Recent Dark Matter Limits from CDF and CMS

John Paul Chou Rutgers University

Dark Matter in Collision Workshop University of California, Davis Thursday, April 12th, 2012

- Brief theoretical introduction
- CMS results
 - Monophoton
 - Monojet
- CDF results
 - Monojet
 - Monotop
- Conclusions and talking points

Introduction

- Focus of this talk is on collider DM searches (not necessarily within the framework of CMSSM)
- Key to collider searches: rotate Feynman diagrams assumed in directdetection experiments (use s-channel, instead of t-channel mode)

Signature

- Use QED/QCD initial state radiation (ISR) to "tag" DM events
 - results in a "monophoton" or "monojet" signature with missing transverse energy (MET) balancing the photon or jet

Phenomenology

JHEP 12 (2010) 048

• treat as an effective theory where we integrate out a massive mediator

$$\begin{aligned} \mathcal{O}_{\rm V} &= \frac{(\bar{\chi}\gamma_{\mu}\chi)(\bar{q}\gamma^{\mu}q)}{\Lambda^2} & \text{s-channel vector} \Leftrightarrow \text{spin independent (SI)} \\ \mathcal{O}_{\rm A} &= \frac{(\bar{\chi}\gamma_{\mu}\gamma_5\chi)(\bar{q}\gamma^{\mu}\gamma_5q)}{\Lambda^2} & \text{s-channel axial-vector} \Leftrightarrow \text{spin dependent (SD)} \\ \mathcal{O}_{\rm t} &= \frac{(\bar{\chi}P_{\rm R}q)(\bar{q}P_{\rm L}\chi)}{\Lambda^2} + ({\rm L}\leftrightarrow{\rm R}) & \text{t-channel} \Leftrightarrow (\text{mostly}) \text{ SI} \\ \\ \textbf{SI and SD} \\ \textbf{\chi-nucleon } \sigma: & \sigma_{\rm SI} = \frac{9}{\pi} \left(\frac{\mu}{\Lambda^2}\right)^2 & \sigma_{\rm SD} = \frac{0.33}{\pi} \left(\frac{\mu}{\Lambda^2}\right)^2 \\ \end{aligned}$$

(μ is the reduced mass of the χ and proton)

Dark Matter In Collision – UC Davis – Thursday, April 12th, 2012 – JPC

CMS Detector

Tracker: ~1 m² Pixels (66M channels) ~200 m² Si microstrips (9.6M channels) **Iron Yoke** 4 stations of muon detectors 3.8 T Solenoid **ECAL: Electromagnetic** calorimeter - 76K PbWO₄ crystals HCAL: hermetic Brass/ 12 500 tons **Scintillator sampling hadronic** 21 m long calorimeter 15 m diameter

Dark Matter In Collision – UC Davis – Thursday, April 12th, 2012 – JPC

Particle ID at CMS

CMS Monophoton: Selection

- Require a single photon in an event with...
 - High transverse momentum: p_T>145 GeV
 - Central (best reconstruction purity): |η|<1.44
 - Shower shape and timing consistent with a photon
 - "particle flow" MET > 130 GeV
 - photon must be isolated separately in the tracker, hadronic & electromagnetic calorimeters
- Suppress electroweak backgrounds with lepton (track) veto
 - No track away from γ (ΔR >0.04) with p_T>20 GeV
- Suppress QCD background with jet veto
 - No high p_T jet away from γ (ΔR>0.5) with p_T>40 GeV and |η|<3.0

73 events pass selection (and do not fail either veto)

CMS Monophoton: Monte Carlo Backgrounds

- $Z(vv) + \gamma$ (45.3 ± 6.8 events)
 - Irreducible background
 - Generated by Pythia; scaled to theoretical NLO cross section from Bauer

DM

DM

- W+ γ
 - lepton escapes isolated-track veto
 - Generated by Madgraph; scaled by NLO K factor from MCFM
- γ+jet
 - jet veto not flagged
 - due to jet/MET mis-measurement
- γγ
 - due to MET mis-measurement
- Contribution from W+ γ , γ +jet, and $\gamma\gamma$: 4.1 ± 1.0 events

CMS Monophoton: Instrumental Backgrounds

- Jets mimicking photons (11.2 ± 2.8 events)
 - dominated by jets fluctuation to a hard π^0
 - Use EM-enriched multijet sample to measure ratio of isolated photons to non-isolated, "photons" objects

DM

DM

- Statistically subtract out direct photon contribution to multijet sample by fitting shower shape templates
- apply ratio to non-isolated "photons" in the signal sample to estimate the total contribution
- Out-of-time backgrounds (11.1 ± 5.6 events)
 - dominated by beam-halo events (also tiny contribution from cosmic rays and anomalous noise)
 - Fit shower-shape templates to the signal sample but without any timing requirements
 - Extrapolate contributions to in-time photons
- Electrons mimicking photons (3.5 ± 1.5 events)
 - Principally from W→ev
 - Electrons and photons are distinguished by hits in the pixel tracker. The inefficiency is small (<0.5%) and well-predicted in simulation
 - Background determined by extrapolation from control sample of electrons

CMS Monophoton: Background Summary

Z(vv)+ γ : 45.3 ± 6.8 Jets faking photons: 11.2 ± 2.8 Out-of-time backgrounds: 11.1 ± 5.6 W+ γ , γ +jet, $\gamma\gamma$: 4.1 ± 1.0 Electrons faking photons: 3.5 ± 1.5 Total expected events: 75.1 ± 9.4 Total observed events: 73

Data show generally good agreement with standard model predictions (both rate and shape)

CMS Monophoton: Event Display

CMS Monophoton: Limit Setting

- Model signal with Madgraph4 (matrix element) + Pythia6 (showering)
 - Λ=M=10 TeV (mediator couplings set to unity)
 - small systematic uncertainties from photon energy scale (2.3%), pile-up modeling (2.4%), jet-energy scale (1.2%), etc.
- Use modified frequentist CL_S prescription to set 90% CL limits on production cross section for additional signal contribution

•	translate to	limits on /	and subsequently	to the WIM	IP-nucleon	cross section
---	--------------	-------------	------------------	------------	------------	---------------

MICAU	Vec	tor	Axial-Vector		
M_{χ} [Gev]	σ [fb]	Λ [GeV]	σ [fb]	Λ [GeV]	
1	14.3 (14.7)	572 (568)	14.9 (15.4)	565 (561)	
10	14.3 (14.7)	571 (567)	14.1 (14.5)	573 (569)	
100	15.4 (15.3)	558 (558)	13.9 (14.3)	554 (550)	
200	14.3 (14.7)	549 (545)	14.0 (14.5)	508 (504)	
500	13.6 (14.0)	442 (439)	13.7 (14.1)	358 (356)	
1000	14.1 (14.5)	246 (244)	13.9 (14.3)	172 (171)	

90% CL limits for V and AV couplings (expected limits shown in parentheses)

CMS Monophoton: Cross Section Limits

XENON100: PRL 107 (2011) 131302	SIMPLE: PRL 105 (2010) 211301
CDMS 2010: Science 327 (2010) 1619	COUPP: PRL 106 (2011) 021303
CDMS 2011: PRL 106 (2011) 131302	IceCube: PRD 85 (2012) 042002
CoGeNT: PRL 106 (2011) 131301	Super-K: ApJ 742 (2011) 78
	CDF: arXiv:1203.0742 (submitted to PRL)

Dark Matter In Collision – UC Davis – Thursday, April 12th, 2012 – JPC

CMS Monojet: Jet Selection

- Require **1 or 2** jets ordered in p_T where...
 - Leading jet has $p_T>110$ GeV and $|\eta|<2.4$; second jet may have $p_T>30$ GeV
 - Δφ(jet₁,jet₂)<2.5
 - Jets reconstructed with particle flow; anti- k_T algorithm with R=0.5
 - suppress cosmic muons, instrumental noise, and beam-related backgrounds
 - charged hadron fraction of leading jet >20%
 - neutral hadron or neutral electromagnetic fraction of leading jet <70%
 - neutral hadron fraction of subleading jet <70%

Dark Matter In Collision – UC Davis – Thursday, April 12th, 2012 – JPC

CMS Monojet: **Event Selection**

- Trigger on events with jet p_T>80 GeV and MET>95 GeV
- Suppress electroweak contributions
 - reject events with an isolated electron, muon or track with p_T>10 GeV
- Require "particle flow" MET>350 GeV

 Ingge 		even		iin je	ε pτ>α	ou Ge	vano		1>95 Ge	V
 Suppr 	ess e	ectr	owe	ak c	ontrib	oution	S			
• reje	ect ev	/ents	s with	n an	isolat	ed ele	ectror	n, mu	ion or tra	ck
Requi	re "pa	articl	e flo	w" N	/IET>3	350 G	eV			
• op:	timize	ed fo	r bes	st se	nsitivi	ity to	new p	ohysi	^{CS} ≳ [
									⁹ ¹⁰	
Requirement	W+jets	$Z(\nu\nu)$	$Z(\ell\ell)$	tī	Single t	QCD multijet	Total	Data	ີ ໄດ້ 	J
$E_{\rm T}^{\rm miss} > 200 {\rm GeV}$ $p_{\rm T}(j_1) > 110 {\rm GeV/c},$ $ n(j_1) < 2.4$	55269 52100	30312 28267	4914 4590	12455 11107	1090 968	14959 14743	118999 111775	104485 100658		
$ \eta(j_1) < 2.4$ $N_{jets} \le 2$ $\Delta \phi(j_1, j_2) < 2$	37112 33123	21245 19748	3229 2936	1484 1256	256 222	4952 58	68278 57343	62395 53846	ш 10 ²	
Lepton Removal $E_{\rm T}^{\rm miss} > 250 {\rm GeV}$ $E_{\rm miss}^{\rm miss} > 300 {\rm GeV}$	9561 2632 816	14663 5106 1908	76 21 6	200 65 21	33 10 3	2 2 1	24535 7836 2755	23832 7584 2774	10	٩,
$E_{\rm T}^{\rm miss} > 350 {\rm GeV}$ $E_{\rm T}^{\rm miss} > 400 {\rm GeV}$	312 135	900 433	2 1	8 3	1 0	1	1224 573	1142 522	10	

Good agreement between data and SM backgrounds (1224±101 expected versus 1142 observed)

CMS Monojet: Background Estimation

- Data-driven estimation of Z(vv)+jets
 - Release lepton suppression and use Z(µµ)+jets that pass monojet trigger and selection
 - 60< $M_{\mu\mu}$ <120 GeV (and leptons have opposite charge)
 - Extrapolate from µµ events to vv events:

$$N(Z \to \nu\nu) = \frac{N^{\text{obs}} - N^{\text{bkg}}}{\mathcal{A} \times \epsilon} \cdot R\left(\frac{Z \to \nu\nu}{Z \to \ell\ell}\right)$$

- 10.4% systematic uncertainty (mainly from statistical uncertainty of Z(µµ)+jets data)
- Similar method used to estimate subdominant W+jets background where a lepton is "lost"
 - use MC to estimate acceptance (7.7% uncertainty) and efficiency (6.8% uncertainty) but normalize to events with one lepton and 50<M_T<100 GeV

17

CMS Monojet: Event Display

CMS Experiment at LHC, CERN Data recorded: Tue Oct 4 02:50:32 2011 CEST Run/Event: 177783 / 442962676 Lumi section: 273

CMS Monojet: Limit Setting

- Model signal with Madgraph5 (matrix element) + Pythia6 (showering)
 - Λ=M=40 TeV (mediator couplings set to unity)
- Larger systematic uncertainties than monophoton search coming from
 - Jet energy scale ~10%
 - luminosity 4.5%
 - PDF acceptance uncertainties 2-4%
 - Jet energy resolution 2%

Background process	Events		
$Z \rightarrow \nu \bar{\nu}$	900 ± 94		
W+jets	312 ± 35		
tī	8 ± 8		
$Z(\ell \ell)$ +jets	2 ± 2		
QCD multijet	1 ± 1		
Single t	1 ± 1		
Total background	1224 ± 101		
Observed in data	1142		

 Use CL_S as before to set 90% CL limits on the mediator mass and subsequently the WIMP-nucleon cross section

	Spin-dep	endent	Spin-independent		
M_{χ} (GeV/ c^2)	$\sigma(cm^2)$	$\Lambda(\text{GeV})$	$\sigma(cm^2)$	$\Lambda(\text{GeV})$	
1	3.37×10^{-41}	730	7.20×10^{-40}	776	
10	$9.83 imes 10^{-41}$	744	2.12×10^{-39}	789	
100	1.33×10^{-40}	718	2.65×10^{-39}	776	
400	5.14×10^{-40}	514	6.66×10^{-39}	619	
700	2.95×10^{-39}	332	2.62×10^{-38}	440	
1000	2.15×10^{-38}	202	1.57×10^{-37}	281	

Dark Matter In Collision – UC Davis – Thursday, April 12th, 2012 – JPC

CMS Monojet: Cross Section Limits

Presents best limits for low mass (<6 GeV) in the SI mode and up to ~200 GeV in the SD mode

CDF Detector

Dark Matter In Collision – UC Davis – Thursday, April 12th, 2012 – JPC

CDF Monojet: Jet Selection

22

- Require **1 or 2** jets ordered in p_T where...
 - Leading jet has $p_T>60$ GeV and $|\eta|<1.0$
 - sub-leading jet with 20<pt<30 GeV
 - no jet has EMF<90%
 - jets do not lie near calorimeter "cracks"
 - contain at least one track with p_T>10 GeV
 - Reconstructed with JetClu algorithm, R=0.4

CDF Monojet: Event Selection

R = (scalar sum of lead and

sub-leading jet E_T) / (scalar sum of lead and sub-leading

- Trigger on events with MET>40 GeV
 - In addition to jet selection, require large MET>60 GeV
- Clean-Up cuts
 - jet-MET must be back-to-back: Δφ(MET,jet₁)>2.5
 - Consistent MET and "TrkMET₁₀": Δφ(TrkMET₁₀,MET)<0.4 and |TrkMET₁₀|<|MET|
 - (TrkMET₁₀ is the "MET" computed with tracks with $p_T > 10$ GeV)
 - Event consistent with hadronic jet: 0.35>event EM fraction>0.85
 - MET significance<15
 - QCD rejected via cut on neural-net output: NN_{QCD}>0.3

CDF Monojet: Background Estimation

- Z+jets, W+jets, WW, WZ, ZZ, ttbar, and single-top estimated with MC simulation
- Non-collision backgrounds estimated to have (1±1)% inefficiency
- QCD Multijet background
 - Shape estimated from "rate matrix" technique
 - Establish fraction of events due to QCD multijets as a function of 6 parameters in a QCD-enriched control region
 - normalize in NN_{QCD} side-band of signal region (50% uncertainty)

binning
$[0,1,10,20, \ge 200]$
[0, 0.5, 0.8, 2, 3, 3.1, 3.14]
$[1,2,\geq 3]$
$[60, 70, \ge 200]$
[0, 7.5, 15.1]
[0, 0.45, 0.5, 0.55, 1]

Contribution	PreSelection	QCD Control	EWK Control	Signal Region
non-collision	337 ± 337	49 ± 48	1 ± 1	6 ± 6
Z	44636 ± 5393	6949 ± 840	1280 ± 155	22191 ± 2681
W	131070 ± 17552	14986 ± 2007	5582 ± 747	27892 ± 3735
diboson	2843 ± 248	626 ± 55	101 ± 9	412 ± 36
$t\overline{t}$	3887 ± 743	1122 ± 215	20 ± 4	23 ± 4
single-top	2229 ± 303	397 ± 54	27 ± 4	104 ± 14
multijet	280143 ± 140072	165479 ± 82740	1066 ± 533	3278 ± 1639
total background	465145 ± 141799	189608 ± 82787	8076 ± 1011	53904 ± 6022
$\operatorname{A-V}[\mathcal{M}_{10\mathrm{TeV}},\chi_{1\mathrm{GeV}}]$ 0 50 pb	261 ± 19	52 ± 4	10 ± 1	151 ± 11
data	465084	188361	7942	52633

— CDF Run II Preliminary 6.7 fb⁻¹ —

CDF Monojet: Kinematic Distributions

CDF Monojet: Limit Setting

• Use Bayesian approach to compute 90% CL upper limits on DM production using a binned likelihood in lead jet pT

exclude upper limits on production cross section for DM particles between 0.96 and 42.8 pb

CDF Monojet: Light Mediators

- Light mediators also considered by CDF analysis
 - 100 GeV mediator with 10 GeV width for V and A-V couplings
 - 400 GeV mediator with 8 GeV width for t-channel coupling

CDF Monotop: Introduction

- Search for "monotop" signature
 - allowing either baryon-number violating (left) or flavor-changing (right) interactions to produce a single top recoiling against an invisible DM particle

- The signature is
 - Trigger on MET>30 GeV; require 50 GeV offline
 - Require three jets with $p_{T1}>35$ GeV and 1 b-tagged jet
 - veto events with a muon or electron
 - Suppress mis-measured MET: Δφ(MET,jet2)>0.7
 - Require kinematics consistent with a top quark: 110 < m_{jjj} < 200 GeV
 - MET significance>3.5

CDF Monotop: Backgrounds

- Top, diboson, W/Z+Heavy flavor are simulated
- Multijet background uses a "tag rate" matrix technique
 - probability for a QCD multijet event to have a b-tag measured in a control sample and applied to the untagged data
- Mis-tagging of light flavor estimated by applying mistag rate measured in data to simulation

CDF Run II	CDF Run II Preliminary, $L = 7.7 \text{fb}^{-1}$				
Process	Yields				
tīt	182.8 ± 20.2				
Single top	24.3 ± 4.5				
Diboson	15.7 ± 2.7				
W/Z+H.F.	130.5 ± 33.8				
Mistag	96.9 ± 39.4				
Multijet	210.2 ± 54.5				
Expected	660.2 ± 78.1				
Data	592				

Table: Event yields in the signal region

CDF Monotop: Exclusion Limits

- Use binned-likelihood in MET distribution to measure 95% CL upper limits on monotop production with a Bayesian construction
- Systematic uncertainties dominated by the mistag rate (16.6%) and the background cross sections (6.5%–30%)
 - Also consider PDFs, luminosity, b-tagging efficiency, trigger efficiency, ISR/ FSR

model below 140 GeV

Conclusions

- Limits demonstrate that hadron-collider experiments can offer an important piece to the dark-matter puzzle
 - Of course, any observation of a monophoton/monojet excess must be interpreted in the context of other searches for DM
 - too many other theories produce the same signatures; it's unlikely that they could be conclusively disentangled
 - But, collider searches do have distinct advantages
 - Sensitivity to very low mass DM
 - Does not pay a large penalty for spin-dependent interactions
 - DM is produced directly; not sensitive to systematic uncertainties related to galactic density, velocity dispersion, etc.

