma) imes e^{-\Gamma t_{lab}/\gamma} \left(1 + \cos \Delta m t_{lab}/\gamma\right)$$

To get $Prob(\gamma)$, we do a parton-level analysis using Madgraph5

with the pre-selection cuts:

- lepton $|\eta| \leq 1.5$, $p_T > 20$
- $\Delta R > 0.4$ between leptons
- each lepton has E > 100 GeV

Uncover the oscillation

However, we can reduce the time dilation effect by setting energy cuts on outgoing leptons, $E_{\ell^+\ell^-}$

Yuhsin Tsai yhtsai@ucdavis.edu

Baryogenesis and Superpartner Oscillations in MRSSM

Smearing from the angular measurement

With the mass spectrum, we need at least 150 fb^{-1} of data to distinguish the oscillation from a pure decay to 3σ .

Parameter space for an observable oscillation

Need to satisfy the following conditions:

- Δm_h^{-1} > the precision of the displaced vertex measurement
- Δm_h^{-1} < the outer radius of the silicon track
- Γ^{-1} > the oscillation wavelength
- $\ensuremath{\,\Gamma^{-1}}\xspace <$ the outer radius of the silicon track

Conclusion

In the MRSSM model, we can have

- a strong 1st order phase transition
- successful EWBG
- 125 GeV Higgs (with a large $m_{\tilde{t}}$ and λ)
- hissino oscillation that can be seen at LHC