Higgs at 125 GeV and the NMSSM

Yun Jiang (UC Davis)

Preliminary Backgrounds Motivations Methodology Results Conclusions Higgs at 125 GeV and the NMSSM

Yun Jiang

UC Davis

UCD HEFTI LHC Lunch 02/22/2012

based on arXiv:1201.0982, with J.F. Gunion, S. Kraml

<

ロ>、<</td><</td><</td>

Outline

Higgs at 125 GeV and the NMSSM

Yun Jiang (UC Davis)

Preliminary Backgrounds

Motivation

Methodology

Results

Conclusions

Further Studies Preliminary Backgrounds: why NMSSM?

The successes of the standard model (SM)

Higgs at 125 GeV and the NMSSM

Yun Jiang (UC Davis)

Preliminary Backgrounds

- Motivation
- Methodology
- Results
- Conclusions
- Further Studies

The SM has 19 independent parameters

- Gauge and fermion sectors: 4 real parameters (3 gauge couplings g, g' and gs and the QCD vacuum angle $\theta_{\rm QCD}$)
- Higgs sector: 2 real parameters (μ^2 and λ or conventionally the vacuum expectation value v and the physical Higgs mass m_h)
- Yukawa sector: 12 real parameters (6 quarks + 3 leptons + 3 CKM parameters) and 1 imaginary parameter (CKM matrix phase)

Ocod agreement with the electroweak precision data

The Higgs mass is essentially a free parameter, but the Higgs boson hasn't been discovered yet ...

The successes of the standard model (SM)

Higgs at 125 GeV and the NMSSM

Yun Jiang (UC Davis)

Preliminary Backgrounds

- Motivation
- Methodology
- Results
- Conclusions
- Further Studies

The SM has 19 independent parameters

- Gauge and fermion sectors: 4 real parameters (3 gauge couplings g, g' and gs and the QCD vacuum angle $\theta_{\rm QCD}$)
- Higgs sector: 2 real parameters (μ^2 and λ or conventionally the vacuum expectation value v and the physical Higgs mass m_h)
- Yukawa sector: 12 real parameters (6 quarks + 3 leptons + 3 CKM parameters) and 1 imaginary parameter (CKM matrix phase)
- Good agreement with the electroweak precision data
- The Higgs mass is essentially a free parameter, but the Higgs boson hasn't been discovered yet ...

The successes of the standard model (SM)

Higgs at 125 GeV and the NMSSM

Yun Jiang (UC Davis)

Preliminary Backgrounds

- Motivation
- Methodology
- Results
- Conclusions
- Further Studies

The SM has 19 independent parameters

- Gauge and fermion sectors: 4 real parameters (3 gauge couplings g, g' and gs and the QCD vacuum angle $\theta_{\rm QCD}$)
- Higgs sector: 2 real parameters (μ^2 and λ or conventionally the vacuum expectation value v and the physical Higgs mass m_h)
- Yukawa sector: 12 real parameters (6 quarks + 3 leptons + 3 CKM parameters) and 1 imaginary parameter (CKM matrix phase)
- Good agreement with the electroweak precision data
- The Higgs mass is essentially a free parameter, but the Higgs boson hasn't been discovered yet ...

<ロ>(4)

- c 1 .
- Further Studies

Further Studies Quantum correction to the Higgs mass

- If ∧ ~ O(v), natural
- However, the SM is assumed to be an EFT with very heavy particles, so $\Lambda \gg v$ (i.e., $\Lambda \sim M_{GUT}, M_{Pl}$), unnatural

Quantum correction to the Higgs mass

- If ∧ ~ O(v), natural
- However, the SM is assumed to be an EFT with very heavy particles, so $\Lambda \gg v$ (i.e., $\Lambda \sim M_{GUT}, M_{Pl}$), unnatural

gauge

top

Higgs

gauge

top

Higgs

The candidate solutions beyond the SM

Higgs at 125 GeV and the NMSSM

Yun Jiang (UC Davis)

Preliminary Backgrounds

Motivation

Methodolog

Results

Conclusions

Further Studies augephobic Higgs? Kibble's Higgs? New physics at $\Lambda \sim 1$ TeV is: Littlest Higgs? Buried Higgs Weakly Coupled te Higgs? Slim Higgs Scalar DM (SM+a light singlet)
 SUSY (MSSM, NMSSM, ...)
 Little Higgs, Twin Higgs Higgsless? LED, UED tal Tiggs • Technicolor, Walking TechiniBlorut-Englert's Higgs? Lone H Gauge Top Color, Top See Saw Composite Higgs Randall-Sundrum (Extra Dimensions)? Simplest Higgs? Phantom Higgs

The candidate solutions beyond the SM

Higgs at 125 GeV and the NMSSM

Yun Jiang (UC Davis)

Preliminary Backgrounds

Motivation

Methodolog

Results

Conclusions

Further Studies augephobic Higgs? Kibble's Higgs? New physics at $\Lambda \sim 1$ TeV is: Littlest Higgs? Buried Higgs Weakly Coupled te Higgs? Slim Higgs Scalar DM (SM+a light singlet)
 Scalar V (MSSM, NMSSM,)
 Little Higgs, Twin Higgs Higgsless? LED, UED tal tiggs • Technicolor, Walking TechiniBlorut-Englert's Higgs? Lone H Gauge Top Color, Top See Saw Composite Higgs Randall-Sundrum (Extra Dimensions)? Simplest Higgs? Phantom Higgs

The Simplest SUSY Model: MSSM

Higgs at 125 GeV and the NMSSM

Yun Jiang (UC Davis)

Preliminary Backgrounds

Motivation

```
Methodology
```

Results

Conclusions

Further Studies

MSSM possesses 124 independent parameters

- 19-2 (Higgs sector) from the SM
- 105+2 genuinely new parameters

```
\begin{cases} \text{Gaugino: 5 (complex } M_1, M_2 \text{ and real } M_3) \\ \text{Higgs: 5 (real } b, m_{H_u}^2, m_{H_d}^2 \text{ and complex } \mu) \\ \text{ or } (\nu, \tan \beta, m_A \text{ and complex } \mu) \\ \text{Sfermion } \& \text{ trilinear: 57 (12 squarks, 9 sleptons + 36 mixing angles)} \\ & 40 \text{ imaginary (new CP-violating phases)} \end{cases}
```

e Higgs Family

MSSM Higgs Sector

- 2 CP-even neutral scalars: h, H
- 1 CP-odd neutral pseudoscalar: A
- 2 charged scalars: H²

$$\begin{split} m_{h}^{2} &= \frac{1}{2} \left[m_{A}^{2} + M_{Z}^{2} - \sqrt{(m_{A}^{2} + M_{Z}^{2})^{2} - 4M_{Z}^{2}m_{A}^{2}\cos^{2}2\beta} \right] \\ m_{A}^{2} &= m_{H_{u}}^{2} + m_{H_{d}}^{2} = \frac{b}{s_{\beta}c_{\beta}} \\ m_{H^{\pm}}^{2} &= m_{A}^{2} + m_{W}^{2} \end{split}$$

The Simplest SUSY Model: MSSM

Higgs at 125 GeV and the NMSSM

Yun Jiang (UC Davis)

Preliminary Backgrounds

Motivation

```
Methodology
```

Results

Conclusions

Further Studies

MSSM possesses 124 independent parameters

- 19-2 (Higgs sector) from the SM
- 105+2 genuinely new parameters

```
\begin{cases} \text{Gaugino: 5 (complex } M_1, M_2 \text{ and real } M_3) \\ \text{Higgs: 5 (real } b, m_{H_u}^2, m_{H_d}^2 \text{ and complex } \mu) \\ \text{or } (\nu, \tan \beta, m_A \text{ and complex } \mu) \\ \text{Sfermion \& trilinear: 57 (12 squarks, 9 sleptons + 36 mixing angles)} \\ 40 \text{ imaginary (new CP-violating phases)} \end{cases}
```

e Higgs Family

MSSM Higgs Sector 2 CP-even neutral scalars: h, H1 CP-odd neutral pseudoscalar: A 2 charged scalars: H^{\pm}

$$\begin{split} m_{h}^{2} &= \frac{1}{2} \left[m_{A}^{2} + M_{Z}^{2} - \sqrt{(m_{A}^{2} + M_{Z}^{2})^{2} - 4M_{Z}^{2}m_{A}^{2}\cos^{2}2\beta} \right] \\ m_{A}^{2} &= m_{Hu}^{2} + m_{Hd}^{2} = \frac{b}{s_{\beta}c_{\beta}} \\ m_{H^{\pm}}^{2} &= m_{A}^{2} + m_{W}^{2} \end{split}$$

Problems of the MSSM

Higgs at 125 GeV and the NMSSM

Yun Jiang (UC Davis)

Preliminary Backgrounds

- Motivation
- Methodology
- Results
- Conclusions
- Further Studies

Tree level upper bound: $m_h < |\cos 2\beta|M_Z$ \longrightarrow radiative corrections (at one-loop level)

$$m_{h}^{2} < M_{Z}^{2} + \underbrace{\frac{3g^{2}m_{t}^{4}}{8\pi^{2}M_{W}^{2}} \left[\ln\left(\frac{M_{s}^{2}}{m_{t}^{2}}\right) + \frac{X_{t}^{2}}{M_{s}^{2}} \left(1 - \frac{X_{t}^{2}}{12M_{s}^{2}}\right) \right]}_{130 \text{ GeV}} < 130 \text{ GeV}$$

1 t1,2

▲□▶,▲□▶,▲目▶, 目 ,めへで

finite contributions of the order of the SUSY breaking scale

where $M_{m{S}}^2=rac{1}{2}(m_{m{t}_1}^2+m_{m{t}_2}^2)$ and $X_{m{t}}=m{A}_{m{t}}-\mu^*\coteta$

Problems of the MSSM

Higgs at 125 GeV and the NMSSM

Yun Jiang (UC Davis)

Preliminary Backgrounds

- Motivation
- Methodology
- Results
- Conclusions
- Further Studies

Tree level upper bound: $m_h < |\cos 2\beta| M_Z$ \longrightarrow radiative corrections (at one-loop level)

$$m_{h}^{2} < M_{Z}^{2} + \frac{3g^{2}m_{t}^{4}}{8\pi^{2}M_{W}^{2}} \left[\ln \left(\frac{M_{s}^{2}}{m_{t}^{2}} \right) + \frac{X_{t}^{2}}{M_{s}^{2}} \left(1 - \frac{X_{t}^{2}}{12M_{s}^{2}} \right) \right] < 130 \, \text{GeV}$$

1.2 t

finite contributions of the order of the SUSY breaking scale where $M_S^2 = \frac{1}{2}(m_{t_1}^2 + m_{t_2}^2)$ and $X_t = A_t - \mu^* \cot \beta$

VEV Minimum conditions
$$\begin{cases} |\mu|^2 + m_{H_u}^2 = b \cot \beta + (M_Z^2/2) \cos 2\beta \\ |\mu|^2 + m_{H_d}^2 = b \tan \beta - (M_Z^2/2) \cos 2\beta \end{cases}$$

• If $\mu \sim \mathcal{O}(M_Z)$, natural

• However, if the SUSY derives from an underlying string theory, so

$$\mu \sim M_{\text{Pl}}, M_{\text{string}} \gg M_{\text{SUSY}}, \quad \text{unnatural} \quad \mu \text{ PROBLEW}$$
$$\implies \text{large } m_{H_{\mu}}^2, m_{H_{J}}^2 \implies \text{large cancellation needed} \quad \overline{\text{FINE-TUNING}}$$

\mathbb{Z}_3 -invariant NMSSM

Higgs at 125 GeV and the NMSSM

Yun Jiang (UC Davis)

Preliminary Backgrounds

Motivations

Methodology

Results

Conclusions

Further Studies NMSSM solves μ -problem by adding one singlet S, at the cost of adding 3 more particles

<<p>・ロト、

\mathbb{Z}_3 -invariant NMSSM

Higgs at 125 GeV and the NMSSM

Yun Jiang (UC Davis)

Preliminary Backgrounds

Motivation

Methodology

Results

Conclusions

L

Further Studies NMSSM solves μ -problem by adding one singlet S, at the cost of adding 3 more particles

$$\mathcal{L}_{\mathsf{NMSSM}} = \mathcal{L}_{\mathsf{kinetic}} + \mathcal{L}_{\mathsf{int}} + \mathcal{L}_{\mathsf{soft}}^{\mathsf{NMSSM}}$$

The interactions are generated by the superpotential

$$W_{NMSSM} = \bar{u}\mathbf{Y}_{u}QH_{u} - \bar{d}\mathbf{Y}_{d}QH_{d} - \bar{e}\mathbf{Y}_{e}LH_{u} + \frac{\lambda SH_{u}H_{d}}{\lambda SH_{u}H_{d}} + \frac{\kappa}{3}S^{3}$$

and the soft-SUSY breaking terms are

$$\begin{cases} \mathcal{L}_{gaugino} = -\frac{1}{2} \left(M_{3} \tilde{G}^{a} \tilde{G}_{a} + M_{2} \tilde{W}^{\alpha} \tilde{W}_{\alpha} + M_{1} \tilde{B} \tilde{B} \right) + \text{h.c.} \\ \mathcal{L}_{sfermions} = -\tilde{Q}_{L}^{*} m_{\tilde{Q}}^{2} \tilde{Q}_{L} - \tilde{L}_{L}^{*} m_{\tilde{L}}^{2} \tilde{L}_{L} - \tilde{u}_{R}^{*} m_{\tilde{u}}^{2} \tilde{u}_{R} - \tilde{d}_{R}^{*} m_{d}^{2} \tilde{d}_{R} - \tilde{e}_{R}^{*} m_{\tilde{e}}^{2} \tilde{e}_{R} \\ \mathcal{L}_{Higgs} = -m_{H_{u}}^{2} H_{u}^{*} H_{u} - m_{H_{d}}^{2} H_{d}^{*} H_{d} - \frac{m_{S}^{2} S^{*} S}{m_{S}^{2} S} \\ \mathcal{L}_{trilinear} = -\left(\tilde{u}_{R} A_{u} \tilde{Q}_{L} H_{u} - \tilde{d}_{R} A_{d} \tilde{Q}_{L} H_{d} - \tilde{e}_{R} A_{e} \tilde{L}_{L} H_{d} + \frac{\lambda A_{\lambda} H_{u} H_{d} S}{\lambda A_{\lambda} H_{u} H_{d} S} + \frac{1}{3} \kappa A_{\kappa} S^{3} \right) \\ + \text{h.c.} \end{cases}$$

◆□▶,◆□▶,◆目▶, 目 ,のへの

Higgs at 125 GeV and the NMSSM

Yun Jiang (UC Davis)

Preliminary Backgrounds

- Motivation
- Methodology
- Results
- Conclusions
- Further Studies

- GUT scale parameters (if unifications)
 - $I Guagino masses: m_{1/2} \longrightarrow M_1, M_2, M_3$
 - 2 Squark masses: $m_0 \longrightarrow m_{\tilde{Q}}^2, m_{\tilde{L}}^2, m_{\tilde{u}}^2, m_{\tilde{d}}^2, m_{\tilde{e}}^2$
 - **③** Trilinear couplings: $A_0 \longrightarrow A_u, A_d, A_e$

▲□▶,▲□▶,▲Ξ▶, Ξ ,りへで

Higgs at 125 GeV and the NMSSM

Yun Jiang (UC Davis)

Preliminary Backgrounds

- Motivations
- Methodology
- Results
- Conclusions
- Further Studies

- GUT scale parameters (if unifications)

 - $\ensuremath{ 2 } \ensuremath{ Squark masses: } m_0 \longrightarrow m^2_{\widetilde{Q}}, m^2_{\widetilde{L}}, m^2_{\widetilde{u}}, m^2_{\widetilde{d}}, m^2_{\widetilde{e}}$
- SUSY scale parameters

 $\lambda, A_{\lambda}, \underline{A_{\kappa}, \kappa, m_{s}^{2}, m_{H_{u}}^{2}, m_{H_{d}}^{2}}_{i}$

< □ > , < □ > , < Ξ > , < Ξ , の < @

Higgs at 125 GeV and the NMSSM

Yun Jiang (UC Davis)

Preliminary Backgrounds

- Motivations
- Methodology
- Results
- Conclusions
- Further Studies

- GUT scale parameters (if unifications)

 - $\ensuremath{ 2 \ } \ensuremath{ Squark masses: } m_0 \longrightarrow m^2_{\widetilde{Q}}, m^2_{\widetilde{L}}, m^2_{\widetilde{u}}, m^2_{\widetilde{d}}, m^2_{\widetilde{e}}$

3 Trilinear couplings:
$$A_0 \longrightarrow A_u, A_d, A_e$$

• SUSY scale parameters

(

$$\lambda, A_{\lambda}, A_{\kappa}, \kappa, m_{S}^{2}, m_{H_{u}}^{2}, m_{H_{d}}^{2}$$

$$\underbrace{v_{u}, v_{d}, s}$$

$$v_{u} \left(m_{H_{u}}^{2} + \mu_{eff}^{2} + \lambda^{2} v_{d}^{2} + \frac{g_{1}^{2} + g_{2}^{2}}{4} (v_{u}^{2} - v_{d}^{2}) \right) - v_{d} \mu_{eff}(A_{\lambda} + \kappa s) = 0$$

$$v_{d} \left(m_{H_{d}}^{2} + \mu_{eff}^{2} + \lambda^{2} v_{u}^{2} - \frac{g_{1}^{2} + g_{2}^{2}}{4} (v_{u}^{2} - v_{d}^{2}) \right) - v_{u} \mu_{eff}(A_{\lambda} + \kappa s) = 0$$
Higgs VEV Minimizations
$$s \left(m_{S}^{2} + \kappa A_{\kappa} s + 2\kappa^{2} s^{2} + \lambda^{2} (v_{u}^{2} + v_{d}^{2}) - 2\lambda \kappa v_{u} v_{d} \right) - \lambda v_{u} v_{d} A_{\lambda} = 0$$

Higgs at 125 GeV and the NMSSM

Yun Jiang (UC Davis)

Preliminary Backgrounds

- Motivations
- Methodology
- Results
- Conclusions
- Further Studies

- GUT scale parameters (if unifications)

 - $\ensuremath{ 2 \ } \ensuremath{ Squark masses: } m_0 \longrightarrow m^2_{\widetilde{Q}}, m^2_{\widetilde{L}}, m^2_{\widetilde{u}}, m^2_{\widetilde{d}}, m^2_{\widetilde{e}}$
- SUSY scale parameters

 $\lambda, A_{\lambda}, A_{\kappa}, v, \tan \beta, m_{H_{u}}^{2}, m_{H_{d}}^{2}$ Various choices for different scenarios

Higgs at 125 GeV and the NMSSM

Yun Jiang (UC Davis)

Preliminary Backgrounds

- Motivation
- Methodolog
- Results
- Conclusions
- Further Studies

• $\mu_{\rm eff} = \lambda \langle S \rangle \longrightarrow M_{\rm SUSY} ~~ \checkmark$

• Higgs Family

NMSSM Higgs Sector

- 3 CP-even neutral scalars: h_1, h_2, h_3
- 2 CP-odd neutral pseudoscalar: a_1, a_2 2 charged scalars: H^{\pm}

▲□▶.▲□▶.▲∃▶. 目 . のへで

• The lightest CP-even Higgs mass

Higgs at 125 GeV and the NMSSM

Yun Jiang (UC Davis)

Preliminary Backgrounds

Motivation

Methodology

Results

Conclusions

Further Studies

• $\mu_{\text{eff}} = \lambda \langle S \rangle \longrightarrow M_{\text{SUSY}} \sqrt{}$

Higgs Family

NMSSM Higgs Sector

3 CP-even neutral scalars: h_1, h_2, h_3

2 CP-odd neutral pseudoscalar: a_1, a_2

<ロ>(4)

2 charged scalars: H^{\pm}

• The lightest CP-even Higgs mass

Higgs at 125 GeV and the NMSSM

Yun Jiang (UC Davis)

Preliminary Backgrounds

- Motivation
- Methodology
- Results
- Conclusions
- Further Studies

- $\mu_{\rm eff} = \lambda \langle S \rangle \longrightarrow M_{\rm SUSY} ~~ \checkmark$
- Higgs Family

NMSSM Higgs Sector

- 3 CP-even neutral scalars: h_1, h_2, h_3
- 2 CP-odd neutral pseudoscalar: a_1, a_2
- 2 charged scalars: H^{\pm}
- The lightest CP-even Higgs mass

$$\frac{1}{m_h^2 \approx M_Z^2 \cos^2 2\beta + \lambda^2 v^2 \sin^2 2\beta} - \frac{\lambda^2}{\kappa^2} v^2 (\lambda - \kappa \sin 2\beta)^2 + \frac{3m_t^4}{4\pi^2 v^2} \left[\ln \left(\frac{m_S^2}{m_t^2} \right) + \frac{A_t^2}{m_S^2} \left(1 - \frac{A_t^2}{12m_S^2} \right) \right]$$
where $m_S^2 \sim m_{Q_3}^2$

▲□▶,▲□▶,▲目▶, 目 ,めへで

Higgs at 125 GeV and the NMSSM

Yun Jiang (UC Davis)

Preliminary Backgrounds

- Motivation
- Methodology
- Results
- Conclusions
- Further Studies

- $\mu_{\rm eff} = \lambda \langle S \rangle \longrightarrow M_{\rm SUSY} ~~ \checkmark$
- Higgs Family

NMSSM Higgs Sector

- 3 CP-even neutral scalars: h_1, h_2, h_3
- 2 CP-odd neutral pseudoscalar: a_1, a_2
- 2 charged scalars: H^{\pm}
- The lightest CP-even Higgs mass

$$\frac{1}{m_h^2 \cong M_Z^2 \cos^2 2\beta + \lambda^2 v^2 \sin^2 2\beta} - \frac{\lambda^2}{\kappa^2} v^2 (\lambda - \kappa \sin 2\beta)^2 + \frac{3m_t^4}{4\pi^2 v^2} \left[\ln\left(\frac{m_S^2}{m_t^2}\right) + \frac{A_t^2}{m_S^2} \left(1 - \frac{A_t^2}{12m_S^2}\right) \right]$$
where $m_S^2 \sim m_{Q_3}^2$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Maximal Higgs Mass Overviews

A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi, J. Quevillon, Phys.Lett. B708(2012)162

NUHM

mSUGRA

VCMSSM

NMSSM

no scale

GMSB

AMSB

50

tan B

ロト、< 団ト、< 三ト、< 三、のへ(?)

Fig. 2. The maximal value of the h mass defined as the value for which 99% of the scan points have a mass smaller than it, shown as a function of $\tan \beta$ for the various constrained MSSM models.

30

40

Here the NMSSM refers to the constrained NMSSM.

Outline

Higgs at 125 GeV and the NMSSM

Yun Jiang (UC Davis)

Preliminary Backgrounds

Motivations

Methodolog

Results

Conclusions

Further Studies Preliminary Backgrounds: why NMSSM?

Ontivations

▲□▶,▲舂▶,▲≧▶, ≧ ,のへの

ATLAS and CMS excess around 125 GeV Higgs

Best-fit for a near 125 GeV Higgs

▲□▶,▲□▶,▲Ξ▶, Ξ ,りへで

Higgs at 125 GeV and the NMSSM

Yun Jiang (UC Davis)

Preliminary Backgrounds

Motivations

Methodolog

Results

Conclusions

Further Studies

Find the most constrained version of the NMSSM consistent with a fairly SM-like Higgs at 125 GeV and implications thereof.

• The MSSM has been explored in numerous papers with a general conclusion that the MSSM—especially a constrained version such as the CMSSM—is hard pressed to yield a fairly SM-like light Higgs boson at 125 GeV when satisfying all the constraints including a_{μ} and Ωh^2 .

arXiv:1112.3017; 1112.3021; 1112.3026; 1112.3032; 1112.3068; 1112.3123; 1112.3142; 1112.3336; 1112.3564; 1112.3645; 1112.3647; 1112.4391; 1112.4835; 1112.5666; PLB 708(2012)162

• The NMSSM has also been explored showing that for completely general parameters there is less tension between a light Higgs with mass ~ 125 GeV and a lighter SUSY mass spectrum. arXiv:1112.2703; 1112.3548; 1201.2671; 1201.5305

◆□▶,◆□▶,◆目▶, 目 ,のへの

Higgs at 125 GeV and the NMSSM

Yun Jiang (UC Davis)

Preliminary Backgrounds

Motivations

Methodolog

Results

Conclusions

Further Studies Find the most constrained version of the NMSSM consistent with a fairly SM-like Higgs at 125 GeV and implications thereof.

• The MSSM has been explored in numerous papers with a general conclusion that the MSSM—especially a constrained version such as the CMSSM—is hard pressed to yield a fairly SM-like light Higgs boson at 125 GeV when satisfying all the constraints including a_{μ} and Ωh^2 .

arXiv:1112.3017; 1112.3021; 1112.3026; 1112.3032; 1112.3068; 1112.3123; 1112.3142; 1112.3336; 1112.3564; 1112.3645; 1112.3647; 1112.4391; 1112.4835; 1112.5666; PLB 708(2012)162

• The NMSSM has also been explored showing that for completely general parameters there is less tension between a light Higgs with mass ~ 125 GeV and a lighter SUSY mass spectrum. arXiv:1112.2703; 1112.3548; 1201.2671; 1201.5305

◆□▶,◆□▶,◆目▶, 目 ,のへの

Higgs at 125 GeV and the NMSSM

Yun Jiang (UC Davis)

Preliminary Backgrounds

Motivations

Methodolog

Results

Conclusions

Further Studies Find the most constrained version of the NMSSM consistent with a fairly SM-like Higgs at 125 GeV and implications thereof.

• The MSSM has been explored in numerous papers with a general conclusion that the MSSM—especially a constrained version such as the CMSSM—is hard pressed to yield a fairly SM-like light Higgs boson at 125 GeV when satisfying all the constraints including a_{μ} and Ωh^2 .

arXiv:1112.3017; 1112.3021; 1112.3026; 1112.3032; 1112.3068; 1112.3123; 1112.3142; 1112.3336; 1112.3564; 1112.3645; 1112.3647; 1112.4391; 1112.4835; 1112.5666; PLB 708(2012)162

• The NMSSM has also been explored showing that for completely general parameters there is less tension between a light Higgs with mass ~ 125 GeV and a lighter SUSY mass spectrum. <code>arXiv:1112.2703; 1112.3548; 1201.2671; 1201.5305</code>

◆□▶,◆□▶,◆目▶, 目 ,のへの

Higgs at 125 GeV and the NMSSM

Yun Jiang (UC Davis)

Preliminary Backgrounds

Motivations

Methodolog

Results

Conclusions

Further Studies Find the most constrained version of the NMSSM consistent with a fairly SM-like Higgs at 125 GeV and implications thereof.

• The MSSM has been explored in numerous papers with a general conclusion that the MSSM—especially a constrained version such as the CMSSM—is hard pressed to yield a fairly SM-like light Higgs boson at 125 GeV when satisfying all the constraints including a_{μ} and Ωh^2 .

arXiv:1112.3017; 1112.3021; 1112.3026; 1112.3032; 1112.3068; 1112.3123; 1112.3142; 1112.3336; 1112.3564; 1112.3645; 1112.3647; 1112.4391; 1112.4835; 1112.5666; PLB 708(2012)162

• The NMSSM has also been explored showing that for completely general parameters there is less tension between a light Higgs with mass ~ 125 GeV and a lighter SUSY mass spectrum. <code>arXiv:1112.2703; 1112.3548; 1201.2671; 1201.5305</code>

◆□▶,◆□▶,◆目▶, 目 ,のへの

Outline

Higgs at 125 GeV and the NMSSM

Yun Jiang (UC Davis)

Preliminary Backgrounds

Motivation

Methodology

Results

Conclusions

Further Studies Preliminary Background: why NMSSM?

< □ > (< □ > (< Ξ >) Ξ () < @</p>

Ontivation

Methodology

The Constrained NMSSM Models

Higgs at 125 GeV and the NMSSM

Yun Jiang (UC Davis)

Preliminary Backgrounds

Motivations

Methodology

Results

Conclusions

Further Studies We have examined the following models:

- Model I: $U(1)_R$ imposed, constrained NMSSM (cNMSSM) tan β , λ , m_0 , $m_{1/2}$, $A_0 = A_{t,b,\tau}$, $A_{\lambda} = A_{\kappa} = 0$
- Model II: $U(1)_R$ imposed, NUHM tan β , λ , m_0 , $m_{1/2}$, m_{H_u} , m_{H_d} , $A_0 = A_{t,b,\tau}$, $A_{\lambda} = A_{\kappa} = 0$
- Model III: NUHM, with general A_{λ} and A_{κ} tan β , λ , m_0 , $m_{1/2}$, m_{H_u} , m_{H_d} , $A_0 = A_{t,b,\tau}$, A_{λ} , A_{κ}

The constraints are imposed at the GUT scale and then low-scale parameters are obtained by RGE evolution.

◆□▶,◆□▶,◆目▶, 目 ,のへの
Flow Chart

< □ ▶ (< □ ▶ (< 亘 ▶) 三 (の < @

Flow Chart

Flow Chart

χ^2 /Likelihood Definition

Higgs at 125 GeV and the NMSSM

Yun Jiang (UC Davis)

Preliminary Background

Motivation

Methodology

Results

Conclusions

Further Studies • Type I: with a central value $\xi_i^{(I)exp}$

$$\chi^{2}(\xi^{(l)}) = \sum_{i} \frac{\left(\xi_{i}^{(l)} - \xi_{i}^{(l)\exp}\right)^{2}}{\sigma^{2}(\xi_{i}^{(l)}) + \tau^{2}(\xi_{i}^{(l)})}$$

Examples: $BR(B_s \to X_s \gamma)$, ΔM_s , ΔM_d , $BR(B^+ \to \tau^+ \nu_{\tau})$, $BR(B \to X_s \mu^+ \mu^-)$, m_h^{light} and ATLAS signal strength best-fit.

 $\sigma(\xi_i)$: experimental (statistical and systematical) uncertainty $\tau(\xi_i)$: estimate of theoretical uncertainty

$\chi^2/Likelihood$ Definition

Higgs at 125 GeV and the NMSSM

Yun Jiang (UC Davis)

Preliminary Background

Motivations

Methodology

Results

Conclusions

Further Studies • Type I: with a central value $\xi_i^{(l)exp}$

$$\chi^{2}(\xi^{(l)}) = \sum_{i} \frac{\left(\xi_{i}^{(l)} - \xi_{i}^{(l)\exp}\right)^{2}}{\sigma^{2}(\xi_{i}^{(l)}) + \tau^{2}(\xi_{i}^{(l)})}$$

Examples: $BR(B_s \to X_s \gamma)$, ΔM_s , ΔM_d , $BR(B^+ \to \tau^+ \nu_{\tau})$, $BR(B \to X_s \mu^+ \mu^-)$, m_h^{light} and ATLAS signal strength best-fit.

• Type II: only having an upper/lower bound limit $\bar{\xi}_i^{({\rm II})}$

$$\mathsf{Likelihood}(\xi^{(\mathsf{II})}) = \prod_{i} \left(1 + e^{\pm \frac{\xi_{i}^{(\mathsf{II})} - \xi_{i}^{(\mathsf{II})}}{\sigma}} \right)^{-1}$$

in the exponent + for upper limit/- for lower limit Examples: $BR(B_s \rightarrow \mu^+\mu^-)$ and Ωh^2 .

 $\sigma(\xi_i)$: experimental (statistical and systematical) uncertainty $\tau(\xi_i)$: estimate of theoretical uncertainty

$\chi^2/Likelihood$ Definition

Higgs at 125 GeV and the NMSSM

Yun Jiang (UC Davis)

Preliminary Background:

Motivations

Methodology

Results

Conclusions

Further Studies • Type I: with a central value $\xi_i^{(l)exp}$

$$\chi^{2}(\xi^{(l)}) = \sum_{i} \frac{\left(\xi_{i}^{(l)} - \xi_{i}^{(l)\exp}\right)^{2}}{\sigma^{2}(\xi_{i}^{(l)}) + \tau^{2}(\xi_{i}^{(l)})}$$

Examples: $BR(B_s \to X_s \gamma)$, ΔM_s , ΔM_d , $BR(B^+ \to \tau^+ \nu_{\tau})$, $BR(B \to X_s \mu^+ \mu^-)$, m_h^{light} and ATLAS signal strength best-fit.

• Type II: only having an upper/lower bound limit $\bar{\xi}_i^{(\mathrm{II})}$

$$\mathsf{Likelihood}(\xi^{(\mathsf{II})}) = \prod_{i} \left(1 + e^{\pm \frac{\xi_{i}^{(\mathsf{II})} - \xi_{i}^{(\mathsf{II})}}{\sigma}} \right)^{-1}$$

in the exponent + for upper limit/- for lower limit Examples: $BR(B_s \rightarrow \mu^+ \mu^-)$ and Ωh^2 .

 $\sigma(\xi_i)$: experimental (statistical and systematical) uncertainty $\tau(\xi_i)$: estimate of theoretical uncertainty

Total Likelihood=Likelihood($\xi^{(II)}$) $e^{-\frac{\chi^2(\xi^{(I)})}{2}}$

Constraint Categories

Higg	s at	12
GeV	and	the
NI	ISS	М

Yun Jiang (UC Davis)

Preliminary Background

Motivation

Methodolog

Results

Conclusions

Further Studies

	LEP/Teva	B-physics	$\Omega h^2 > 0$	$\delta a_{\mu}(\times 10^{10})$	<i>m</i> _{<i>h</i>₁}	Remark
	\checkmark	×	×	×	×	
	\checkmark	\checkmark	×	×	×	
+	\checkmark	\checkmark	<0.136	×	×	
×	\checkmark	\checkmark	×	5.77-49.1	×	
	\checkmark	\checkmark	<0.136	5.77-49.1	×	
\triangle	\checkmark	\checkmark	0.094-0.136	5.77-49.1	<123	
\triangle	\checkmark	\checkmark	0.094-0.136	5.77-49.1	≥123	perfect
\diamond	\checkmark	\sim	0.094-0.136	4.27-5.77	≥123	almost perfect
				$\begin{tabular}{ c c c c c } \hline LEP/Teva & B-physics & $\Omega h^2 > 0$ \\ \hline & $$ & \times	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

- All points give a proper RGE solution, have no Landau pole, have a neutralino LSP.
- Higgs mass limits are from LEP, TEVATRON, and early LHC data; SUSY mass limits are essentially from LEP.
- B-physics constraints

Observables	Constraints
ΔM_d	0.507 ± 0.008 (2 σ)
ΔM_s	$17.77 \pm 0.24 \ (2\sigma)$
$BR(B \to X_s \gamma)$	3.55 ± 0.51 (2σ)
$BR(B^+ \to \tau^+ \nu)$	$(1.67 \pm 0.78) \times 10^{-4} (2\sigma)$
$BR(B_s \to \mu^+ \mu^-)$	$< 1.1 \times 10^{-8}$ (95% C.L.)
	< <u>□▶,<圖▶</u> ,<≣▶, ≣ ,のQC

Outline

Higgs at 125 GeV and the NMSSM

Yun Jiang (UC Davis)

- Preliminary Backgrounds Motivations Methodology Results
- Conclusions
- Further Studies

Preliminary Backgrounds: why NMSSM?

<<p>・ロト、

- Motivations
- Methodology
- Result Analysis

$R^{h_1}(\gamma\gamma)$ Figures

$$R^{h_i}(X) \equiv \frac{\Gamma(gg \to h_i) \ BR(h_i \to X)}{\Gamma(gg \to h_{\rm SM}) \ BR(h_{\rm SM} \to X)}$$

$R^{h_1}(\gamma\gamma)$ Figures

$R^{h_1}(\gamma\gamma)$ Figures

 $R^{h_i}(X) \equiv rac{\Gamma(gg
ightarrow h_i) \ BR(h_i
ightarrow X)}{\Gamma(gg
ightarrow h_{
m SM}) \ BR(h_{
m SM}
ightarrow X)}$

For $m_{h_1} \sim 124 - 125$ GeV,

Models II, III: have perfect points

- Typically, $R^{h_1}(\gamma\gamma)$ of order 0.98.
- Almost perfect points (small δa_μ relaxation) emerge more easily.
- NO (almost) perfect points with $R^{h_1}(\gamma\gamma) > 1$ for $m_{h_1} = 123 128$ GeV.

$R^{h_1}(VV = WW, ZZ)$ Figures

• As for the $\gamma\gamma$ final state, for $m_{h_1} \gtrsim 123$ GeV the predicted rates in the VV channels are very nearly SM-like for perfect or almost perfect points.

◆□ ▶ ◆圖 ▶ ◆臣 ▶ □ 臣 □

• We did not find perfect or almost perfect points with mass above 126 GeV.

$R^{h_1}(VV = WW, ZZ)$ Figures

• As for the $\gamma\gamma$ final state, for $m_{h_1} \gtrsim 123$ GeV the predicted rates in the VV channels are very nearly SM-like for perfect or almost perfect points.

・ロト ・日 ・ ・ ヨ ・ ・

æ

 We did not find perfect or almost perfect points with mass above 126 GeV.

$BR(h_1 \rightarrow a_1a_1)$ Figures

Large BR is possible while satisfying basic and *B*-physics constraints. However, $BR \lesssim 0.2$ once additional constraints are imposed. Thus, a light Higgs has nowhere to hide in these models.

$R^{h_2}(\gamma\gamma)$ Figures

How about the next lightest Higgs, h_2 ?

In the m_{h₂} ∈ [110 − 150] GeV region, points only pass the basic constraints and the B-physics constraints and not the others.

• Thus, it appears that within these constrained models with GUT unification conditions it is the *h*₁ that must be identified with the Higgs observed at the LHC.

$R^{h_2}(\gamma\gamma)$ Figures

How about the next lightest Higgs, h_2 ?

- In the m_{h₂} ∈ [110 150] GeV region, points only pass the basic constraints and the B-physics constraints and not the others.
- Thus, it appears that within these constrained models with GUT unification conditions it is the *h*₁ that must be identified with the Higgs observed at the LHC.

SUSY Searches

- All the (almost) perfect points with $m_{h_1} \gtrsim 123$ GeV have squark and gluino masses above 1.5 TeV and thus have not yet been probed by current LHC data sets.
- It is quite intriguing that the regions of parameter space that yield (almost) perfect points with a Higgs mass close to 125 GeV automatically evade the current limits from 电HC US sea che9.9.9

SUSY Searches

- All the (almost) perfect points with $m_{h_1} \gtrsim 123$ GeV have squark and gluino masses above 1.5 TeV and thus have not yet been probed by current LHC data sets.
- It is quite intriguing that the regions of parameter space that yield (almost) perfect points with a Higgs mass close to 125 GeV automatically evade the current limits from <code>LHC-SUSY</code> searches.

More Analysis (δa_{μ} vs m_0)

- Slightly relaxing the δa_{μ} requirement to almost perfect makes it much easier to find viable points with $m_{h_1} \sim 125$ GeV. Thus there is a mild tension between good δa_{μ} and large m_{h_1} .
- The tension between δa_{μ} and $m_{h_1} = 125$ GeV is less in the NMSSM with NUHM relaxation than in the MSSM with NUHM relaxation.

< ⊡" ▶

=)

More Analysis (δa_{μ} vs m_0)

- Slightly relaxing the δa_{μ} requirement to almost perfect makes it much easier to find viable points with $m_{h_1} \sim 125$ GeV. Thus there is a mild tension between good δa_{μ} and large m_{h_1} .
- The tension between δa_{μ} and $m_{h_1} = 125$ GeV is less in the NMSSM with NUHM relaxation than in the MSSM with NUHM relaxation.

= >

More Analysis (Ωh^2 vs m_{LSP})

◆□ ▶ ◆圖 ▶ ◆臣 ▶ □ 臣 □

• No obvious difference with CMSSM.

More Analysis (Ωh^2 vs m_{LSP})

• The maximum LSP mass increases a bit if the δa_{μ} constraint is relaxed to the almost perfect level.

◆□ ▶ ◆圖 ▶ ◆臣 ▶ □ 臣 □

• No obvious difference with CMSSM.

More Analysis (Ωh^2 vs m_{LSP})

- There is a lower bound on Ωh^2 for each LSP mass.
- The maximum LSP mass increases a bit if the δa_{μ} constraint is relaxed to the almost perfect level.

• No obvious difference with CMSSM.

Higgs at 125 GeV and the NMSSM

Yun Jiang (UC Davis)

Preliminary Backgrounds Motivations Methodology

Results

Conclusion

Further Studies

		Model II			Model III				
Pt. #	1	2	3	4	5	6	7*		
$\tan\beta(m_Z)$	17.9	17.8	21.4	15.1	26.2	17.9	24.2		
λ	0.078	0.0096	0.023	0.084	0.028	0.027	0.064		
ĸ	0.079	0.011	0.037	0.158	-0.045	0.020	0.343		
m _{1/2}	923	1026	1087	842	738	1104	1143		
mo	447	297	809	244	1038	252	582		
Ao	-1948	-2236	-2399	-1755	-2447	-2403	-2306		
				-251	-385	-86.8			
A_{λ}	0	0	0				-2910		
				-920	883	-199			
A_{κ}	0	0	0				-5292		
$m_{H_J}^2$	(2942) ²	(3365) ²	(4361) ²	(2481) ²	(935) ²	(3202) ²	(3253) ²		
	(1774) ²	(1922) ²	(2089) ²	(1612) ²	(1998) ²	(2073) ²	(2127) ²		
m _{h1}	124.0	125.1	125.4	123.8	124.5	125.2	125.1		

- Modest A_{λ} and A_{κ} from MCMC scan due to our setting $|A_{\lambda,\kappa}| \leq 1$ TeV, while almost perfect point (#7) from completely random scan has quite large A_{λ} and A_{κ} values.
- However, the general random scan over A_{λ} and A_{κ} did not find any perfect points with $m_{h_1} \gtrsim 124$ GeV, whereas such points were fairly quickly found using the MCMC technique.

▲□▶,▲□▶,▲目▶, 目 (のへの

This suggests that such points are quite fine-tuned in the general scan sense.

Higgs at 125 GeV and the NMSSM

Yun Jiang (UC Davis)

Preliminary Backgrounds Motivations Methodology Results

Further Studies

		Model II			Model III				
Pt. #	1	2	3	4	5	6	7*		
$\tan\beta(m_Z)$	17.9	17.8	21.4	15.1	26.2	17.9	24.2		
λ	0.078	0.0096	0.023	0.084	0.028	0.027	0.064		
κ	0.079	0.011	0.037	0.158	-0.045	0.020	0.343		
m _{1/2}	923	1026	1087	842	738	1104	1143		
mo	447	297	809	244	1038	252	582		
Ao	-1948	-2236	-2399	-1755	-2447	-2403	-2306		
				-251	-385	-86.8			
A_{λ}	0	0	0				-2910		
				-920	883	-199			
A_{κ}	0	0	0				-5292		
$m_{H_{J}}^{2}$	(2942) ²	(3365) ²	(4361) ²	(2481) ²	(935) ²	(3202) ²	(3253) ²		
$m_{H_{u}}^{2}$	(1774) ²	(1922) ²	(2089) ²	(1612) ²	(1998) ²	(2073) ²	(2127) ²		
m _{h1}	124.0	125.1	125.4	123.8	124.5	125.2	125.1		

- Modest A_{λ} and A_{κ} from MCMC scan due to our setting $|A_{\lambda,\kappa}| \leq 1$ TeV, while almost perfect point (#7) from completely random scan has quite large A_{λ} and A_{κ} values.
- However, the general random scan over A_{λ} and A_{κ} did not find any perfect points with $m_{h_1}\gtrsim 124$ GeV, whereas such points were fairly quickly found using the MCMC technique.

▲□▶,▲□▶,▲目▶, 目 (のへの

• This suggests that such points are quite fine-tuned in the general scan sense.

Higgs at 125 GeV and the NMSSM

Yun Jiang (UC Davis)

Preliminary Backgrounds Motivations Methodology

Results

Conclusion

Further Studies

		Model II			Model III			
Pt. #	1	2	3	4	5	6	7*	
tan $\beta(m_Z)$	17.9	17.8	21.4	15.1	26.2	17.9	24.2	
λ	0.078	0.0096	0.023	0.084	0.028	0.027	0.064	
κ	0.079	0.011	0.037	0.158	-0.045	0.020	0.343	
m _{1/2}	923	1026	1087	842	738	1104	1143	
mo	447	297	809	244	1038	252	582	
Ao	-1948	-2236	-2399	-1755	-2447	-2403	-2306	
				-251	-385	-86.8		
A_{λ}	0	0	0				-2910	
				-920	883	-199		
A_{κ}	0	0	0				-5292	
$m_{H_{i}}^{2}$	(2942) ²	(3365) ²	(4361) ²	(2481) ²	(935) ²	(3202) ²	(3253) ²	
$m_{H_u}^2$	$(1774)^2$	(1922) ²	(2089) ²	(1612) ²	$(1998)^2$	(2073) ²	$(2127)^2$	
m _{h1}	124.0	125.1	125.4	123.8	124.5	125.2	125.1	

- Modest A_{λ} and A_{κ} from MCMC scan due to our setting $|A_{\lambda,\kappa}| \leq 1$ TeV, while almost perfect point (#7) from completely random scan has quite large A_{λ} and A_{κ} values.
- However, the general random scan over A_{λ} and A_{κ} did not find any perfect points with $m_{h_1}\gtrsim 124$ GeV, whereas such points were fairly quickly found using the MCMC technique.

▲□▶,▲□▶,▲目▶, 目 (のへの

• This suggests that such points are quite fine-tuned in the general scan sense.

Higgs at 125 GeV and the NMSSM

Yun Jiang (UC Davis)

Methodology Results

		Model II		Model III				
Pt. #	1	2	3	4	5	6	7*	
$\tan\beta(m_Z)$	17.9	17.8	21.4	15.1	26.2	17.9	24.2	
λ	0.078	0.0096	0.023	0.084	0.028	0.027	0.064	
ĸ	0.079	0.011	0.037	0.158	-0.045	0.020	0.343	
m _{1/2}	923	1026	1087	842	738	1104	1143	
mo	447	297	809	244	1038	252	582	
Ao	-1948	-2236	-2399	-1755	-2447	-2403	-2306	
				-251	-385	-86.8		
A_{λ}	0	0	0				-2910	
				-920	883	-199		
A_{κ}	0	0	0				-5292	
$m_{H_{i}}^{2}$	(2942) ²	(3365) ²	(4361) ²	(2481) ²	(935) ²	(3202) ²	(3253) ²	
	(1774) ²	(1922) ²	(2089) ²	(1612) ²	(1998) ²	(2073) ²	(2127) ²	
m _{h1}	124.0	125.1	125.4	123.8	124.5	125.2	125.1	

- Modest A_{λ} and A_{κ} from MCMC scan due to our setting $|A_{\lambda,\kappa}| \leq 1$ TeV, while almost perfect point (#7) from completely random scan has quite large A_{λ} and A_{κ} values.
- However, the general random scan over A_{λ} and A_{κ} did not find any perfect points with $m_{h_1} \gtrsim 124$ GeV, whereas such points were fairly quickly found using the MCMC technique.

. E

• This suggests that such points are quite fine-tuned in the general scan sense. (一)
 (一)
 (一)
 (一)

Higgs at 125 GeV and the NMSSM

Yun Jiang (UC Davis)

Preliminary Background

Motivation

Methodology

Results

Conclusions

Further Studies

		Model II			Model III		
Pt. #	1	2	3	4	5	6	7*
m _{h1}	124.0	125.1	125.4	123.8	124.5	125.2	125.1
mha	797	1011	1514	1089	430	663	302
	66.5	9.83	3.07	1317	430	352	302
Cu	0.999	0.999	0.999	0.999	0.999	0.999	0.999
Cd	1.002	1.002	1.001	1.003	1.139	1.002	1.002
$\bar{C_V}$	0.999	0.999	0.999	0.999	0.999	0.999	0.999
$C_{\gamma\gamma}$	1.003	1.004	1.004	1.004	1.012	1.003	1.001
Cgg	0.987	0.982	0.988	0.984	0.950	0.986	0.994
$R^{h_1}(\gamma\gamma)$	0.977	0.970	0.980	0.980	0.971	0.768	0.975
$R^{h_1}(ZZ, WW)$	0.971	0.962	0.974	0.974	0.964	0.750	0.969
	0.59			0.72			
χ^2_{ATLAS}		1.27	1.47		1.57	1.34	1.20

• For the (almost) perfect points with $m_{h_1}\gtrsim 123$ GeV, the h_1 is very SM-like since all C's (and R's) are close to 1.

- The smallest χ^2_{ATLAS} , of order 0.6 to 0.7, is obtained for $m_{h_1} \sim 124$ GeV because at this mass the ATLAS fits to $R^{h_1}(\gamma\gamma)$ and $R^{h_1}(4\ell)$ are very close to 1.
- For $m_{h_2} \sim 125$ GeV, the R^{h_1} 's for the ATLAS data are somewhat larger than 1 leading to a discrepancy with the NMSSM SM-like prediction. Roughly, χ^2_{ATLAS} is of order 1.3 to 1.6.

Higgs at 125 GeV and the NMSSM

Yun Jiang (UC Davis)

Preliminary Background

Motivation

Methodology

Results

Conclusions

Further Studies

	Model II			Model III			
Pt. #	1	2	3	4	5	6	7*
m _{h1}	124.0	125.1	125.4	123.8	124.5	125.2	125.1
mha	797	1011	1514	1089	430	663	302
	66.5	9.83	3.07	1317	430	352	302
Cu	0.999	0.999	0.999	0.999	0.999	0.999	0.999
Cd	1.002	1.002		1.003	1.139	1.002	
Cv	0.999	0.999		0.999	0.999	0.999	
$C_{\gamma\gamma}$	1.003	1.004		1.004	1.012	1.003	
C _{gg}	0.987	0.982	0.988	0.984	0.950	0.986	0.994
$R^{h_1}(\gamma\gamma)$	0.977	0.970	0.980	0.980	0.971	0.768	0.975
$R^{h_1}(ZZ, WW)$	0.971	0.962	0.974	0.974	0.964	0.750	0.969
	0.59			0.72			
χ^2_{ATLAS}		1.27	1.47		1.57	1.34	1.20

• For the (almost) perfect points with $m_{h_1} \gtrsim 123$ GeV, the h_1 is very SM-like since all C's (and R's) are close to 1.

- The smallest χ^2_{ATLAS} , of order 0.6 to 0.7, is obtained for $m_{h_1} \sim 124$ GeV because at this mass the ATLAS fits to $R^{h_1}(\gamma\gamma)$ and $R^{h_1}(4\ell)$ are very close to 1.
- For $m_{h_2} \sim 125$ GeV, the R^{h_1} 's for the ATLAS data are somewhat larger than 1 leading to a discrepancy with the NMSSM SM-like prediction. Roughly, χ^2_{ATLAS} is of order 1.3 to 1.6.

Higgs at 125 GeV and the NMSSM

Yun Jiang (UC Davis)

Preliminary Backgrounds

Motivation

Methodology

Results

Conclusions

Further Studies

	Model II			Model III			
Pt. #	1	2	3	4	5	6	7*
m _{h1}	124.0	125.1	125.4	123.8	124.5	125.2	125.1
mha	797	1011	1514	1089	430	663	302
	66.5	9.83	3.07	1317	430	352	302
Cu	0.999	0.999	0.999	0.999	0.999	0.999	0.999
C _d	1.002	1.002		1.003		1.002	1.002
Cv	0.999	0.999		0.999		0.999	0.999
$C_{\gamma\gamma}$	1.003	1.004		1.004		1.003	1.001
C _{gg}	0.987	0.982	0.988	0.984	0.950	0.986	0.994
$R^{h_1}(\gamma\gamma)$	0.977	0.970	0.980	0.980	0.971	0.768	0.975
$R^{h_1}(ZZ, WW)$	0.971	0.962	0.974	0.974	0.964	0.750	0.969
. 2	0.59	1.07	1 47	0.72	1 57	1.24	1.00
XATLAS		1.27	1.47		1.57	1.34	1.20

• For the (almost) perfect points with $m_{h_1}\gtrsim 123$ GeV, the h_1 is very SM-like since all C's (and R's) are close to 1.

- The smallest χ^2_{ATLAS} , of order 0.6 to 0.7, is obtained for $m_{h_1} \sim 124$ GeV because at this mass the ATLAS fits to $R^{h_1}(\gamma\gamma)$ and $R^{h_1}(4\ell)$ are very close to 1.
- For $m_{h_2} \sim 125$ GeV, the R^{h_1} 's for the ATLAS data are somewhat larger than 1 leading to a discrepancy with the NMSSM SM-like prediction. Roughly, χ^2_{ATLAS} is of order 1.3 to 1.6.

Higgs at 125 GeV and the NMSSM

Yun Jiang (UC Davis)

Preliminary Backgrounds

Motivation

Methodology

Results

Conclusions

Further Studies

		Model II		Model III			
Pt. #	1	2	3	4	5	6	7*
m _{h1}	124.0	125.1	125.4	123.8	124.5	125.2	125.1
mha	797	1011	1514	1089	430	663	302
	66.5	9.83	3.07	1317	430	352	302
Cu	0.999	0.999	0.999	0.999	0.999	0.999	0.999
C _d	1.002	1.002	1.001	1.003	1.139	1.002	1.002
Cv	0.999	0.999	0.999	0.999	0.999	0.999	0.999
$C_{\gamma\gamma}$	1.003	1.004	1.004	1.004	1.012	1.003	1.001
C _{gg}	0.987	0.982	0.988	0.984	0.950	0.986	0.994
$R^{h_1}(\gamma\gamma)$	0.977	0.970	0.980	0.980	0.971	0.768	0.975
$R^{h_1}(ZZ, WW)$	0.971	0.962	0.974	0.974	0.964	0.750	0.969
χ^2_{ATLAS}	0.59	1.27	1.47	0.72	1.57	1.34	1.20

• For the (almost) perfect points with $m_{h_1}\gtrsim 123$ GeV, the h_1 is very SM-like since all C's (and R's) are close to 1.

- The smallest χ^2_{ATLAS} , of order 0.6 to 0.7, is obtained for $m_{h_1} \sim 124$ GeV because at this mass the ATLAS fits to $R^{h_1}(\gamma\gamma)$ and $R^{h_1}(4\ell)$ are very close to 1.
- For $m_{h_1} \sim 125$ GeV, the R^{h_1} 's for the ATLAS data are somewhat larger than 1 leading to a discrepancy with the NMSSM SM-like prediction. Roughly, χ^2_{ATLAS} is of order 1.3 to 1.6.

			Model II		
Higgs at 125	Pt. #	1	2	3	4
NMSSM	μ_{eff}	400	447	472	368
	m _ĝ	2048	2253	2397	1876
(UC Davis)	m _ã	1867	2020	2252	1685
	m _b .	1462	1563	1715	1335
	m _ĩ	727	691	775	658
	m _ě ,	648	581	878	520
	me	771	785	1244	581
Methodology	$m_{\tilde{\tau}_1}$	535	416	642	433
	$m_{\tilde{z}^{\pm}}$	398	446	472	364
Results		363	410	438	328
	<u> </u>		.10	.00	020
Studies	f _B	0.506	0.534	0.511	0.529
	†ŵ	0.011	0.009	0.008	0.012
	f.	0.483	0.457	0.482	0 450
	'Ĥ 	10-4	10-6	10-6	10-4
	ľ Ś	10	10	TO	10

• $m_{\tilde{g}}$ and $m_{\tilde{q}}$ above 1.5 TeV. even above 2 TeV. Although \tilde{t}_1 mass is distinctly below 1 TeV, detection of the \tilde{t}_1 as an entity separate from the other squarks and the gluino will be quite difficult at 500 GeV – 1 TeV. Thus discovering SUSY may require the 14 TeV LHC upgrade.

Model III

0.464

0.009

0.528

 10^{-4}

0.914

0.002

0.083

 10^{-6}

7*

0.370

0.009

0.622

 10^{-6}

• $m_{\tilde{\chi}_1^0}$ is rather similar, $\approx 300 - 450$ GeV. And the $\tilde{\chi}_1^0$ has an approximately equal mixture of higgsino and bino except for Pt. #5.

• μ_{eff} is small for all points, $\Rightarrow \text{EW}$ fine-tuning problem may not be severe. \exists , \mathfrak{DQC}

Higgs	at	125
GeV a	and	the
NM	SS	М

Yun Jiang (UC Davis)

- Preliminary Backgrounds Motivations
- Methodology
- Results
- Conclusions
- Further Studies

		Model II			Model III			
Pt. #	1	2	3	4	5	6	7*	
μ_{eff}	400	447	472	368	421	472	477	
m _ĝ	2048	2253	2397	1876	1699	2410	2497	
m _ã	1867	2020	2252	1685	1797	2151	2280	
т _{Б1}	1462	1563	1715	1335	1217	1664	1754	
m _{ž1}	727	691	775	658	498	784	1018	
m _{ẽ,}	648	581	878	520	1716	653	856	
m _e	771	785	1244	581	997	727	905	
m _{Ť1}	535	416	642	433	784	443	458	
$m_{\tilde{\chi}^{\pm}}$	398	446	472	364	408	471	478	
$m_{\widetilde{\chi}_{1}^{0}}^{\Lambda_{1}}$	363	410	438	328	307	440	452	
					0.914			
fē	0.506	0.534	0.511	0.529		0.464	0.370	
f _w	0.011	0.009	0.008	0.012	0.002	0.009	0.009	
					0.083			
fri	0.483	0.457	0.482	0.459	0.000	0.528	0.622	
f _š	10-4	10 ⁻⁶	10-6	10-4	10-6	10^{-4}	10-6	

- $m_{\tilde{g}}$ and $m_{\tilde{q}}$ above 1.5 TeV. even above 2 TeV. Although \tilde{t}_1 mass is distinctly below 1 TeV, detection of the \tilde{t}_1 as an entity separate from the other squarks and the gluino will be quite difficult at 500 GeV 1 TeV. Thus discovering SUSY may require the 14 TeV LHC upgrade.
- m_{x̃1} is rather similar, ≈ 300 450 GeV. And the x̃1 has an approximately equal mixture of higgsino and bino except for Pt. #5.
- μ_{eff} is small for all points, \Rightarrow EW fine-tuning problem fmay not be severe. \exists , $\mathfrak{I} \mathfrak{A} \mathfrak{S}$

Higgs at 125 GeV and the NMSSM

Yun Jiang (UC Davis)

- Preliminary Backgrounds Motivations
- Methodology
- Results
- Conclusions
- Further Studies

		Model II			Model III			
Pt.	#	1	2	3	4	5	6	7*
μ	eff	400	447	472	368	421	472	477
r	n _ĝ	2048	2253	2397	1876	1699	2410	2497
r	n _q	1867	2020	2252	1685	1797	2151	2280
m	Бı	1462	1563	1715	1335	1217	1664	1754
n	n _{t1}	727	691	775	658	498	784	1018
m	ē,	648	581	878	520	1716	653	856
m	ē d	771	785	1244	581	997	727	905
m	τ ₁	535	416	642	433	784	443	458
	ž±	398	446	472	364	408	471	478
п	$\tilde{\chi}_{1}^{0}$	363	410	438	328	307	440	452
						0.914		
f	õ	0.506	0.534	0.511	0.529	0.01	0.464	0.370
f	Б й/	0.011	0.009	0.008	0.012	0.002	0.009	0.009
	~					0.083		
f		0 483	0 457	0 482	0 459	0.005	0.528	0.622
f	н Ŝ	10 ⁻⁴	10 ⁻⁶	10 ⁻⁶	10 ⁻⁴	10 ⁻⁶	10^{-4}	10 ⁻⁶

- $m_{\tilde{g}}$ and $m_{\tilde{q}}$ above 1.5 TeV. even above 2 TeV. Although \tilde{t}_1 mass is distinctly below 1 TeV, detection of the \tilde{t}_1 as an entity separate from the other squarks and the gluino will be quite difficult at 500 GeV 1 TeV. Thus discovering SUSY may require the 14 TeV LHC upgrade.
- $m_{\tilde{\chi}_1^0}$ is rather similar, $\approx 300 450$ GeV. And the $\tilde{\chi}_1^0$ has an approximately equal mixture of higgsino and bino except for Pt. #5.
- μ_{eff} is small for all points, \Rightarrow EW fine-tuning problem http://nottebel.sever. Ξ , $\mathfrak{I} \mathfrak{I} \mathfrak{I}$

Higgs at 125 GeV and the NMSSM

Yun Jiang (UC Davis)

- Preliminary Backgrounds Motivations
- Methodology
- Results
- Conclusions
- Further Studies

		Model II			Model III			
	Pt. #	1	2	3	4	5	6	7*
	μ_{eff}	400	447	472	368	421	472	477
	m _ĝ	2048	2253	2397	1876	1699	2410	2497
	m _q	1867	2020	2252	1685	1797	2151	2280
	т _{Б1}	1462	1563	1715	1335	1217	1664	1754
	m _{ĩ1}	727	691	775	658	498	784	1018
	m _{ẽ,}	648	581	878	520	1716	653	856
	mě	771	785	1244	581	997	727	905
	$m_{\tilde{\tau}_1}$	535	416	642	433	784	443	458
	$m_{\tilde{\chi}_1^{\pm}}$	398	446	472	364	408	471	478
	$m_{\widetilde{\chi}_1^0}$	363	410	438	328	307	440	452
Γ						0.914		
	fã	0.506	0.534	0.511	0.529		0.464	0.370
	f _{iã} ,	0.011	0.009	0.008	0.012	0.002	0.009	0.009
						0.083		
	fr.	0.483	0.457	0.482	0.459	0.000	0.528	0.622
	f	10-4	10-6	10-6	10-4	10-6	10^{-4}	10-6

- $m_{\tilde{g}}$ and $m_{\tilde{q}}$ above 1.5 TeV. even above 2 TeV. Although \tilde{t}_1 mass is distinctly below 1 TeV, detection of the \tilde{t}_1 as an entity separate from the other squarks and the gluino will be quite difficult at 500 GeV 1 TeV. Thus discovering SUSY may require the 14 TeV LHC upgrade.
- $m_{\tilde{\chi}_1^0}$ is rather similar, $\approx 300 450$ GeV. And the $\tilde{\chi}_1^0$ has an approximately equal mixture of higgsino and bino except for Pt. #5.
- μ_{eff} is small for all points, \Rightarrow EW fine-tuning problem may not be severe.

δa_{μ} and Dark Matter details

Higgs at 125 GeV and the NMSSM

Yun Jiang (UC Davis)

Preliminary Backgrounds
S. 1.

- Conclusions
- Further Studies

Pt. #	δa_{μ}	Ωh^2	Prim. Ann. Channels	$\sigma_{\rm SI}$ [pb]
1	6.01	0.094	$\widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0} \rightarrow W^{+}W^{-}(31.5\%), ZZ(21.1\%)$	$4.3 imes10^{-8}$
2	5.85	0.099	$\widetilde{ u_{ au}}\widetilde{ u_{ au}} o u_{ au} u_{ au}$ (11.4%), $\widetilde{ u_{ au}}\overline{\widetilde{ u}}_{ au} o W^+W^-$ (8.8%)	$3.8 imes10^{-8}$
3	4.48	0.114	$\widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0} \rightarrow W^{+}W^{-}(23.9\%), ZZ(17.1\%)$	$3.7 imes10^{-8}$
4	6.87	0.097	$\widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0} ightarrow W^{+}W^{-}(36.9\%), ZZ(23.5\%)$	$4.5 imes10^{-8}$
5	5.31	0.135	$\widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0} \rightarrow b\overline{b}(39.5\%), h_{1}a_{1}(20.3\%)$	$5.8 imes10^{-8}$
6	4.89	0.128	$\widetilde{\tau}_{1}\widetilde{\tau}_{1} \to \tau \tau (17.4\%), \widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0} \to W^{+}W^{-}(14.8\%)$	
7*	4.96	0.101	$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0 \rightarrow W^+ W^-(17.7\%), ZZ(12.9\%)$	$4.0 imes 10^{-8}$

- There is some variation in the primary annihilation mechanism, with $\tilde{\tau}_1 \tilde{\tau}_1$ and $\tilde{\chi}_1^0 \tilde{\chi}_1^0$ annihilation being the dominant channels except for Pt. #2 for which $\tilde{\nu}_{\tau} \tilde{\nu}_{\tau}$ and $\tilde{\nu}_{\tau} \overline{\tilde{\nu}}_{\tau}$ annihilations are dominant.
 - In the case of dominant τ̃₁τ̃₁ annihilation, the bulk of the χ̃₁⁰'s come from those τ̃'s that have not annihilated against one another or co-annihilated with a χ̃₁⁰.
 - All the points yield a spin-independent direct detection cross section of order $(3.5-6) \times 10^{-8}$ pb, i.e. well within reach of next generation of direct detection experiments for indicated $\tilde{\chi}_1^0$ masses.
δa_{μ} and Dark Matter details

Higgs at 125 GeV and the NMSSM

Yun Jiang (UC Davis)

Preliminary Backgrounds
Results

- Conclusions
- Further Studies

Pt. #	δa_{μ}	Ωh^2	Prim. Ann. Channels	$\sigma_{ m SI}$ [pb]
1	6.01	0.094	$\widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0} \rightarrow W^{+}W^{-}(31.5\%), ZZ(21.1\%)$	$4.3 imes10^{-8}$
2	5.85	0.099	$\widetilde{ u_{ au}}\widetilde{ u_{ au}} o u_{ au} u_{ au}(11.4\%), \widetilde{ u_{ au}}\overline{\widetilde{ u}}_{ au} o W^+W^-(8.8\%)$	$3.8 imes10^{-8}$
3	4.48	0.114	$\widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0} ightarrow W^{+}W^{-}(23.9\%), ZZ(17.1\%)$	$3.7 imes10^{-8}$
4	6.87	0.097	$\widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0} ightarrow W^{+}W^{-}(36.9\%), ZZ(23.5\%)$	$4.5 imes10^{-8}$
5	5.31	0.135	$\widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0} \rightarrow b\overline{b}(39.5\%), h_{1}a_{1}(20.3\%)$	$5.8 imes10^{-8}$
6	4.89	0.128	$\widetilde{\tau}_{1}\widetilde{\tau}_{1} \to \tau \tau (17.4\%), \widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0} \to W^{+}W^{-}(14.8\%)$	
7*	4.96	0.101	$\widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0} \rightarrow W^{+}W^{-}(17.7\%), ZZ(12.9\%)$	$4.0 imes 10^{-8}$

- There is some variation in the primary annihilation mechanism, with $\tilde{\tau}_1 \tilde{\tau}_1$ and $\tilde{\chi}_1^0 \tilde{\chi}_1^0$ annihilation being the dominant channels except for Pt. #2 for which $\tilde{\nu}_{\tau} \tilde{\nu}_{\tau}$ and $\tilde{\nu}_{\tau} \overline{\tilde{\nu}}_{\tau}$ annihilations are dominant.
 - In the case of dominant τ₁τ₁ annihilation, the bulk of the χ₁⁰'s come from those τ's that have not annihilated against one another or co-annihilated with a χ₁⁰.
 - All the points yield a spin-independent direct detection cross section of order (3.5 - 6) × 10⁻⁸ pb, i.e. well within reach of next generation of direct detection experiments for indicated X⁰₁ masses.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

δa_{μ} and Dark Matter details

Higgs at 125 GeV and the NMSSM

Yun Jiang (UC Davis)

Preliminary Backgrounds
Results

- Conclusions
- Further Studies

	Pt. #	δa_{μ}	Ωh^2	Prim. Ann. Channels	$\sigma_{\rm SI}$ [pb]
[1	6.01	0.094	$\widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0} \rightarrow W^{+}W^{-}(31.5\%), ZZ(21.1\%)$	$4.3 imes10^{-8}$
	2	5.85	0.099	$\widetilde{ u_{ au}}\widetilde{ u_{ au}} \to \overline{ u_{ au}} u_{ au}$ (11.4%), $\widetilde{ u_{ au}} \overline{\widetilde{ u}}_{ au} o W^+ W^-$ (8.8%)	$3.8 imes10^{-8}$
	3	4.48	0.114	$\widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0} \rightarrow W^{+}W^{-}(23.9\%), ZZ(17.1\%)$	$3.7 imes10^{-8}$
[4	6.87	0.097	$\widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0} ightarrow W^{+}W^{-}(36.9\%), ZZ(23.5\%)$	$4.5 imes10^{-8}$
	5	5.31	0.135	$\widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0} \rightarrow b\overline{b}(39.5\%), h_{1}a_{1}(20.3\%)$	$5.8 imes10^{-8}$
	6	4.89	0.128	$\widetilde{\tau}_{1}\widetilde{\tau}_{1} \to \tau \tau (17.4\%), \widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0} \to W^{+}W^{-}(14.8\%)$	
	7*	4.96	0.101	$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0 \rightarrow W^+ W^-(17.7\%), ZZ(12.9\%)$	$4.0 imes 10^{-8}$

- There is some variation in the primary annihilation mechanism, with $\tilde{\tau}_1 \tilde{\tau}_1$ and $\tilde{\chi}_1^0 \tilde{\chi}_1^0$ annihilation being the dominant channels except for Pt. #2 for which $\tilde{\nu}_{\tau} \tilde{\nu}_{\tau}$ and $\tilde{\nu}_{\tau} \overline{\tilde{\nu}}_{\tau}$ annihilations are dominant.
 - In the case of dominant $\tilde{\tau}_1 \tilde{\tau}_1$ annihilation, the bulk of the $\tilde{\chi}_1^{0}$'s come from those $\tilde{\tau}$'s that have not annihilated against one another or co-annihilated with a $\tilde{\chi}_1^{0}$.
 - All the points yield a spin-independent direct detection cross section of order $(3.5-6) \times 10^{-8}$ pb, i.e. well within reach of next generation of direct detection experiments for indicated $\tilde{\chi}_1^0$ masses.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Outline

Higgs at 125 GeV and the NMSSM

Yun Jiang (UC Davis)

Preliminary Backgrounds Motivations Methodology

Conclusions

Further Studies

- Preliminary Backgrounds: why NMSSM?
- O Motivations
- Methodology
- Result Analysis
- Onclusions

Higgs at 125 GeV and the NMSSM

Yun Jiang (UC Davis)

Preliminary Backgrounds Motivations

Methodolog

Results

Conclusions

Further Studies • *U*(1)_{*R*} imposed CNMSSM is NOT able to yield a fairly SM-like 125 GeV Higgs once all constraints are imposed.

▲□▶,▲□▶,▲≣▶, 差 ,のへの

Higgs at 125 GeV and the NMSSM

Yun Jiang (UC Davis)

Preliminary Backgrounds Motivations Methodology

Results

Conclusions

Further Studies • *U*(1)_{*R*} imposed CNMSSM is NOT able to yield a fairly SM-like 125 GeV Higgs once all constraints are imposed.

<ロ>(4)

• *U*(1)_{*R*} imposed NUHM allows quite perfect points with a SM-like Higgs near 125 GeV satisfying all constraints.

Higgs at 125 GeV and the NMSSM

Yun Jiang (UC Davis)

Preliminary Backgrounds Motivations Methodology

Results

Conclusions

Further Studies

- $U(1)_R$ imposed CNMSSM is NOT able to yield a fairly SM-like 125 GeV Higgs once all constraints are imposed.
- U(1)_R imposed NUHM allows quite perfect points with a SM-like Higgs near 125 GeV satisfying all constraints.
- Perfect and almost perfect points prefer to have relatively small A_{λ}, A_{κ} values.

◆□▶,◆□▶,◆目▶, ● , ●への

Higgs at 125 GeV and the NMSSM

Yun Jiang (UC Davis)

Preliminary Backgrounds Motivations Methodology

Conclusions

Further Studies

- $U(1)_R$ imposed CNMSSM is NOT able to yield a fairly SM-like 125 GeV Higgs once all constraints are imposed.
- U(1)_R imposed NUHM allows quite perfect points with a SM-like Higgs near 125 GeV satisfying all constraints.
- Perfect and almost perfect points prefer to have relatively small A_{λ}, A_{κ} values.
- Direct detection of SUSY may have to await the 14 TeV upgrade of the LHC, but direct detection of the LSP will be possible with the next round of upgrades.

Outline

Higgs at 125 GeV and the NMSSM

Yun Jiang (UC Davis)

- Preliminary Backgrounds Motivations Methodology
- Results
- Conclusions
- Further Studies

Preliminary Backgrounds: why NMSSM?

<<p><□>、<□>、<□>、<</p>

- Ontivations
- Methodology
- Result Analysis
- Conclusions
- Further Studies

Work in Progress

Higgs at 125 GeV and the NMSSM

Yun Jiang (UC Davis)

- Preliminary Backgrounds Motivations
- Methodology
- Results
- Conclusions
- Further Studies

- If future data confirms a $\gamma\gamma$ rate in excess of the SM prediction, then it will be necessary to go beyond the constrained versions of the NMSSM considered here.
 - How to enhance the ratio R up to 1.4?
- The random scan of the full parameter space for the general NMSSM without any GUT unification is in progress.

◆□▶,◆□▶,◆目▶, ● , ●への

Higgs at 125 GeV and the NMSSM

Yun Jiang (UC Davis)

Preliminary Backgrounds Motivations Methodology Results

Conclusions

Further Studies Thank you for your attention!

Thanks to Profs. Gunion and Kraml for their patient guidance and help.

< □ > (< □ > (< Ξ >) Ξ () < @</p>

Higgs at 125 GeV and the NMSSM

Yun Jiang (UC Davis)

Preliminary Backgrounds Motivations Methodolog

Results

Conclusions

Further Studies

Back Up

< □ ▶, < @ ▶, < ≧ ▶, ≧ , つへぐ

R definition

Higgs at 125 GeV and the NMSSM

Yun Jiang (UC Davis)

- Preliminary Backgrounds Motivations Methodology
- Results
- Conclusions
- Further Studies

• Higgs production @ LHC: gluon-gluon to Higgs

$$R^{h_i}(X) \equiv rac{\Gamma(gg o h_i) \ BR(h_i o X)}{\Gamma(gg o h_{
m SM}) \ BR(h_{
m SM} o X)},$$

SM denominator computation:
1) NMHDECAY computes the reduced Higgs couplings C_{hiY} ≡ g_{hiY}/g_{hSMY}, where Y = gg, VV, bb, τ⁺τ⁻, γγ,... 2) Γ^{h_{SM}}(Y) = Γ^{h_i}(Y)/[C_Y^{h_i}]² = Γ^{h_i}_{tot}BR(h_i → Y)/[C_Y^{h_i}]² 3) Γ^{h_{SM}}_{tot} = Σ_Y Γ^{h_{SM}}(Y) 4) BR(h_{SM} → Y) = Γ^{h_{SM}}(Y)/Γ^{h_{SM}}_{tot}

$$R^{h_{i}}(X) = C^{2}_{h_{1}gg}C^{2}_{h_{1}X}\sum_{Y}\frac{BR(h_{1} \to Y)}{C^{2}_{h_{1}Y}}$$

◆□▶,◆□▶,◆目▶, ● , ●への

$BR(h_1 \rightarrow a_1 a_1)$ Figures (log scale)

Large BR is possible while satisfying basic and *B*-physics constraints. However, $BR \lesssim 0.2$ once additional constraints are imposed. Thus, a light Higgs has nowhere to hide in these models.

◆□▶ ◆□▶ (◆三▶) 三 (のへの

More Analysis (Ωh^2 vs δa_{μ})

Higgs at 125 GeV and the NMSSM

Yun Jiang (UC Davis)

Preliminary Backgrounds Motivations Methodology Results

Further

