Intro to Shape Dynamics

Henrique Gomes
Physics, University of California, Davis
May 9, 2012

In collaboration with Tim Koslowski, Sean Gryb and Flavio Mercatti

Notational warning!!

This will be a talk focused on $3+1$ formulations of gravity.

3D vs 4D

Here g is a 3D Riemannian metric (the spatial metric) that evolves in time. If we ever need to use 4D Lorentzian metric, we'll use h.

- Over a closed (compact without boundary) 3-dimensional manifold $\Sigma!$
- We will avoid indices as much as we can, but they are there!
- When we talk about a conformal transformation, we mean Weyl transformations, as $g \mapsto \alpha g$.

What is Shape Dynamics?

What it is

A Hamiltonian formulation of gravity with the following proeminent features:

- Possesses the same canonical variables as Hamiltonian GR: (g, π).
- Does not possess refoliation invariance (boosts).
- Trades that symmetry for foliation preserving conformal transformations (Weyl) + unique, non-local global Hamiltonian.

What it is not

- York's approach to the initial value problem (and its related constant-mean-curvature gauge for GR).
- Barbour et al's CS+V re-derivation of York.

Both very useful and necessary for Shape Dynamics, but neither has conformal symmetry manifest in the dynamics.

Roadmap

Roadmap of this talk

- Brief review of Hamiltonian GR.
- Main ideas in Shape Dynamics.
- Adding matter and large volume expansion
- Conclusion.

Purpose

Purpose of this talk is to familiarize the audience with the construction and main features of Shape Dynamics. Useful for following talks.

Outline

(1) Hamiltonian GR
(2) Shape Dynamics
(3) Matter and large volume expansion
(4) Outlook

Hypersurface foliation

- Assume global hyperbolic: $M \simeq \Sigma \times \mathbb{R}$

Intermezzo: Dirac analysis

Constraints are a convenient way to encode over-parametrization of physical degrees of freedom.

Let $\phi_{i}(q, p)=0, i \in I$ denote constraints. They define surfaces and flow in phase space, and can have different degrees of mutual "conservation":

- Compatible.

These are called first class constraints. They arise when the dynamical flow generated by one constraint conserves the set:
$\delta_{\phi_{i}} \phi_{j}=\left\{\phi_{i}, \phi_{j}\right\}=a^{k} \phi_{k}$

- Impose further constraints. This occurs when the flow is only conserved on some subsurface:
$\delta_{\phi_{i}} \phi_{j}=f(p, q) \Rightarrow f=0$ must now be added to the list of constraints.
- Second class. These arise when the two constraints are conjugate. $\delta_{\phi_{i}} \phi_{j}=1$. Must either find a coordinate system where they don't appear, or project dynamics to constraint surface.

Canonical framework: ADM

- Use Gauss-Codazzi relations + Einstein equations: ${ }^{4} R \mapsto(R, K)$
- Over-parametrization: relations that extrinsic curvature have to satisfy.
- Legendre: $(g, \dot{g}) \mapsto(g, \pi)$
- Constraints: ensure relations hold.

$$
\begin{aligned}
& H_{a}(x)=\pi_{a}^{b} ; b=0 \\
& S(x)=\operatorname{tr}(\pi \cdot \pi)-\frac{1}{2}(\operatorname{tr} \pi)^{2}-R=0
\end{aligned}
$$

$S(x)$ and $H_{a}(x)$ are first class. They generate compatible symmetries (on the constraint surface).

Total Hamiltonian: $H_{\text {ADM }}=\int_{\Sigma} d^{3} x\left(N(x) S(x)+\xi^{a}(x) H_{a}(x)\right)$ Is "pure constraint" . This is the ADM system.

Momentum and scalar constraints

- $\mathcal{H}_{a}(x)$ generates 3-diffeomorphisms.

True (infinite-dimensional) Lie algebra.

- $S(x)$ generates time refoliation (and thus evolution).

In contrast to the action of 3-diffeomorphisms:
Enormous difficulty in giving meaning to GR's physical degrees of freedom!

Not subalgebra (commutation relations involve 3-diffeomorphisms), and entire constraint algebra is "soft" (structure functions).

Introduces many, many difficulties in quantization.

- $S(x)$ quadratic in momenta: $\frac{\delta}{\delta g(x)} \frac{\delta}{\delta g(x)}$: ill-defined.
- Constraints imposed at the quantum level: $\hat{S} \Psi[g]=0$. Klein-Gordon type equation. Inner product?

Outline

(1) Hamiltonian GR

(2) Shape Dynamics
(3) Matter and large volume expansion
(4) Outlook

Motivation: "pure constraint" systems such as GR may have observables coinciding with that of systems with different symmetries.

ADM Gravity

$$
\begin{gathered}
S(N)=\int N\left(\frac{G(\pi, \pi)}{\sqrt{|g|}}-(R-2 \Lambda) \sqrt{|g|}\right) \\
H(v)=\int \pi^{a b} \mathcal{L}_{v} g_{a b}
\end{gathered}
$$

Shape Dynamics

Refoliation invariance has famous gauge fixing exploring spatial conformal transformations ([York]).

Preliminary: intrinsic constant mean curvature gauge

What is the constant mean curvature condition?

- The trace of the extrinsic curvature of each leaf is spatially constant.

Roughly, means that observers use the Hubble constant as a clock.

- Mathematically: set $\operatorname{tr} \pi=\frac{1}{V} \int \operatorname{tr} \pi=:\langle\operatorname{tr} \pi\rangle$.

Note that $\operatorname{tr} \pi$ generates conformal transformations. I.e.

- $\{\operatorname{tr} \pi(\epsilon), g\}=\epsilon g$
- $\{\operatorname{tr} \pi(\epsilon), \pi\}=-\epsilon \pi$
- $\operatorname{tr} \pi-\frac{1}{V} \int \operatorname{tr} \pi$ generates volume-preserving conformal transformations.

Shape Dynamics: Main message (words)

- On a certain region in phase space, there exists a very special system dynamically equivalent to ADM.
- Region is that of constant-mean curvature (CMC) foliable Einstein spacetimes (with closed Σ). (see Isenberg's talk for counter-examples)
- System is one that does not possess refoliation symmetry.
- Instead it possesses local 3D scale invariance. Symmetry trading!
- All constraints linear in momenta.
- Individual sets of constraints form subalgebras. Easy to quotient. Physical degrees of freedom clear.
- Exists in the original ADM phase space (g, π) with the canonical Poisson bracket.
- Possesses one global Hamiltonian which depends only on (g, π) (no explicit "time" dependence).

Shape Dynamics: Main message

ADM $(\Sigma \times \mathbb{R})$

Local 1st class constraints:

- 3-diffeomorphisms
- refoliations
$H_{\text {ADM }}=$
$\int d^{3} x\left(N(x) S(x)+\xi^{a}(x) H_{a}(x)\right)$

Shape Dynamics

Local 1st class constraints

- 3-diffeomorphisms
- Conformal transformations

$$
\begin{aligned}
& H_{\text {dual }}= \\
& \mathcal{H}_{\text {g1 }}+\int d^{3} x\left[\lambda(x) D(x)+\xi^{a}(x) H_{a}(x)\right]
\end{aligned}
$$

- $H_{a}(x)$: momentum constraint (one per x).
- $S(x)$: Scalar constraint (one per x).
- $D(x)=4(\pi-\langle\pi\rangle \sqrt{g})(x)$: conformal constraint (one per x).
- \mathcal{H}_{g} : Global Shape Dynamics Hamiltonian.

How is it constructed? Figure.

Linking Theory

ext. phase space $\Gamma(q, p) \times \Gamma(\phi, \pi)$ ordinary Poisson bracket $\{. .$. ext. first class constraints: $\chi_{\alpha}^{1}=\phi_{\alpha}-\phi_{\alpha}^{\alpha}(p, q) \approx 0$ $\chi_{2}^{\alpha}=\pi^{\alpha}-\pi_{\alpha}^{o}(p, q) \approx 0$

$\pi^{\alpha}=\pi_{o}^{\alpha}(p, q), \phi_{\alpha}=0$

-

$\phi_{\alpha}=\phi_{\alpha}^{o}(p, q), \pi^{\alpha}=0$

Gauge Theory B on $\Gamma(q, p)$, Poisson bracket $\{, .$,

on $\Gamma_{\text {red }}$ with Dirac bracket $\{., .\}_{D}$

How is it constructed? Words.

(1) Introduce artificial symmetry (Stuckelberg) and extend phase space (and functions)

How is it constructed? Words.

(1) Introduce artificial symmetry (Stuckelberg) and extend phase space (and functions)
(2) Extra constraint arises (constrains functions on extended phase space to represent original functions: no extra physical degrees of freedom).

How is it constructed? Words.

(1) Introduce artificial symmetry (Stuckelberg) and extend phase space (and functions)
(2) Extra constraint arises (constrains functions on extended phase space to represent original functions: no extra physical degrees of freedom).
(Impose specific (natural) gauge fixings and separate first and second class parts of constraints.

How is it constructed? Words.

(1) Introduce artificial symmetry (Stuckelberg) and extend phase space (and functions)
(2) Extra constraint arises (constrains functions on extended phase space to represent original functions: no extra physical degrees of freedom).
(Impose specific (natural) gauge fixings and separate first and second class parts of constraints.
(1) Will get that $S(x)$ separates into 1 first class constraint (evolution) and the rest second class.

How is it constructed? Words.

(1) Introduce artificial symmetry (Stuckelberg) and extend phase space (and functions)
(2) Extra constraint arises (constrains functions on extended phase space to represent original functions: no extra physical degrees of freedom).
(Impose specific (natural) gauge fixings and separate first and second class parts of constraints.
(1) Will get that $S(x)$ separates into 1 first class constraint (evolution) and the rest second class.
© Solve 2nd class constraints for extra Stuckelberg variables.

How is it constructed? Words.

(1) Introduce artificial symmetry (Stuckelberg) and extend phase space (and functions)
(2) Extra constraint arises (constrains functions on extended phase space to represent original functions: no extra physical degrees of freedom).
(Impose specific (natural) gauge fixings and separate first and second class parts of constraints.
(1) Will get that $S(x)$ separates into 1 first class constraint (evolution) and the rest second class.
© Solve 2nd class constraints for extra Stuckelberg variables.

How is it constructed? Words.

(1) Introduce artificial symmetry (Stuckelberg) and extend phase space (and functions)
(2) Extra constraint arises (constrains functions on extended phase space to represent original functions: no extra physical degrees of freedom).

- Impose specific (natural) gauge fixings and separate first and second class parts of constraints.
(1) Will get that $S(x)$ separates into 1 first class constraint (evolution) and the rest second class.
(0 Solve 2nd class constraints for extra Stuckelberg variables.
(0) Get back to original phase space g, π with canonical Poisson bracket.

Leftover constraints first class, generating diffeomorphisms, local 3d conformal transformations, and global evolution.

Take away message from SD.

ADM

Local symmetries:

- 3-diffeomorphisms
- refoliations

Shape Dynamics

One Hamiltonian + local symmetries:

- 3-diffeomorphisms
- Conformal transformations

Shape Dynamics is to York CMC as Electromagnetism is to transverse gauge of vector potential.

Outline

(1) Hamiltonian GR

(2) Shape Dynamics

(3) Matter and large volume expansion

4 Outlook

Coupling other fields.

Question: how should fields scale $\psi \rightarrow e^{n \hat{\phi}} \psi$?

Coupling other fields.

Question: how should fields scale $\psi \rightarrow e^{n \hat{\phi}} \psi$?
Two problems:
(1) Foliation depends on the field for scaling $n \neq 0$, not geometric (or worse, for YM depends on the gauge)
Solution: only metric variables scale ("neutral coupling")
(2) Uniqueness of global Hamiltonian: involves invertibility of elliptic 2nd order diff. op. Requires:

$$
\frac{1}{2}\left(\frac{\delta H_{m}}{\delta g_{a b}} g_{a b}-\frac{1}{2} H_{m}\right) \leq \frac{1}{12}\langle\pi\rangle^{2}+\sigma^{2}
$$

- Both issues solved with neutral coupling for Yang-Mills (and gauge invariance respected) and massless scalars.
But invertibility (point 2) doesn't work always for massive scalars: bound on the field magnitude (e.g. bound on the cosmological constant).

Tractability: Large-volume expansion.

- Global Hamiltonian is non-local. Solve order by order in a large volume expansion. First few terms:

$$
\mathcal{H}_{\mathrm{gl}}=2\left(\Lambda-\frac{1}{12}\langle\pi\rangle^{2}\right)-\frac{R_{o}}{V^{2 / 3}}+\frac{1}{V^{2}}\left\langle\sigma^{2}\right\rangle+\mathcal{O}\left(V^{-8 / 3}\right)
$$

Here R_{o} is the unique constant scalar curvature in the conformal class of R (Yamabe gauge).
Global Hamiltonian can be seen as reparametrization constraint: for large volume reparam. invariance implies full conformal invariance.

- Also a Hamilton-Jacobi expansion for the on-shell action:

$$
\begin{aligned}
& \langle\pi\rangle \rightarrow \frac{\delta S}{\delta V}, \pi^{a b} \rightarrow \frac{\delta S}{\delta g_{a b}} \\
& S=S_{0} V+S_{1} V^{1 / 3}+S_{2} V^{-1 / 3}+\mathcal{O}\left(V^{-1}\right) \\
& =\left(\sqrt{\frac{16 \Lambda}{3}} V-\sqrt{\frac{3}{\Lambda}} R_{o} V^{1 / 3}+\left(\frac{3}{\Lambda}\right)^{3 / 2}\left(R_{o}^{2}-\frac{8}{3}\left\langle R_{o}^{a b} R_{a b}^{o}\right\rangle\right) V^{-1 / 3}+\ldots\right)
\end{aligned}
$$

Outline

(1) Hamiltonian GR
(2) Shape Dynamics
(3) Matter and large volume expansion
(4) Outlook

Possible advantages

Classically matches GR over (g, π) that satisfy $\operatorname{tr} \pi=c$ (gauge choices in each) but

- Advantage over CMC gauge-fixed ADM in that variables and constraints on the dofs are "local".
- Different method to find solutions. Different symmetries. Different gauges.
- Maybe find different solutions and go back to ADM gauge (and covariantize)?
- First try: finding a solution for "KSdS" without imposing the ADM constraints.
- ADM cosmological perturbation theory complicated (because we can't separate evolution from constraints). Perturbations must satisfy all constraints at each level.
- Here, introduce perturbations that only need to satisfy the local constraints, and use unperturbed global Hamiltonian to evolve?

Issues and outlook

The elephant in the room: global Hamiltonian is non-local.

- We saw some ways around it: large-volume expansions. Other expansions?
- Theory is non-local because we include a volume-preserving condition on conformal transfs.
- This is necessary to have a non-trivial leftover Hamiltonian in Shape Dynamics. I.e. to match ADM trajectories with Shape Dynamics trajectories (to just match Cauchy data for a conformal theory and ADM, no such problem arises).
- If we are interested in the pure quantum theory, so what if we don't match trajectories?
- BRST: A modification of Shape Dynamics possesses full Weyl and special conformal symmetry (no diffeos) and serves as a complete gauge-fixing fermion for the BRST-extended ADM.
- The gauge-fixed ADM BRST-extended Hamiltonian possesses a hidden symmetry: "symmetry doubling". (Koslowski's talk)

THANK YOU

APPENDIX

Outline

(5) Some details of the construction

Some details I: Extended phase space

Trivially embedd $(g, \pi) \mapsto\left(g, \pi, \phi, \pi_{\phi}\right)$.
$\phi=0 \Rightarrow$ extra constraint: $\pi_{\phi}=0$.
Canonical transf.: $F:=\int d^{3} x\left(g_{a b}(x) e^{4 \hat{\phi}(x)} \Pi^{a b}(x)+\phi \Pi_{\phi}\right)$.

- Variables transform as:

$$
\begin{aligned}
& t_{\phi} g=e^{4 \hat{\phi}(x)} g \\
& t_{\phi} \pi=e^{-4 \hat{\phi}}\left(\pi-\frac{1}{3}\langle\operatorname{tr} \pi\rangle_{g}\left(1-e^{6 \hat{\phi}}\right) g^{-1} \sqrt{|g|}\right) . \\
& t_{\phi} \pi_{\phi}=\pi_{\phi}-4\left(\operatorname{tr} \pi(x)-\sqrt{g}(x)\langle\operatorname{tr} \pi\rangle_{g}\right)=0
\end{aligned}
$$

- New set of constraints:

$$
t_{\phi} H^{a}, t_{\phi} S, t_{\phi} \pi_{\phi}
$$

Some details II: Gauge fixings in extended theory

GR(3+1):

- Set $\phi=0$ again.

Shape Dynamics:

- Gauge-fixing $\pi_{\phi}=0$ surface in $\Gamma_{\text {extended }}$.

Some details II: Gauge fixings in extended theory

GR(3+1):

- Set $\phi=0$ again.

Shape Dynamics:

- Gauge-fixing $\pi_{\phi}=0$ surface in $\Gamma_{\text {extended }}$.
- $\left\{t_{\phi} \pi_{\phi}, \pi_{\phi}\right\}=0$

Some details II: Gauge fixings in extended theory

GR(3+1):

- Set $\phi=0$ again.

Shape Dynamics:

- Gauge-fixing $\pi_{\phi}=0$ surface in $\Gamma_{\text {extended }}$.
- $\left\{t_{\phi} \pi_{\phi}, \pi_{\phi}\right\}=0$
- $\left\{t_{\phi} H^{a}, \pi_{\phi}\right\}=0$

Some details II: Gauge fixings in extended theory

GR(3+1):

- Set $\phi=0$ again.

Shape Dynamics:

- Gauge-fixing $\pi_{\phi}=0$ surface in $\Gamma_{\text {extended }}$.
- $\left\{t_{\phi} \pi_{\phi}, \pi_{\phi}\right\}=0$
- $\left\{t_{\phi} H^{a}, \pi_{\phi}\right\}=0$
- $\left\{t_{\phi} S, \pi_{\phi}\right\} \neq 0$

Some details II: Gauge fixings in extended theory

$\underline{G R(3+1):}$

- Set $\phi=0$ again.

Shape Dynamics:

- Gauge-fixing $\pi_{\phi}=0$ surface in $\Gamma_{\text {extended }}$.
- $\left\{t_{\phi} \pi_{\phi}, \pi_{\phi}\right\}=0$
- $\left\{t_{\phi} H^{a}, \pi_{\phi}\right\}=0$
- $\left\{t_{\phi} S, \pi_{\phi}\right\} \neq 0$
- We can separate $t_{\phi} S$ into:
- $t_{\phi}\left(S\left(N_{0}\right)\right)$ for $N_{0}(x) \in C^{\infty}(M)$ (one 1st class)
- $K(x):=t_{\phi} S(x)-t_{\phi}\left(S\left(N_{0}\right)\right) \sqrt{g} \quad(" \infty-1 " 2$ nd classes $)$

Some details III: Second class constraint

What is meant by "purely second class" (maximally symplectic) ?

- The bracket $\left\{K, \pi_{\phi}\right\}$ has to be invertible.
- What to do if it is invertible? Say its 1 . Have to somehow project down to surface again. One way is to find intrinsic coordinates.

Turns out (after quite a bit of work) that invertiblity of $\left\{K, \pi_{\phi}\right\}$ relies on the operator

$$
\Delta:=\nabla^{2}-\frac{1}{12}\langle\operatorname{tr} \pi\rangle^{2}-\bar{\sigma}^{a b} \bar{\sigma}_{a b}
$$

being invertible (for vacuum). It is.

Reduction to Shape Dynamics

Furthermore, it can be now shown that $K=0$ can be solved as a function of ϕ. Setting $\phi=\phi_{o}[g, \pi]$:

$$
K\left(\phi_{0}, g, \pi\right)=0
$$

Locally, just implicit function theorem:
$\left\{K, \pi_{\phi}\right\}=\frac{\partial K}{\partial \phi}$ invertible \Rightarrow there is a unique function ϕ_{o} above
Easy to check that Dirac bracket reverts to the canonical Poisson bracket in the original phase space.
Got rid of extra variables whilst solving 2nd class constraints; reduced dynamical system:

Shape Dynamics constraints

$$
t_{\phi_{0}}\left(S\left(N_{0}\right)\right), H_{a}(x),(\operatorname{tr} \pi-\langle\operatorname{tr} \pi\rangle \sqrt{g})(x)
$$

Everything dependent only on (g, π), no leftover dependence on the unphysical variables.

Shape Dynamics recap

ADM $(\Sigma \times \mathbb{R})$

Local 1st class constraints:

- 3-diffeomorphisms
- refoliations
$H_{\text {ADM }}=$
$\int d^{3} x\left(N(x) S(x)+\xi^{a}(x) H_{a}(x)\right)$

Shape Dynamics

Local 1st class constraints

- 3-diffeomorphisms
- Conformal transformations

$$
\begin{aligned}
& H_{\text {dual }}= \\
& \mathcal{H}_{\mathrm{gl}}+\int d^{3} x\left[\lambda(x) D(x)+\xi^{a}(x) H_{a}(x)\right]
\end{aligned}
$$

- $H_{a}(x)$: momentum constraint (one per x).
- $S(x)$: Scalar constraint (one per x).
- $D(x)=4(\pi-\langle\pi\rangle \sqrt{g})(x)$: conformal constraint (one per x).
- \mathcal{H}_{g} : Global Shape Dynamics Hamiltonian.

Construction of Doubly General Relativity

Extending Shape Dynamics

- fixed CMC condition $Q(x)=\pi(x)+\lambda \sqrt{|g|}$
- conformal spatial harmonic gauge

$$
F^{k}(x)=\left(g^{a b} \delta_{c}^{k}+\frac{1}{3} g^{a k} \delta_{c}^{b}\right) e_{\alpha}^{c}\left(\nabla_{a}-\hat{\nabla}_{a}\right) e_{b}^{\alpha}
$$

- First class system: $\{Q(x), Q(y)\}=0=\left\{F^{i}(x), F^{j}(y)\right\}$ as well as $\left\{Q(x), F^{i}(y)\right\}=F^{i}(y) \delta(x, y)$

Interpretation as "local conformal system"

Q generates spatial dilatations and Poisson brackets resemble $C(3)$ at each point

Gauge fixing ADM

- gauge fixing operator is elliptic and invertible in a region R
- out side R : meager set with finite dimensional kernel \Rightarrow expect poles in ghost propagator

The Papers

Papers:

"Einstein gravity as a 3D conformally invariant theory" Class. Quant. Grav., 2011, 28; by HG, Gryb, S. ; and Koslowski, T.
"The Link between General Relativity and Shape Dynamics", gr-qc/1101.5974, to appear in CQG; by HG, and Koslowski, T.
"Coupling Shape Dynamics to matter and Spacetime", gr-qc/1110.3837, to appear in GRG, HG, and Koslowski, T.
"Coupling of Shape Dynamics to matter", gr-qc/1112.0374, to appear in J. Phys., HG
"Non-uniqueness of the Shape Dynamics Hamiltonian", gr-qc/1201.3969, submitted to Comm. Math. Phys., HG
+2 PhD thesis, work in $2+1, \mathrm{dS} / \mathrm{CFT}, \ldots$

