ATLAS - HIDDEN SUSY

*Only a selection of the available results leading to mass limits shown

SUSY

i. Watts (UW/Seattle)

we've seen nothing

where is it?

hiding at a higher scale \rightarrow wait for \sqrt{s} increase (2014/2015)

normal, but low $\sigma \longrightarrow \text{wait for more data (HCP, winter for 5 <math>fb^{-1}$)

already there

better search strategies

concentrate on "hidden" searches for this talk

better catalogs of models better triggers better offline searches

SUSY with out prejudice

large range of models examined

gaps!

or...

simplified models

for hidden senarios

SUSY Normal, Hidden, Soft, Squished, Compressed, Hidden Valley

triggering is grim ...

... and getting grimmer

unprescaled @ end of 2011

em: 1e@22, 2e@12, 1e@12+2e@6, 1 γ @80, 2 γ @20, 1e@20+ $E_T^{miss} > 40$ muon: 1 μ @18, 1 μ @40sl, 1 μ @15+1 μ @10, 1 μ @15+ $E_T^{miss} > 30$ tau: 1 τ @125, 1 τ @29+1 τ @20, 1 τ @29+ $E_T^{miss} > 35$ jets: 1j@250, 3j@100, 4j@45, 5j@30, 1j@75+ $E_T^{miss} > 55$, 1j@100+ $H_T > 400$, 4j@40+ $H_T > 350$ combo: 1 μ @18+1j@10, 1e@5+1 μ @6, 1 τ @20+1e@15, 1 τ @20+1 μ @15

long lived particle triggers

b-tagging triggers

good for a decay a few millimeters from primary vertex commissioned not used in any analysis currently

Long Lived Neutral Particle Triggers

neutral particle decays mid-detector appearance trigger run for full 2011 dataset (5 fb^{-1})

3 triggers

trackless jet trigger

jet $E_T > 35 \text{ GeV}$ no tracks with $p_T > 1 \text{ GeV}$ near jet muon spectrometer activity low efficiency

 $\begin{array}{l} \log(E_{had}/E_{EM}) \\ & jet \, E_T > 35 \; GeV \\ & no \; tracks \; with \; p_T > 1 \; \text{GeV} \; \text{near jet} \\ & log(E_{had}/E_{EM}) > 1.0 \\ & very \; \text{good efficiency} \end{array}$

muon spectrometer cluster trigger three RoI clusters all close by no jets no tracks really very good efficiency

decays in inner detector

decays beyond the EM calorimeter

decays beyond the hadronic calorimeter

offline analysis

standard SUSY analyses

jets $p_T > 50 \text{ GeV}$ electrons $p_T > 10 - 20 \text{ GeV}$ muons $p_T > 10 - 20 \text{ GeV}$ $E_T^{miss} > 50 \text{ GeV}$

non-standard SUSY searches

highly ionizing particles displaced vertices kinked tracks stopped particles

color charge, subluminal \longrightarrow time-of-flight, ionization use calorimeter for electrically neutral R-hadrons

SUSY UED

pixels: dE/dxtile calorimeter: time of flight (0.3 < β < 1.0)

 $L=34pb^{-1}$

trigger on calorimeter $E_T^{miss} > 40 \text{ GeV}$

Cut level	Data	Background	300 GeV \tilde{g}	500 GeV \tilde{g}	600 GeV \tilde{g}	200 GeV \tilde{t}	200 GeV \tilde{b}
No cuts	-	-	2.13×10^{3}	80.4	21.8	405	405
Trigger	-	-	616	25.6	6.96	109	108
Candidate	75466	68.0×10^{3}	416	17.6	4.80	87.4	67.9
Vertex	75461	68.0×10^{3}	416	17.6	4.80	87.4	67.9
$ \eta < 1.7$	64618	60.5×10^{3}	364	15.7	4.32	75.2	56.8
Track quality	59872	58.1×10^{3}	355	15.3	4.20	73.3	54.9
$\Delta R > 0.5$	49205	49.4×10^3	349	15.1	4.13	72.7	54.5
$p_{\rm T} > 50 { m ~GeV}$	5116	6.56×10^{3}	330	14.5	3.95	68.9	50.0
Mass preselection	36	56.0	184	9.70	2.75	32.6	18.9
Final selection	-	-	173	9.17	2.62	30.6	17.5

mass from ionization or from time of flight

G. Watts (UW/Seattle)

mass estimates must be compatible

Nominal	$\mu_{ m Pixel}$	$\sigma_{ m Pixel}$	$\mu_{ m Tile}$	$\sigma_{ m Tile}$	No. of signal cand. (\tilde{g})			Est. no. of bkg. cand.			N_{Data}
mass (GeV)	(GeV)	(GeV)	(GeV)	(GeV)	Pixel	Tile	Comb.	Pixel	Tile	Comb.	Comb.
100	107	10	109	19	15898	49300	13912	61	330	5.4	$\longrightarrow 5$
200	214	24	211	36	1417	2471	1235	19	61	0.87	0
300	324	40	315	56	202	304	173	6.5	17	0.22	0
400	425	67	415	75	43	57	37	3.4	7.2	0.082	0
500	533	94	513	106	11	13	9.2	1.82	4.4	0.044	0
600	641	125	624	145	3.1	3.5	2.6	1.08	3.2	0.028	0
700	727	149	714	168	0.99	1.07	0.84	0.74	2.1	0.018	0

Stable, charged (μ -based)

electrically charged by the time they leave the calorimeter

charged, long lived particles colored, but interact in calorimeter leading to a spray of charged particles in the muon spectrometer

L=37 pb^{-1}

GMSB SUSY

trigger is the muon drift tube

reconstruction method 1:

fit inner detector track to imperfect muon spectrometer segments take into account β which alters drift time sub-par muon spectrometer segments also used

reconstruction method 2:

muon spectrometer based only segment reconstruction starts from trigger information efficiency is not great for low β .

Stable, charged (μ -based)

scale [2]. Additional scenarios allowing for such a signature include split-supersymmetry [3], hidden-valley [4], dark-sector gauge bosons [5], stealth supersymmetry [6], or a meta-stable supersymmetry-breaking sector [7].

displaced vertices

displaced vertex

vertex reconstruction standard use tracks that have no pixel hits reject vertices near material

SUSY++ L=33 pb_-1

displaced vertices

displaced vertices

G. Watts (UW/Seattle)

stopped particles

- Long-lived particles produced with low β can stop in detector material and decay much later.
- Most likely to stop in densest part of ATLAS => calorimeters.
- Look for events with large energy deposits in calorimeter in "empty" bunches.

backgrounds: calorimeter noise, cosmics, beam-halo

stopped particles

limits soon...

G. Watts (UW/Seattle)

hidden valley SUSY

LSP is in the HV sector

result are long lived decays in the detector

analysis technique is a riff on the long lived triggers

b-tagging

big improvements coming

conclusions

- Iots of information from the ATLAS detector
- can be used in new ways to help with some corners of SUSY parameter space
 - if we can figure out how to control backgrounds!
- new results at HCP with 2 3fb⁻¹ and 5fb⁻¹ for winter conferences
- improving algorithms all the time
- other results out there
 - e.g. squashed SUSY reinterpretation

2 leptons, E_T^{miss}

leptons: =2 e, μ (both ss/os) jets: Bin in # of jets (up to 8) $p_T > 55,80 \text{ GeV}$ $\frac{E_T^{miss}}{\sqrt{H_T}} > 3.5 \text{ GeV}$ luminosity: 1.34 fb^{-1} r parity conserving

Figure 3: Distributions of the invariant mass in data together with the SM expectation for same-flavour (SF) dilepton events with $E_{T}^{miss} > 80$ GeV after a Z-veto requirement (FS-SR1) (a) and 2-jet requirement (FS-SR2) (b). Also shown are the different-flavour (DF) distributions. Errors on data points are statistical, while the error bands on the SM predictions represent the total uncertainties.

Large # Jets, E_T^{miss}

leptons: =0 e, μ with $p_T^e > 20$ GeV, $p_T^\mu > 10$ GeV jets: 0-4, $p_T > 40 - 100$ GeV E_T^{miss} used as the limit setting variable luminosity: 1 fb^{-1} r parity conserving

1 lepton, jets, E_T^{miss}

leptons: =1 e, μ $p_T^e > 20 \text{ GeV}, p_T^{\mu} > 10 \text{ GeV}$ jets: 3, $p_T > 60 \text{ GeV}, E_T^{miss} > 125$ 3, $p_T > 80 \text{ GeV}, E_T^{miss} > 240$ 4, $p_T > 60(1), 25(3) \text{ GeV}, E_T^{miss} > 140$ 4, $p_T > 60(1), 40(3) \text{ GeV}, E_T^{miss} > 200$ luminosity: 1.04 fb^{-1} r parity conserving

[GeV]

____ 450 E

400

300

250

200

150

ATLAS

ă (700 Ge)

ã (500 Col

ã (400 Ge

200

3 (900 GeV

400

1 lepton, combination

ĝ (900 GeV)

600

Expected CL

LEP2 $\widetilde{\gamma}$

ã (600 GeV

800

Expected CL ±1σ

ĝ (500 GeV)

1000

 $D0 \tilde{a} \tilde{a}$ tan $\beta = 3. \mu < 0. 2$.

CDF ĝ, ĝ, tanβ=5, μ<0, 2

ã (400 G

1200

1400

m_o [GeV]

jets, E_T^{miss}

leptons: =0 e, μ with $p_T^{e,\mu} > 20 \text{ GeV}$ jets: leading $p_T > 130, 2-4 p_T > 40, \text{ or } 4 p_T > 80$ $E_T^{miss} > 130 \text{ GeV}$ luminosity: 1.04 fb^{-1} r parity conserving

Figure 2: Combined exclusion limits for simplified SUSY models with $m(\tilde{\chi}_1^0) = 0$ (left) and MSUGRA/CMSSM models with $\tan \beta = 10$, $A_0 = 0$ and $\mu > 0$ (right). The combined limits are obtained by using the signal region which generates the best expected limit at each point in the parameter plane. The dashed-blue line corresponds to the median expected 95% C.L. limit and the red line corresponds to the observed limit at 95% C.L. The dotted blue lines correspond to the $\pm 1\sigma$ variation in the expected limits. Also shown for comparison purposes in the figures are limits from the Tevatron [35, 36, 37, 38] and LEP [39, 40], although it should be noted that some of these limits were generated with different models or parameter choices (see legends). The previous published ATLAS limits from this analysis [5] are also shown. The MSUGRA/CMSSM reference point used in Figure 1 is indicated by the star in the right-hand figure.

2 lepton (high mass)

leptons: =1 e, 1 μ $p_T^{e,\mu} > 25 \,\text{GeV}$ luminosity: 1.07 $f b^{-1}$ r parity violating

G. Watts (UW/Seattle)

1 lepton, b-jets, E_T^{miss}

leptons: =1 *e*, μ $p_T^e > 20 \text{ GeV}, p_T^{\mu} > 10 \text{ GeV}$ jets: 4, $p_T > 50 \text{ GeV}$ ($\geq 1 \text{ b-tag}$) $E_T^{miss} > 80 \text{ GeV}$ $m_T(l, E_T^{miss}) > 100 \text{ GeV}$ luminosity: 1.03 $f b^{-1}$ r parity conserving

0 leptons, b-jets, E_T^{miss}

$$\begin{split} & |\text{eptons:}=\circ e, \mu \\ & p_T^e > 20 \text{ GeV}, p_T^\mu > 10 \text{ GeV} \\ & \text{jets:} \ge 3, p_T > 130,50,50 \text{ GeV} (\ge 1 \text{ b-tag } \text{w}/p_T > 50 \text{ GeV}) \\ & \text{Split signal regions by $\#$ of b-jets, m_{eff}} \\ & E_T^{miss} > 130 \text{ GeV} \\ & m_T(l, E_T^{miss}) > 100 \text{ GeV} \\ & \text{luminosity: } \circ.8_3 f b^{-1} \\ & \text{r parity conserving} \end{split}$$

