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The Causal Set Hypothesis

The causal set approach is based on two fundamental building blocks:

The Causal Structure Poset

Spacetime Discreteness
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The Causal Structure Poset (M,≺) Associated with (M,g)

Timelike: gabvavb < 0
Null: gabvavb = 0

Spacelike: gabvavb > 0
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The Causal Structure Poset (M,≺) Associated with (M,g)

x

y

w

z

x ≺ y if there is a future directed causal curve from x to y

If (M, g) has no closed causal curves, then (M,≺) is a partially ordered set

M is the set of events.

≺ is:

Acyclic: x ≺ y and y ≺ x ⇒ x = y

Reflexive: x ≺ x

Transitive: x ≺ y , y ≺ z⇒ x ≺ z
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How primitive is (M,≺) ?

– Zeeman, Penrose, Kronheimer, Hawking, Geroch, Ellis, Malament, etc..
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(M,≺) determines the conformal class of the metric.
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(M,≺) determines the conformal class of the metric.

If f : (M1, g1)→ (M2, g2) is a causal bijection between two future and past distinguishing spacetimes, then f is
a smooth conformal isometry. Namely, f and f−1 are smooth and f∗g1 = Ω2g2.

S. W. Hawking, A.R. King, P.J. McCarthy, J. Math. Phys. (1976); D. Malament, J. Math. Phys. (1977); O. Parrikar, S. Surya (2011).

Causal structure = 9/10th of the spacetime geometry.

Volume element = 1/10th of the spacetime geometry.

Spacetime geometry = Causal Structure + Volume
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Discreteness

Be Wise, Discretise! —- Mark Kac

Planck scale physics: lp =
√

G~/c3

Black Hole Entropy, Resolution of Singularities, Regularisation of QFTs, etc.

Discreteness can give the spacetime volume element:
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Discreteness

Be Wise, Discretise! —- Mark Kac

Planck scale physics: lp =
√

G~/c3

Black Hole Entropy, Resolution of Singularities, Regularisation of QFTs, etc.

Discreteness can give the spacetime volume element:

A spacetime region of volume V has n ∼ V/Vp Planck volumes

y

x
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The Causal Set Hypothesis

The Causal Structure Poset Spacetime Discreteness

⇓

The underlying structure of spacetime is a causal set or locally finite poset (C,≺)

• Discretness implemented via local finiteness: |Fut(x) ∩ Past(y)| <∞

y

x
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Reconstructing Spacetime From a Causal Set

Spacetime geometry = Causal Structure + Volume

Causal Structure→ Partially Ordered Set

Spacetime Volume→ Number

Order + Number ∼ Spacetime geometry
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Reconstructing Spacetime From a Causal Set

Regular lattice does not preserve Number-Volume correspondence

Random lattice generated via a Poisson process:
PV (n) ≡ 1

n!
e−ρV (ρV )n, < N >= ρV
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Reconstructing Spacetime From a Causal Set

Regular lattice does not preserve Number-Volume correspondence

Random lattice generated via a Poisson process:
PV (n) ≡ 1

n!
e−ρV (ρV )n, < N >= ρV
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Local Lorentz invariance: there are no preferred directions – L.Bombelli, J.Henson, R. Sorkin, Mod.Phys.Lett. 2009
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Spacetime-like causal sets

A generic causal set looks nothing like spacetime

N/4

N/4

N/2

C is “approximated” by (M, g) if it admits a “faithful embedding” Φ : C → (M, g)

Order relation in C↔ induced causal order in Φ(C)

Φ(C) ⊂ (M, g) is a high probability Poisson sprinkling in (M, g)

The Inverse Problem: Reconstructing continuum geometry and topology from the causal set

Timelike Distance, Dimension, Homology, D’Alembertian, Scalar Curvature..
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Dynamics for Causal sets

From first principles

Classical Sequential Growth and Observables

Quantum Sequential Growth (Quantum Measure formulation and the construction of Observables)

Biggest Challenge: Emergence of Einstein gravity, continuum spacetime

Continuum inspired Dynamics: Z =
∑

c∈Ω eiS[c]/~

A Non-local Action

Wick Rotation without changing the sample space.

Markov Chain Monte Carlo methods

Local moves and KR posets.

A 2D model of causal set quantum gravity – some interesting leads.

Biggest Challenge: What are the covariant observables?
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Causal Set Cosmology

Classical Sequential Growth – D.P. Rideout, R.D. Sorkin, Phys. Rev D (2000)
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Classical Sequential Growth – D.P. Rideout, R.D. Sorkin, Phys. Rev D (2000)
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Classical Sequential Growth – D.P. Rideout, R.D. Sorkin, Phys. Rev D (2000)

p q
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Causal Set Cosmology

Classical Sequential Growth – D.P. Rideout, R.D. Sorkin, Phys. Rev D (2000)

Transitive percolation: p: probability of adding in a link and q = 1− p: probability for no relation.

Principles:

General Covariance or Label Independence,

Bell-causality condition
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Classical Stochastic Theory

Classical Stochastic Dynamics is a Probability Measure Space: (Ω,A, µ)

Sample Space Ω: space of histories.

Event Algebra A: set of all propositions about the system.

A is closed under finite set union, intersection and complementation.
Ω ∈ A.

Probability Measure µ : A → [0, 1]: finitely additive

Kolmogorov Sum Rule: µ(α1 t α2) = µ(α1) + µ(α2)

Lesson: An observable is a measurable set
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Covariant Observables

Sequential growth generates causal sets that are labelled.

Ω : space of all “completed” labelled, past finite causal sets

A is generated by the cylinder sets {cyl(ci )} where ci are labelled causal sets of size n <∞.

Example: cyl(..)=set of all causal sets whose first two elements form a 2-antichain.

µ in terms of p:

β

µ(α) =  µ(β) = µ(γ) =

µ(δ) = pp
qp

pqp qq pq pp qqpq

δ

γα

pqq
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Covariant Observables

Sequential growth generates causal sets that are labelled.

Finite time events are not covariant.

Complete A to include infinite time events: SA is the sigma algebra generated from A
S is an algebra

S is closed under countable unions and intersections

Example from classical random walk: Walker eventually returns to the origin.

(Ω,A, µ)→ (Ω,SA, µ∗)

Caratheodary-Hahn theorem: The extension exists and is unique.
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Covariant Observables

Sequential growth generates causal sets that are labelled.

Finite time events are not covariant.

Complete A to include infinite time events: SA is the sigma algebra generated from A
S is an algebra

S is closed under countable unions and intersections

Example from classical random walk: Walker eventually returns to the origin.

(Ω,A, µ)→ (Ω,SA, µ∗)

Caratheodary-Hahn theorem: The extension exists and is unique.

Take the quotient of (Ω,SA, µ∗) with respect to relabellings: (Ω′,S′, µ′)

Physical characterisation of this space in terms of past sets.
G. Brightwell, H.F. Dowker, R.S. Garcia, J. Henson, R.D. Sorkin, Phys. Rev. D(2003)
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Covariant Observables

Sequential growth generates causal sets that are labelled.

Finite time events are not covariant.

Complete A to include infinite time events: SA is the sigma algebra generated from A
S is an algebra

S is closed under countable unions and intersections

Example from classical random walk: Walker eventually returns to the origin.

(Ω,A, µ)→ (Ω,SA, µ∗)

Caratheodary-Hahn theorem: The extension exists and is unique.

Take the quotient of (Ω,SA, µ∗) with respect to relabellings: (Ω′,S′, µ′)

Physical characterisation of this space in terms of past sets.
G. Brightwell, H.F. Dowker, R.S. Garcia, J. Henson, R.D. Sorkin, Phys. Rev. D(2003)

Is there an analog of this for the quantum case?
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Quantum Theory

Quantum theory can be thought of as a generalisation of classical stochastic theories.

Quantum Dynamics is a Quantum Measure Space (Ω,A, µ)

R. D. Sorkin, Mod. Phys. Lett. A 9, 3119 (1994), R. D. Sorkin, J. Phys. Conf. Ser. (2007), Fay Dowker, Yousef Ghazi-Tabatabai, J.Phys.A(2008)
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Quantum Theory

Ω and A same as in classical stochastic theories.

µ is non-additive: µ(α t β) = µ(α) + µ(β) + I(α, β)

Quantum Sum Rule

µ(α1 t α2 t α3) = µ(α1 t α2) + µ(α1 t α3) + µ(α2 t α3)− µ(α1)− µ(α2)− µ(α3).

What is the interpretation of µ?

Principle of Preclusion: If µ(α) = 0, then α doesn’t happen or is precluded

The Anhomomorphic Logic/Coevent/Piombino Interpretation.
R. D. Sorkin, J. Phys. Conf. Ser. (2007),
Fay Dowker, Yousef Ghazi-Tabatabai, J.Phys.A(2008)
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Complex Percolation with F. Dowker and S. Johnston

p, q ∈ C.

β

p p∗ µ(β)= ∗q  q
qp

α

µ(α) = 

What is µ(α t β)?
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Complex Percolation with F. Dowker and S. Johnston

p, q ∈ C.

Decoherence functional D : Ω× Ω→ C.

Properties:

Hermetian: D(α, β) = D∗(β, α)

Finitely Biadditive: D(tn
i=1αi , β) =

∑n
i=1 D(αi , β)

Normalised: D(Ω,Ω) = 1

Strongly Positive: For any finite collection {αi}, Mij = D(αi , αj ) is positive semi-definite.

Example: For a unitary system, D(γ, γ′) = A∗(γ)A(γ′)δ(γ(T )− γ′(T ))
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Complex Percolation with F. Dowker and S. Johnston

p, q ∈ C.

 

qp

α
β

Complex Percolation: D(α, β) ≡ A∗(α)A(β)

µ(α t β) = |p|2 + |q|2 + 2Re(p∗q)

p + q = 1⇒ |p|+ |q| = 1 + ζ ζ ≥ 0

What is the analogue of the Caratheodary-Hahn extension theorem for the quantum measure?
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Quantum Measure as a Vector Measure

The Quantum Measure as a Quantum Vector Measure: (Ω,A, µv)

µv takes values in the histories Hilbert Space.

Caratheodary-Hahn-Kluvanek theorem:
An extension (Ω,A, µv)→ (Ω,SA, µ∗v ) exists and is unique
provided µv satisfies certain convergence conditions

Quantum Measure only extends for “Real-Complex” Percolation: p ∈ [0, 1]
Real amplitudes, but D is still non-additive.

D(α t β) = µv(α)2 + µv(β)2 + 2µv(α)µv(β)

Observables identical to those of classical transitive percolation.

Open questions:
Is it enough to get some if not all observables?

What fundamental principles should we choose?
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Continuum-Inspired Approach

Covariant sum-over-histories formulation:

Z =
∑
C∈Ω

A(C), eg : A(C) = expiS(C)

In the N →∞ limit, Ω is dominated (∼ eN2/4 ) by the 3-level Kleitman-Rothschild causal sets.

N/4

N/4

N/2

Entropy v/s action: Can spacetime emerge from the theory?

(RRI and McGill University) Jan 2011 18 / 26



The Benincasa-Dowker Action

What is the nearest neighbour of an event?

Eg: Minkowski causal set has an infinite valency.

Scalar field in a slowly varying frame:

�φ(x) ∼ φ(x)− φ(y)− φ(z) + φ(w)

w

x

y

w

z
y z
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The Benincasa-Dowker Action

Bφ(x) =
4
l2p

[−
1
2
φ(x) + (

∑
y∈N−1 (x)

−2
∑

y∈N−2 (x)

+
∑

y∈N−3 (x)

)φ(y)]

=
4
√

6l2p
[−φ(x) + (

∑
y∈N−1 (x)

−9
∑

y∈N−2 (x)

+16
∑

y∈N−3 (x)

−8
∑

y∈N−4 (x)

)φ(y)],

– R. Sorkin, gr-qc/0703099, D. Benincasa and F.Dowker PRL, 2010
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For curved spacetime: liml→0 Bφ(x) = (�− 1
2 R(x))φ(x)

1
~S(2)[C] = N − 2N1 + 4N2 − 2N3

1
~S(4)[C] = N − N1 + 9N2 − 16N3 + 8N4
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The Mesoscale

Need to Introduce an intermediate scale lk >> lp to dampen fluctuations.

Gives rise to a family of actions:

S(ε)/~ = ε2 ×
(

N − 2ε2
N−2∑
n=0

f (n, ε)
)

ε = lp/lk ∈ [0, 1]

f (n, ε) = (1− ε)n − 2εn(1− ε)n−1 +
1
2
ε2n(n − 1)(1− ε)n−2 (1)

As ε→ 1, recover the Benincasa-Dowker Action.
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Wick Rotation and the Thermodynamic Partition Function

Wick Rotation:

S1[ζ,C] = ζN − ζ−12N1/ + ζ4N2 − ζ−12N3

ζ → iζ ⇒ iS1[ζ,C]→ SE
1 [ζ,C] = −(ζN + ζ−12N1/ + ζ4N2 + ζ−12N3)

ζ × S2[C] = ζ(N − 2N1/ + 4N2 − 2N3)

ζ → iζ ⇒ iζS2[C]→ −ζSE
2 [C]

Space of Configurations Ω is still “Lorentzian”.

Z1 =
∑

C∈Ω eSE
1 [C,ζ] Z2 =

∑
C∈Ω e−ζSE

2 [C]

– with J. Henson, D. Rideout, R. Sorkin
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Markov Chain MonteCarlo Methods

Link Move:

Pick a pair x, y ∈ C

If x ≺ y
if x ≺L y , then remove the link
Else do nothing

If x, y are unrelated, and “suitable”, then add a link.

If z ≺ w such that z ≺ x and y ≺ w , then they are unsuitable. (Eg. of a kinematical rejection)

This move equilibriates and can reproduces the Uniform Distribution

Problem with KR posets: the moves are not efficient enough for these.
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2D Causal set QG – A Simpler Problem

Interval spacetime: gabdxadxb = −Ω2(u, v) dudv .

u v

The Causal Set Analogue: U = {u1, u2, . . . , uN} and V = {v1, v2, . . . , vN}

x ≺ y ⇔ u(x) < u(y) and v(x) < v(y)

Φ(C) = U ∩ V is a 2D ORDER

All causal sets that faithfully embed into interval spacetimes are 2D orders.

Minkowski spacetime is a prediction of a Unimodular, Continuum Inspired Dynamics
– with G. Brightwell and J. Henson
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u(x) v(x) 

v(z)

v(y)

y

x

z

u(z)

u(y)

u(x) < u(y) < u(z) v(x) < v(z) < v(y)

u v
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MonteCarlo for 2D orders

Z =
∑

2Dorders exp(−ζSE
2D(ε)).

The Move:
U = (u1, u2, . . . ui , . . . uj , . . . uN ), V = (v1, v2, . . . vi , . . . vj , . . . vN )

Pick a pair (ui , vi ) and (uj , vj ) at random and exhchange: ui ↔ uj

U′ = (u1, u2, . . . uj , . . . ui , . . . uN ), V ′ = (v1, v2, . . . vi , . . . vj , . . . vN )
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MonteCarlo for 2D orders

Z =
∑

2Dorders exp(−ζSE
2D(ε)).

The Move:
U = (u1, u2, . . . ui , . . . uj , . . . uN ), V = (v1, v2, . . . vi , . . . vj , . . . vN )

Pick a pair (ui , vi ) and (uj , vj ) at random and exhchange: ui ↔ uj

U′ = (u1, u2, . . . uj , . . . ui , . . . uN ), V ′ = (v1, v2, . . . vi , . . . vj , . . . vN )

(1) U = (1, 2, 3, 4),V = (1, 2, 3, 4) – The 4-Chain

0 1 2 3

0

1

2

3

(2) Exchange: u2 ↔ u3
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MonteCarlo for 2D orders

Z =
∑

2Dorders exp(−ζSE
2D(ε)).

The Move:
U = (u1, u2, . . . ui , . . . uj , . . . uN ), V = (v1, v2, . . . vi , . . . vj , . . . vN )

Pick a pair (ui , vi ) and (uj , vj ) at random and exhchange: ui ↔ uj

U′ = (u1, u2, . . . uj , . . . ui , . . . uN ), V ′ = (v1, v2, . . . vi , . . . vj , . . . vN )

(3) U′ = (1, 3, 2, 4),V ′ = (1, 2, 3, 4) – The Diamond

0 1 2 3

0

1

2

3
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Progress with Simulations

N = 50 with about 800 sweeps.

Autocorrelation Function: χ(t) =
∫

dt ′(O(t ′)− < O >)(O(t ′ + t)− < O >)

MonteCarlo Methods in Statistical Physics, Newman and Barkema
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Progress with Simulations

N = 50 with about 800 sweeps.
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Progress with Simulations

N = 50 with about 800 sweeps.
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Open Directions

What do we really get when we analytically continue back?

Behaviour of cross over as a function of N.

Other observables?
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