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Notational warning!!

This will be a talk focused on 3+1 formulations of gravity.

3D vs 4D

Here g is a 3D Riemannian metric (the spatial metric) that evolves in
time. If we ever need to use 4D Lorentzian metric, we’ll use h.

Over a closed (compact without boundary) 3-dimensional manifold
Σ!

We will avoid indices as much as we can, but they are there!

When we talk about a conformal transformation, we mean Weyl
transformations, as g 7→ αg .
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What is Shape Dynamics?

What it is

A Hamiltonian formulation of gravity with the following proeminent
features:

Possesses the same canonical variables as Hamiltonian GR: (g , π).

Does not possess refoliation invariance (boosts).

Trades that symmetry for foliation preserving conformal
transformations (Weyl) + unique, non-local global Hamiltonian.

What it is not

York’s approach to the initial value problem (and its related
constant-mean-curvature gauge for GR).

Barbour et al’s CS+V re-derivation of York.

Both very useful and necessary for Shape Dynamics, but neither has
conformal symmetry manifest in the dynamics.
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Roadmap

Roadmap of this talk

Brief review of Hamiltonian GR.

Main ideas in Shape Dynamics.

Adding matter and large volume expansion

Conclusion.

Purpose

Purpose of this talk is to familiarize the audience with the construction
and main features of Shape Dynamics. Useful for following talks.



Outline

1 Hamiltonian GR

2 Shape Dynamics

3 Matter and large volume expansion

4 Outlook
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Hamiltonian GR

Hypersurface foliation

Assume global hyperbolic: M ' Σ× R
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Hamiltonian GR

Intermezzo: Dirac analysis

Constraints are a convenient way to encode over-parametrization of
physical degrees of freedom.

Let φi (q, p) = 0, i ∈ I denote constraints. They define surfaces and flow
in phase space, and can have different degrees of mutual “conservation”:

Compatible.
These are called first class constraints. They arise when the
dynamical flow generated by one constraint conserves the set:
δφiφj = {φi , φj} = akφk

Impose further constraints. This occurs when the flow is only
conserved on some subsurface:

δφiφj = f (p, q)⇒ f = 0 must now be added to the list of
constraints.

Second class. These arise when the two constraints are conjugate.
δφiφj = 1. Must either find a coordinate system where they don’t
appear, or project dynamics to constraint surface.
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Hamiltonian GR

Canonical framework: ADM

Use Gauss-Codazzi relations + Einstein equations: 4R 7→ (R,K )

Over-parametrization: relations that extrinsic curvature have to
satisfy.

Legendre: (g , ġ) 7→ (g , π)

Constraints: ensure relations hold.

Ha(x) = π b
a ;b = 0

S(x) = tr(π · π)− 1
2
(trπ)2 − R = 0

S(x) and Ha(x) are first class. They generate compatible
symmetries (on the constraint surface).

Total Hamiltonian: HADM =
∫

Σ
d3x (N(x)S(x) + ξa(x)Ha(x))

Is “pure constraint” . This is the ADM system.
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Hamiltonian GR

Momentum and scalar constraints

Ha(x) generates 3-diffeomorphisms.

True (infinite-dimensional) Lie algebra.

S(x) generates time refoliation (and thus evolution).

In contrast to the action of 3-diffeomorphisms:

Enormous difficulty in giving meaning to GR’s physical degrees of
freedom!

Not subalgebra (commutation relations involve 3-diffeomorphisms),
and entire constraint algebra is “soft” (structure functions).

Introduces many, many difficulties in quantization.

S(x) quadratic in momenta: δ
δg(x)

δ
δg(x) : ill-defined.

Constraints imposed at the quantum level: ŜΨ[g ] = 0.
Klein-Gordon type equation. Inner product?
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Shape Dynamics

Motivation: “pure constraint” systems such as GR may have observables
coinciding with that of systems with different symmetries.

Refoliation invariance has famous gauge fixing exploring spatial conformal
transformations ([York]).
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Shape Dynamics

Preliminary: intrinsic constant mean curvature gauge

What is the constant mean curvature condition?

The trace of the extrinsic curvature of each leaf is spatially constant.

Roughly, means that observers use the Hubble constant as a clock.

Mathematically: set trπ = 1
V

∫
trπ =: 〈trπ〉.

Note that trπ generates conformal transformations. I.e.

{trπ(ε), g} = εg

{trπ(ε), π} = −επ

trπ− 1
V

∫
trπ generates volume-preserving conformal transformations.
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Shape Dynamics

Shape Dynamics: Main message (words)

On a certain region in phase space, there exists a very special system
dynamically equivalent to ADM.

Region is that of constant-mean curvature (CMC) foliable Einstein
spacetimes (with closed Σ). (see Isenberg’s talk for
counter-examples)

System is one that does not possess refoliation symmetry.

Instead it possesses local 3D scale invariance. Symmetry trading!

All constraints linear in momenta.

Individual sets of constraints form subalgebras. Easy to quotient.
Physical degrees of freedom clear.

Exists in the original ADM phase space (g , π) with the canonical
Poisson bracket.

Possesses one global Hamiltonian which depends only on (g , π) (no
explicit “time” dependence).
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Shape Dynamics

Shape Dynamics: Main message

ADM (Σ× R)

Local 1st class constraints:

3-diffeomorphisms

refoliations

HADM =∫
d3x(N(x)S(x) + ξa(x)Ha(x))

Shape Dynamics

Local 1st class constraints

3-diffeomorphisms

Conformal transformations

Hdual =

Hgl +
∫

d3x [λ(x)D(x) + ξa(x)Ha(x)]

Ha(x): momentum constraint (one per x).

S(x): Scalar constraint (one per x).

D(x) = 4(π − 〈π〉√g)(x): conformal constraint (one per x).

Hgl: Global Shape Dynamics Hamiltonian.
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Shape Dynamics

How is it constructed? Figure.
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Shape Dynamics

How is it constructed? Words.

1 Introduce artificial symmetry (Stuckelberg) and extend phase space
(and functions)

2 Extra constraint arises (constrains functions on extended phase
space to represent original functions: no extra physical degrees of
freedom).

3 Impose specific (natural) gauge fixings and separate first and second
class parts of constraints.

4 Will get that S(x) separates into 1 first class constraint (evolution)
and the rest second class.

5 Solve 2nd class constraints for extra Stuckelberg variables.

6 Get back to original phase space g , π with canonical Poisson
bracket.

Leftover constraints first class, generating diffeomorphisms, local 3d
conformal transformations, and global evolution.



Shape Dynamics. 14/ 28

Shape Dynamics

How is it constructed? Words.

1 Introduce artificial symmetry (Stuckelberg) and extend phase space
(and functions)

2 Extra constraint arises (constrains functions on extended phase
space to represent original functions: no extra physical degrees of
freedom).

3 Impose specific (natural) gauge fixings and separate first and second
class parts of constraints.

4 Will get that S(x) separates into 1 first class constraint (evolution)
and the rest second class.

5 Solve 2nd class constraints for extra Stuckelberg variables.

6 Get back to original phase space g , π with canonical Poisson
bracket.

Leftover constraints first class, generating diffeomorphisms, local 3d
conformal transformations, and global evolution.



Shape Dynamics. 14/ 28

Shape Dynamics

How is it constructed? Words.

1 Introduce artificial symmetry (Stuckelberg) and extend phase space
(and functions)

2 Extra constraint arises (constrains functions on extended phase
space to represent original functions: no extra physical degrees of
freedom).

3 Impose specific (natural) gauge fixings and separate first and second
class parts of constraints.

4 Will get that S(x) separates into 1 first class constraint (evolution)
and the rest second class.

5 Solve 2nd class constraints for extra Stuckelberg variables.

6 Get back to original phase space g , π with canonical Poisson
bracket.

Leftover constraints first class, generating diffeomorphisms, local 3d
conformal transformations, and global evolution.



Shape Dynamics. 14/ 28

Shape Dynamics

How is it constructed? Words.

1 Introduce artificial symmetry (Stuckelberg) and extend phase space
(and functions)

2 Extra constraint arises (constrains functions on extended phase
space to represent original functions: no extra physical degrees of
freedom).

3 Impose specific (natural) gauge fixings and separate first and second
class parts of constraints.

4 Will get that S(x) separates into 1 first class constraint (evolution)
and the rest second class.

5 Solve 2nd class constraints for extra Stuckelberg variables.

6 Get back to original phase space g , π with canonical Poisson
bracket.

Leftover constraints first class, generating diffeomorphisms, local 3d
conformal transformations, and global evolution.



Shape Dynamics. 14/ 28

Shape Dynamics

How is it constructed? Words.

1 Introduce artificial symmetry (Stuckelberg) and extend phase space
(and functions)

2 Extra constraint arises (constrains functions on extended phase
space to represent original functions: no extra physical degrees of
freedom).

3 Impose specific (natural) gauge fixings and separate first and second
class parts of constraints.

4 Will get that S(x) separates into 1 first class constraint (evolution)
and the rest second class.

5 Solve 2nd class constraints for extra Stuckelberg variables.

6 Get back to original phase space g , π with canonical Poisson
bracket.

Leftover constraints first class, generating diffeomorphisms, local 3d
conformal transformations, and global evolution.



Shape Dynamics. 14/ 28

Shape Dynamics

How is it constructed? Words.

1 Introduce artificial symmetry (Stuckelberg) and extend phase space
(and functions)

2 Extra constraint arises (constrains functions on extended phase
space to represent original functions: no extra physical degrees of
freedom).

3 Impose specific (natural) gauge fixings and separate first and second
class parts of constraints.

4 Will get that S(x) separates into 1 first class constraint (evolution)
and the rest second class.

5 Solve 2nd class constraints for extra Stuckelberg variables.

6 Get back to original phase space g , π with canonical Poisson
bracket.

Leftover constraints first class, generating diffeomorphisms, local 3d
conformal transformations, and global evolution.



Shape Dynamics. 14/ 28

Shape Dynamics

How is it constructed? Words.

1 Introduce artificial symmetry (Stuckelberg) and extend phase space
(and functions)

2 Extra constraint arises (constrains functions on extended phase
space to represent original functions: no extra physical degrees of
freedom).

3 Impose specific (natural) gauge fixings and separate first and second
class parts of constraints.

4 Will get that S(x) separates into 1 first class constraint (evolution)
and the rest second class.

5 Solve 2nd class constraints for extra Stuckelberg variables.

6 Get back to original phase space g , π with canonical Poisson
bracket.

Leftover constraints first class, generating diffeomorphisms, local 3d
conformal transformations, and global evolution.



Shape Dynamics. 15/ 28

Shape Dynamics

Take away message from SD.

ADM

Local symmetries:

3-diffeomorphisms

refoliations

Shape Dynamics

One Hamiltonian + local symmetries:

3-diffeomorphisms

Conformal transformations

Shape Dynamics is to York CMC

as Electromagnetism is to
transverse gauge of vector potential.
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Matter and large volume expansion

Coupling other fields.

Question: how should fields scale ψ → enφ̂ψ?

Two problems:

1 Foliation depends on the field for scaling n 6= 0, not geometric (or
worse, for YM depends on the gauge)

Solution: only metric variables scale (“neutral coupling”)

2 Uniqueness of global Hamiltonian: involves invertibility of elliptic
2nd order diff. op. Requires:

1
2

(
δHm

δgab
gab − 1

2 Hm

)
≤ 1

12 〈π〉
2 + σ2

Both issues solved with neutral coupling for Yang-Mills (and gauge
invariance respected) and massless scalars.

But invertibility (point 2) doesn’t work always for massive scalars:
bound on the field magnitude (e.g. bound on the cosmological
constant).
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Matter and large volume expansion

Tractability: Large-volume expansion.

Global Hamiltonian is non-local. Solve order by order in a large
volume expansion. First few terms:

Hgl = 2(Λ− 1

12
〈π〉2)− Ro

V 2/3
+

1

V 2

〈
σ2
〉

+O(V −8/3)

Here Ro is the unique constant scalar curvature in the conformal
class of R (Yamabe gauge).

Global Hamiltonian can be seen as reparametrization constraint: for
large volume reparam. invariance implies full conformal invariance.

Also a Hamilton-Jacobi expansion for the on-shell action:

〈π〉 → δS
δV , πab → δS

δgab

S = S0V + S1V 1/3 + S2V −1/3 +O(V −1)
=

±
(√

16Λ
3 V −

√
3
Λ Ro V 1/3 +

(
3
Λ

)3/2 (
Ro

2 − 8
3

〈
Rab
o Ro

ab

〉)
V −1/3 + . . .

)
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Outlook

Possible advantages

Classically matches GR over (g , π) that satisfy trπ = c (gauge choices in
each) but

Advantage over CMC gauge-fixed ADM in that variables and
constraints on the dofs are “local”.

Different method to find solutions. Different symmetries. Different
gauges.

Maybe find different solutions and go back to ADM gauge ( and
covariantize)?

First try: finding a solution for ”KSdS” without imposing the ADM
constraints.

ADM cosmological perturbation theory complicated (because we
can’t separate evolution from constraints). Perturbations must
satisfy all constraints at each level.

Here, introduce perturbations that only need to satisfy the local
constraints, and use unperturbed global Hamiltonian to evolve?
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Outlook

Issues and outlook

The elephant in the room: global Hamiltonian is non-local.

We saw some ways around it: large-volume expansions. Other
expansions?

Theory is non-local because we include a volume-preserving
condition on conformal transfs.

This is necessary to have a non-trivial leftover Hamiltonian in Shape
Dynamics. I.e. to match ADM trajectories with Shape Dynamics
trajectories (to just match Cauchy data for a conformal theory and
ADM, no such problem arises).

If we are interested in the pure quantum theory, so what if we don’t
match trajectories?

BRST: A modification of Shape Dynamics possesses full Weyl and
special conformal symmetry (no diffeos) and serves as a complete
gauge-fixing fermion for the BRST-extended ADM.
The gauge-fixed ADM BRST-extended Hamiltonian possesses a
hidden symmetry: “symmetry doubling”. (Koslowski’s talk)
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Outlook

THANK YOU



Shape Dynamics. 21/ 28

APPENDIX



Outline

5 Some details of the construction
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Some details of the construction

Some details I: Extended phase space

Trivially embedd (g , π) 7→ (g , π, φ, πφ).

φ = 0⇒ extra constraint: πφ = 0.

Canonical transf.: F :=
∫

d3x
(

gab(x)e4φ̂(x)Πab(x) + φΠφ
)
.

Variables transform as:

tφg = e4φ̂(x)g

tφπ = e−4φ̂
(
π − 1

3 〈trπ〉g
(

1− e6φ̂
)

g−1
√
|g |
)
.

tφπφ = πφ − 4
(
trπ(x)−√g(x)〈trπ〉g

)
= 0

New set of constraints:

tφHa , tφS , tφπφ
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Some details of the construction

Some details II: Gauge fixings in extended theory

GR(3+1):

Set φ = 0 again.

Shape Dynamics:

Gauge-fixing πφ = 0 surface in Γextended.

{tφπφ, πφ} = 0

{tφHa, πφ} = 0

{tφS , πφ} 6= 0

We can separate tφS into:

tφ(S(N0)) for N0(x) ∈ C∞(M) (one 1st class)

K(x) := tφS(x)− tφ(S(N0))
√
g (“∞− 1” 2nd classes)
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Some details of the construction

Some details III: Second class constraint

What is meant by “purely second class” (maximally symplectic) ?

The bracket {K , πφ} has to be invertible.

What to do if it is invertible? Say its 1. Have to somehow project
down to surface again. One way is to find intrinsic coordinates.

Turns out (after quite a bit of work) that invertiblity of {K , πφ} relies on
the operator

∆ := ∇2 − 1

12
〈trπ〉2 − σ̄abσ̄ab

being invertible (for vacuum). It is.
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Some details of the construction

Reduction to Shape Dynamics

Furthermore, it can be now shown that K = 0 can be solved as a
function of φ. Setting φ = φo [g , π]:

K (φo , g , π) = 0

Locally, just implicit function theorem:

{K , πφ} = ∂K
∂φ invertible ⇒ there is a unique function φo above

Easy to check that Dirac bracket reverts to the canonical Poisson bracket
in the original phase space.

Got rid of extra variables whilst solving 2nd class constraints; reduced
dynamical system:

Shape Dynamics constraints

tφo (S(N0)),Ha(x), (trπ − 〈trπ〉√g)(x)

Everything dependent only on (g , π), no leftover dependence on the
unphysical variables.
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Some details of the construction

Shape Dynamics recap

ADM (Σ× R)
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Some details of the construction

Construction of Doubly General Relativity

Extending Shape Dynamics

fixed CMC condition Q(x) = π(x) + λ
√
|g |

conformal spatial harmonic gauge
F k(x) = (g abδkc + 1

3 g akδbc )ec
α(∇a − ∇̂a)eαb

First class system: {Q(x),Q(y)} = 0 = {F i (x),F j(y)}
as well as {Q(x),F i (y)} = F i (y)δ(x , y)

Interpretation as “local conformal system”

Q generates spatial dilatations and Poisson brackets resemble C (3) at
each point

Gauge fixing ADM

gauge fixing operator is elliptic and invertible in a region R

out side R: meager set with finite dimensional kernel
⇒ expect poles in ghost propagator
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Some details of the construction

The Papers

Papers:

“Einstein gravity as a 3D conformally invariant theory” Class. Quant.
Grav., 2011, 28; by HG, Gryb, S. ; and Koslowski, T.

“The Link between General Relativity and Shape Dynamics”,
gr-qc/1101.5974, to appear in CQG; by HG, and Koslowski, T.

“Coupling Shape Dynamics to matter and Spacetime”, gr-qc/1110.3837,
to appear in GRG, HG, and Koslowski, T.

“Coupling of Shape Dynamics to matter”, gr-qc/1112.0374, to appear in
J. Phys., HG

“Non-uniqueness of the Shape Dynamics Hamiltonian”, gr-qc/1201.3969,
submitted to Comm. Math. Phys. , HG

+ 2 PhD thesis, work in 2+1, dS/CFT, ...
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