
HIGGS HUNTER’S DIGEST

UC DAVIS: JOINT THEORY SEMINAR
APRIL 30, 2012

Jamison Galloway

Based on arXiv:1202.3415 with A. Azatov and R. Contino;

arXiv:1205.xxxx with A. Azatov, S. Chang, and N. Craig



Outline

Part I:  Setup
1.  What do we know from the LHC?
2.  How can we use this if we have BSM in mind?

Part II:  Application
1.  (Minimal) Composite Higgs
2.  (Minimal) SUSY

Part III:  Conclusions (as we go...)
1.  Utility of indirect information from constraining couplings

2.  Great opportunity for theory/experiment collaboration...
3.  ...as *required* to really get the most from this machine!

Naturalness ∝ (couplings "= SM)



PART ONE



Given background, signal, and observed events: construct likelihood:

P (n|nobs) =
nnobse−n

nobs!
× π(n)

A.L.−→ exp
[
−(n− nobs)2

2nobs

]
× π(n)
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Answer:
We know the amount by which we can rescale 

production/branching -- all in the same proportions -- 
and still be consistent with observation.

Said another way, we know what’s going on in a one-
dimensional parameter space: adequate in some cases, 
but in several others we’d like to push this information 

a bit further...

How do we proceed?

What do we know (thanks to the LHC)?



PART  TWO



The theory we know has to be augmented (unitarity, renorm’ability):
Three massive vectors, triplet of approximate SU(2)

described at leading order:

U = exp [2iτaπa(x)/v]
!→ LUR†

∆L =
v2

4
tr

[
(DµU)†(DµU)

]

− v√
2

ψc
i U† × λijψj + h.c.

A simplified theory input: “The non-panacean Higgs”
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Assumption: the (custodial singlet) ‘Higgs’ might not be 
single-handedly responsible for unitarization, etc.  

OTHER NEW PHYSICS enters at potentially low scales

Cases to consider here: Compositeness, SUSY
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FOCUSING ON THESE GUYS

Cases to consider here: Compositeness, SUSY

A simplified theory input: “The non-panacean Higgs”



First case:
Composite Higgs*

* Yukawa rescaling (“c”) = flavor-universal
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Solve for remaining parameter using observed exclusion limit:

0.95 =
∫ µ̃(95%)

obs

0
dµ P (µ)



Moving on: Comparison to RECONSTRUCTED Likelihood

P (µ) = N × exp
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RECAP:
o  Expected exclusion tells us about s/b
o  Observed tells us delta, completes determination of (AL) likelihood
o  Good news: can be done over whole mass range, not just at ‘peaks’
    where information on best fit is available

Solve for remaining parameter using observed exclusion limit:

0.95 =
∫ µ̃(95%)

obs

0
dµ P (µ)



Status report for unpopular mass points
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Status report for the Higgs at 125(?)(!)
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ATLAS seems to disfavor the SM: 
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SM LOOKS FINE

ATLAS seems to disfavor the SM: 
how should we take this?

NOT VERY SERIOUSLY
stay tuned...

Status report for the Higgs at 125(?)(!)



ALL INCLUSIVE vs. ALL EXCLUSIVE subchannels:
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CMS Likelihoods !$ 4.8 fb#1 % 7 TeV": All Exclusive

Take Caution: Need Exclusive Searching and Reporting



Second case:
SUSY



First: U and D Yukawas differ (Type-II 2HDM)

I want *two* Higgses Me too!!

Holomorphy Anomaly-cancellation
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First: U and D Yukawas differ (Type-II 2HDM)

I want *two* Higgses Me too!!

Holomorphy Anomaly-cancellation

(
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d〉 ≡ tanβ

cu ≡ ghQuc/SM =
cos α

sinβ

cd ≡ ghQdc/SM =
− sinα

cos β

a ≡ gauge/SM = sin(β − α)
} What is the data telling us 

about this space?
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First look: *The* space of the MSSM Higgs

o  Peak likelihood lies very close to the deoupling limit contour
o  Consistency of this requires ALL couplings to revert to SM
o  To check this, we can examine a 3D space...

H0, H±, A0 →∞;
⇒ a, cu, cd → 1

Decoupling:

Supported here by 
couplings, but also by 

Higgs mass!

mh → mZ as mA0 →∞



FIRST: What does the accessible space of Yukawas look like?
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And for the MSSM?

''Up!Suppressed''

''Down!Suppressed''
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Yukawa Couplings: General Type!II 2HDM

The *very constrained* quartic structure of the MSSM 
(all coming from D terms) forbids it from entering the 
down-suppressed region whenever tan beta > 1. 



Status...
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We can construct the likelihood in the full 3D space, then 
project the gauge direction onto the 2D Yukawa plane:
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We can construct the likelihood in the full 3D space, then 
project the gauge direction onto the 2D Yukawa plane:

While gauge coupling currently prefers decoupling (couplings = SM), 
fermions seem to sing a slightly different tune: inaccessible for MSSM!



How does the MSSM fare?

λ1,2,3 =
1
8
(g2 + g′ 2)MSSM for neutral CP-even fields:

∆Vgeneric = λ1 |Hu|4 + λ2 |Hd|4 − 2λ3 |Hu|2 |Hd|2

(+ non-minimal terms)

with potentially  lifesaving quantum corrections to     , but for 
“down-suppression” we need

λ1

v2
u × (λ1 + λ3) < v2

d × (λ2 + λ3)

i.e. big quantum-level correction to         when  λ2,3 tanβ > 1

Natural thing to consider: new non-minimal dynamics -- new fields 
or compositeness...



Down-Suppression from New Perturbative Dynamics

1.  Singlets (e.g. NMSSM)

1I.  Doublets (Superconformal TC = “The Seiberg Higgs”)

III.  Triplets

v2
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d × (λ2 + λ3)



Down-Suppression from New Perturbative Dynamics

1.  Singlets (e.g. NMSSM)

1I.  Doublets (Superconformal TC = “The Seiberg Higgs”)

III.  Triplets

v2
u × (λ1 + λ3) < v2

d × (λ2 + λ3)

∆W = λSHuHd + κS3 ⇒ δλ3 = − |λ|2



Down-Suppression from New Perturbative Dynamics

1.  Singlets (e.g. NMSSM)

1I.  Doublets (Superconformal TC = “The Seiberg Higgs”)

III.  Triplets

v2
u × (λ1 + λ3) < v2

d × (λ2 + λ3)

∆W = λSHuHd + κS3 ⇒ δλ3 = − |λ|2



Down-Suppression from New Perturbative Dynamics

1.  Singlets (e.g. NMSSM)

1I.  Doublets (Superconformal TC = “The Seiberg Higgs”)

III.  Triplets

v2
u × (λ1 + λ3) < v2

d × (λ2 + λ3)

∆W = λSHuHd + κS3 ⇒ δλ3 = − |λ|2

}⇒ ∆L ∼ λu,dΛ3

16π2
Hu,d; vu,d ∼

λu,dΛ3

16π2m2
Hu,d

Tadpoles
   Masses
INDEPENDENT

ANGLES!

⇒ β
⇒ α

∆W = λuHuOd + λdHdOu



Down-Suppression from New Perturbative Dynamics

1.  Singlets (e.g. NMSSM)

1I.  Doublets (Superconformal TC = “The Seiberg Higgs”)

III.  Triplets

v2
u × (λ1 + λ3) < v2

d × (λ2 + λ3)

∆W = λSHuHd + κS3 ⇒ δλ3 = − |λ|2

Tadpoles
   Masses
INDEPENDENT

ANGLES!
⇒ ∆L ∼ λu,dΛ3

16π2
Hu,d; vu,d ∼

λu,dΛ3

16π2m2
Hu,d

} ⇒ β
⇒ α

∆W = λT THuHu + λT̄ T̄HdHd ⇒ δλ1,2 =
∣∣λT,T̄

∣∣2

∆W = λuHuOd + λdHdOu



Down-Suppression from New Perturbative Dynamics

1.  Singlets (e.g. NMSSM)

1I.  Doublets (Superconformal TC = “The Seiberg Higgs”)

III.  Triplets

v2
u × (λ1 + λ3) < v2

d × (λ2 + λ3)

∆W = λSHuHd + κS3 ⇒ δλ3 = − |λ|2

Tadpoles
   Masses
INDEPENDENT

ANGLES!
⇒ ∆L ∼ λu,dΛ3

16π2
Hu,d; vu,d ∼

λu,dΛ3

16π2m2
Hu,d

} ⇒ β
⇒ α

∆W = λT THuHu + λT̄ T̄HdHd ⇒ δλ1,2 =
∣∣λT,T̄

∣∣2

∆W = λuHuOd + λdHdOu



Conclusions

I. (preliminary)  Composite Higgs: Fairly SM-like couplings 
indicate strong dynamics at a high scale (so for instance would 
need large N for light resonances)

II. (preliminary) SUSY: Some hints of non-minimality so 
far; non-SM couplings indicate that some new states could 
show up soon...

III.  Generally: Couplings provide crucial indirect hints and 
consistency checks for BSM physics...



Conclusions

I. (preliminary)  Composite Higgs: Fairly SM-like couplings 
indicate strong dynamics at a high scale (so for instance would 
need large N for light resonances)

II. (preliminary) SUSY: Some hints of non-minimality so 
far; non-SM couplings indicate that some new states could 
show up soon...

III.  Generally: Couplings provide crucial indirect hints and 
consistency checks for BSM physics...

If spectra make headlines, couplings will be the fact checkers:

Each piece of the puzzle is important for consistency of the 
emerging picture; ultimately more data are needed, but we 

should be well-prepared to fully analyze every bit that we can!



Backups
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One possible check: the total combination
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CMS ! 7 TeV, " 4.8 fb#1
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o  ACCURATE WITHIN 10% BELOW 300 GeV; 
    within 20% at high masses

o  Compare to “naive graphical analysis” (adding in 
    inverse quadrature) which errs by 40% or more

o  Looks good: let’s apply the method and run with it
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A closer look at “signal strength modifier”

We want to compare number of observed signal events in SM units:
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This can be related purely to theory, but 

it’s only approximate

EFFICIENCIES NEEDED
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Status report for the Higgs at 125(?)(!)

1. WW 2. γγ 3. ZZ 4. ττ 5. bbWW

1, 2. Zero Jet, same/opposite flavor lepton
3, 4. One Jet, same/opposite flavor lepton

5. Two Jets

} Inclusive

VBF

Five channels for a light Higgs:



Status report for the Higgs at 125(?)(!)

1. WW 2. γγ 3. ZZ 4. ττ 5. bbγγ

1. Both in barrel, min(R9) > 0.94
2. Both in barrel, min(R9) < 0.94
3. ≥ One in endcap, min(R9) > 0.94
4. ≥ One in endcap, min(R9) < 0.94
5. Dijet tag

} Inclusive

VBF

Five channels for a light Higgs:



Status report for the Higgs at 125(?)(!)

1. WW 2. γγ 3. ZZ 4. ττ 5. bb

Inclusive               

ZZ ττ bb

VBF + GF + “Boosted”

Associated Production

(combined limit given; event numbers for one mass)

Five channels for a light Higgs:



Take Caution: Need Exclusive Searching and Reporting

About the displayed CMS results:
o  All WW subchannels treated individually
o  Others (except bb) treated inclusively
o  Can do better for gamma gamma exactly at peak

Different method:
Fit each band with

appropriate distribution
(approx. Gaussian)



About the displayed CMS results:
o  All WW subchannels treated individually
o  Others (except bb) treated inclusively
o  Can do better for gamma gamma exactly at peak

e.g. ...

Take Caution: Need Exclusive Searching and Reporting



About the displayed CMS results:
o  All WW subchannels treated individually
o  Others (except bb) treated inclusively
o  Can do better for gamma gamma exactly at peak

Total likelihood given by 
product of all

Take Caution: Need Exclusive Searching and Reporting
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CMS Likelihoods !$ 4.8 fb#1 % 7 TeV": All Inclusive
Side-by-side comparison of INCLUSIVE results:

(There *are* real differences, but we see a 
distinctive -- qualitative -- similarity here)

Take Caution: Need Exclusive Searching and Reporting



Final Point: The Need for Exclusive Searching and Reporting

Now treat gamma gamma subchannels:
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CMS Likelihoods !$ 4.8 fb#1 % 7 TeV": ΓΓ Exclusive
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CMS Likelihoods !$ 4.8 fb#1 % 7 TeV": All Inclusive
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Now treat gamma gamma subchannels:
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CMS Likelihoods !$ 4.8 fb#1 % 7 TeV": All Inclusive

VBF



Final Point: The Need for Exclusive Searching and Reporting

Now treat gamma gamma subchannels:
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CMS Likelihoods !$ 4.8 fb#1 % 7 TeV": ΓΓ Exclusive
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CMS Likelihoods !$ 4.8 fb#1 % 7 TeV": All Inclusive

VBF

near c = 0 line, R ∼ a2 Excess in dijet 
fit with gauge coupling



Final Point: The Need for Exclusive Searching and Reporting

WW subchannels:
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CMS Likelihoods !$ 4.8 fb#1 % 7 TeV": All Inclusive
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CMS Likelihoods !$ 4.8 fb#1 % 7 TeV": WW Exclusive



Final Point: The Need for Exclusive Searching and Reporting

WW subchannels:
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VBF



Final Point: The Need for Exclusive Searching and Reporting

WW subchannels:

!!
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68" CL
90" CL
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CMS Likelihoods !$ 4.8 fb#1 % 7 TeV": All Inclusive
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CMS Likelihoods !$ 4.8 fb#1 % 7 TeV": WW Exclusive

VBF

Note VBF cuts deeper in this case:
signal deficit in this subchannel

BG ~ 11, obs. ~ 8


