Bounds on 4D Conformal and Superconformal Field Theories

David Poland

Harvard University

March 21, 2011

(with David Simmons-Duffin [arXiv:1009.2087])

Motivation

- Conformal dynamics in 4D could play a role in BSM physics!
 - ► Walking/Conformal Technicolor [Holdom '81; ...]
 - ► Warped Extra Dimensions [Randall, Sundrum '99; ...]
 - ► Conformal Sequestering [Luty, Sundrum '01; Schmaltz, Sundrum '06]
 - \blacktriangleright Solution to $\mu/B\mu$ problem [Roy, Schmaltz '07; Murayama, Nomura, DP '07]
 - ► Flavor Hierarchies [Georgi, Nelson, Manohar '83; Nelson, Strassler '00]
- ▶ Ideas often make strong assumptions about operator dim's
 - ▶ E.g., Conf. Technicolor: Want $\dim H^\dagger H \gtrsim 4$ but $\dim H \sim 1$
- But it's hard to calculate anything in non-SUSY 4D CFTs!
- ▶ In $\mathcal{N} = 1$ SCFTs, we actually know lots about chiral operators, but not much about non-chiral operators...

Example: Nelson-Strassler Flavor Models ['00]

▶ Idea: Matter fields T_i have large anomalous dimensions γ_i under some CFT, flavor hierarchies generated dynamically!

$$W = T_1 \mathcal{O}_1 + T_2 \mathcal{O}_2 + y^{ij} T_i T_j H + \dots$$

- ▶ Interactions of matter T_i with CFT operators \mathcal{O}_i are marginal
- lacktriangle Yukawa couplings y^{ij} flow to zero at rate controlled by γ_i

$$y^{ij}T_iT_jH \to \left(\frac{\mu}{\Lambda}\right)^{\gamma_i+\gamma_j}y^{ij}T_iT_jH$$

- ▶ Since T_i are chiral, $\dim T_i = \frac{3}{2}R_{T_i}$ (superconformal $U(1)_R$)
- ► Can write down lots of concrete models and then *calculate* dimensions using a-maximization! [DP, Simmons-Duffin '09]

- \blacktriangleright Soft-mass operators $K \sim \frac{1}{M_{pl}^2} X^\dagger X T_i^\dagger T_j$ also flow to zero
 - lacksquare Rate controlled by $\dim T_i^\dagger T_j$
- Maybe can solve SUSY flavor problem???
 - No way to calculate dimensions...
- lacktriangle Similar issue arises in Conformal Sequestering, $\mu/B\mu$ solution
- ▶ Can we say *anything* about $\dim T^{\dagger}T$, given $\dim T$?

- \blacktriangleright Soft-mass operators $K \sim \frac{1}{M_{pl}^2} X^\dagger X T_i^\dagger T_j$ also flow to zero
 - ightharpoonup Rate controlled by $\dim T_i^\dagger T_j$
- Maybe can solve SUSY flavor problem???
 - ▶ No way to calculate dimensions...
- lacktriangle Similar issue arises in Conformal Sequestering, $\mu/B\mu$ solution
- ▶ Can we say *anything* about $\dim T^{\dagger}T$, given $\dim T$?
- Recently, the papers:
 Rattazzi, Rychkov, Tonni, Vichi [arXiv:0807.0004]
 Rychkov, Vichi [arXiv:0905.2211]

addressed a similar question in non-SUSY CFTs, deriving bounds on $\dim \phi^2$ as a function of $\dim \phi$...

Outline

- 1 CFT Review
- 2 Bounds from Crossing Relations
- 3 Superconformal Blocks
- 4 Bounds on CFTs and SCFTs
- Outlook

CFT Review: Primary Operators

In addition to Poincaré generators P^a and M^{ab} , CFTs have dilatations D and special conformal generators K^a

$$[K^a, P^b] = 2\eta^{ab}D - 2M^{ab}$$

• Primary operators $\mathcal{O}^I(0)$ are defined by

$$[K^a, \mathcal{O}^I(0)] = 0$$

(descendants obtained by acting with P^a)

Outlook

CFT Review: Primary Operators

Primary 2-pt and 3-pt functions fixed by conformal symmetry in terms of dimensions and spins, up to overall coefficients $\lambda_{\mathcal{O}}$

$$\langle \mathcal{O}^{a_1 \dots a_l}(x_1) \mathcal{O}^{b_1 \dots b_l}(x_2) \rangle = \frac{I^{a_1 b_1} \dots I^{a_l b_l}}{x_{12}^{2\Delta}}$$

$$\langle \phi(x_1) \phi(x_2) \mathcal{O}^{a_1 \dots a_l}(x_3) \rangle = \frac{\lambda_{\mathcal{O}}}{x_{12}^{2d - \Delta + l} x_{23}^{\Delta - l} x_{13}^{\Delta - l}} Z^{a_1} \dots Z^{a_l}$$

$$\left(I^{ab} = \eta^{ab} - 2 \frac{x_{12}^a x_{12}^b}{x_{12}^2} \quad , \quad Z^a = \frac{x_{31}^a}{x_{31}^2} - \frac{x_{32}^a}{x_{32}^2} \right)$$

▶ Higher *n*-pt functions *not* fixed by conformal symmetry alone, but are determined once spectrum and $\lambda_{\mathcal{O}}$'s are known...

CFT Review: Operator Product Expansion

Let ϕ be a scalar primary of dimension d in a 4D CFT:

$$\phi(x)\phi(0) = \sum_{\mathcal{O}\in\phi\times\phi} \lambda_{\mathcal{O}} C_I(x,P) \mathcal{O}^I(0)$$
 (OPE)

- ► Sum runs over *primary O*'s
- $ightharpoonup C_I(x,P)$ fixed by conformal symmetry [Dolan, Osborn '00]
- $\mathcal{O}^I = \mathcal{O}^{a_1...a_l}$ can be any spin-l Lorentz representation (traceless symmetric tensor) with $l=0,2,\ldots$
- ▶ Unitarity tells us that $\Delta_{\mathcal{O}} \geq l + 2 \delta_{l,0}$ and that $\lambda_{\mathcal{O}}$ is real

CFT Review: Conformal Block Decomposition

Use OPE to evaluate 4-point function

$$\begin{split} \langle \phi(x_1) \phi(x_2) \phi(x_3) \phi(x_4) \rangle \\ &= \sum_{\mathcal{O} \in \phi \times \phi} \lambda_{\mathcal{O}}^2 C_I(x_{12}, \partial_2) C_J(x_{34}, \partial_4) \langle \mathcal{O}^I(x_2) \mathcal{O}^J(x_4) \rangle \\ &\equiv \frac{1}{x_{12}^{2d} x_{34}^{2d}} \sum_{\mathcal{O} \in \phi \times \phi} \lambda_{\mathcal{O}}^2 \, g_{\Delta,l}(u, v) \end{split}$$

- ▶ $u = \frac{x_{12}^2 x_{34}^2}{x_{12}^2 x_{24}^2}$, $v = \frac{x_{14}^2 x_{23}^2}{x_{12}^2 x_{24}^2}$ conformally-invariant cross ratios.
- $g_{\Delta,l}(u,v)$ conformal block ($\Delta = \dim \mathcal{O}$ and $l = \text{spin of } \mathcal{O}$)

CFT Review: Conformal Blocks

Explicit formula [Dolan, Osborn '00]

$$g_{\Delta,l}(u,v) = \frac{(-1)^l}{2^l} \frac{z\overline{z}}{z - \overline{z}} [k_{\Delta+l}(z)k_{\Delta-l-2}(\overline{z}) - z \leftrightarrow \overline{z}]$$

$$k_{\beta}(x) = x^{\beta/2} {}_2F_1(\beta/2, \beta/2, \beta; x),$$

where $u = z\overline{z}$ and $v = (1-z)(1-\overline{z})$.

- Similar expressions in other even dimensions, recursion relations known in odd dimensions
- ► Alternatively can be viewed as eigenfunctions of the quadratic casimir of the conformal group [Dolan, Osborn '03]

CFT Review: Crossing Relations

- ▶ Four-point function $\langle \phi(x_1)\phi(x_2)\phi(x_3)\phi(x_4)\rangle$ is clearly symmetric under permutations of x_i
- After OPE, symmetry is non-manifest!
- ▶ Switching $x_1 \leftrightarrow x_3$ gives the "crossing relation":

$$\sum_{\mathcal{O} \in \phi \times \phi} \lambda_{\mathcal{O}}^2 g_{\Delta,l}(u,v) = \left(\frac{u}{v}\right)^d \sum_{\mathcal{O} \in \phi \times \phi} \lambda_{\mathcal{O}}^2 g_{\Delta,l}(v,u)$$

$$\sum_{i=1}^{n} \underbrace{\mathcal{O}}_{3}^{4} = \sum_{i=1}^{n} \underbrace{\mathcal{O}}_{3}^{4}$$

Other permutations give no new information

Outline

- CFT Review
- 2 Bounds from Crossing Relations
- 3 Superconformal Blocks
- 4 Bounds on CFTs and SCFTs
- Outlook

Review: Method of Rattazzi et. al. [arXiv:0807.0004]

- ▶ Let's study the OPE coefficient of a particular $\mathcal{O}_0 \in \phi \times \phi$
- We can rewrite crossing relation as

$$\lambda_{\mathcal{O}_0}^2 F_{\Delta_0, l_0}(u, v) = 1 - \underbrace{\sum_{\mathcal{O} \neq \mathcal{O}_0} \lambda_{\mathcal{O}}^2 F_{\Delta, l}(u, v)}_{\text{everything else}},$$

where

$$F_{\Delta,l}(u,v) \equiv \frac{v^d g_{\Delta,l}(u,v) - u^d g_{\Delta,l}(v,u)}{u^d - v^d}.$$

Outlook

Review: Method of Rattazzi et. al. [arXiv:0807.0004]

Idea: Find a linear functional α such that

$$\alpha(F_{\Delta_0,l_0}) = 1$$
, and $\alpha(F_{\Delta,l}) \geq 0$, for all other $\mathcal{O} \in \phi \times \phi$.

Applying to both sides:

$$\alpha \left(\lambda_{\mathcal{O}_0}^2 F_{\Delta_0, l_0} \right) = \alpha \left(1 - \sum_{\mathcal{O} \neq \mathcal{O}_0} \lambda_{\mathcal{O}}^2 F_{\Delta, l} \right)$$

$$\lambda_{\mathcal{O}_0}^2 = \alpha (1) - \sum_{\mathcal{O} \neq \mathcal{O}_0} \lambda_{\mathcal{O}}^2 \alpha (F_{\Delta, l}) \leq \alpha (1)$$

since $\lambda_{\mathcal{O}}^2 \geq 0$ by unitarity.

Review: Method of Rattazzi et. al. [arXiv:0807.0004]

- ▶ To make the bound $\lambda_{\mathcal{O}_0}^2 \leq \alpha(1)$ as strong as possible: Minimize $\alpha(1)$ subject to $\alpha(F_{\Delta_0,l_0})=1$ and $\alpha(F_{\Delta,l})\geq 0$
- ▶ This is an infinite dimensional linear programming problem... to use known algorithms we must make it finite
- \triangleright Can take α to be linear combinations of derivatives at some point in z, \overline{z} space

$$\alpha: F_{\Delta,l}(z,\overline{z}) \mapsto \sum_{m+n \leq N} a_{mn} \partial_z^m \partial_{\overline{z}}^n F_{\Delta,l}(1/2,1/2)$$

- ▶ Discretize constraints to $\alpha(F_{\Delta_i,l_i}) \geq 0$ for $D = \{(\Delta_i,l_i)\}$
- ▶ Take $N \to \infty$ to recover "optimal" bound

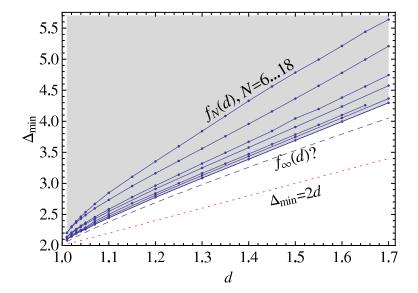
Outlook

Review: Method of Rattazzi et. al. [arXiv:0807.0004]

- Can make any assumptions about the spectrum that we want!
- \triangleright E.g., can assume that all scalars appearing in the OPE $\phi \times \phi$ have dimension larger than some $\Delta_{\min} = \dim \mathcal{O}_0$
- ▶ If $\lambda_{\mathcal{O}_{\alpha}}^2 \leq \alpha(1) < 0$, there is a contradiction with unitarity and the assumed spectrum can be ruled out

By scanning over different Δ_{\min} , one can obtain bounds on $\dim \phi^2$ as a function of $d = \dim \phi$

Bounds on $\dim \phi^2$ (taken from arXiv:0905.2211)



Limitations

- ▶ Single real ϕ , can't distinguish between \mathcal{O} 's with different global symmetry charges
- Example: chiral operator Φ in an $\mathcal{N}=1$ SCFT
 - $\mathrm{Re}[\Phi] \times \mathrm{Re}[\Phi]$ contains \mathcal{O} 's from both $\Phi \times \Phi$ and $\Phi^{\dagger} \times \Phi$
 - $\Phi \times \Phi = \Phi^2 + \dots$, with $\dim \Phi^2 = 2 \dim \Phi$: Φ^2 satisfies bound and we learn nothing about $\Phi^{\dagger} \Phi$
- Supersymmetry also relates different conformal primaries, so we should additionally take this information into account

Let's try to generalize the method to deal with this case!

(see Rattazzi, Rychkov, Vichi [arXiv:1009.5985] for more on global symmetries)

Outline

- 1 CFT Review
- 2 Bounds from Crossing Relations
- 3 Superconformal Blocks
- 4 Bounds on CFTs and SCFTs
- Outlook

$\mathcal{N}=1$ Superconformal Algebra

$$\{Q, \overline{Q}\} = P$$
 $\{S, \overline{S}\} = K$

- ▶ Superconformal primary means $[S, \mathcal{O}(0)] = [\overline{S}, \mathcal{O}(0)] = 0$
- ▶ Descendants obtained by acting with P, Q, \overline{Q}
- ▶ Chiral means $[\overline{Q}, \phi(0)] = 0$

Superconformal Block Decomposition

 ϕ : scalar chiral superconformal primary of dimension d in an SCFT (lowest component of chiral superfield Φ)

$$\langle \phi(x_1) \phi^{\dagger}(x_2) \phi(x_3) \phi^{\dagger}(x_4) \rangle = \frac{1}{x_{12}^{2d} x_{34}^{2d}} \sum_{\mathcal{O} \in \Phi \times \Phi^{\dagger}} |\lambda_{\mathcal{O}}|^2 (-1)^l \mathcal{G}_{\Delta,l}(u,v)$$

- ▶ Sum over superconformal primaries \mathcal{O}^I with zero R-charge
- \triangleright $\lambda_{\mathcal{O}}$ real for even spin \mathcal{O}^I , imaginary for odd spin \mathcal{O}^I
- $x_1 \leftrightarrow x_3$ gives crossing relation only involving $\mathcal{O}^I \in \Phi imes \Phi^\dagger$
- Must organize superconformal descendants into reps of the conformal subalgebra...

Superconformal Block Derivation

Multiplet built from \mathcal{O} (generically) contains four conformal primaries with vanishing R-charge and definite spin:

name operator dim spin
$$\mathcal{O} \qquad \mathcal{O} \qquad \Delta \qquad l \\ J, N \qquad Q \overline{Q} \mathcal{O} + \# P \mathcal{O} \qquad \Delta + 1 \quad l+1, l-1 \\ D \qquad Q^2 \overline{Q}^2 \mathcal{O} + \# P Q \overline{Q} \mathcal{O} + \# P P \mathcal{O} \quad \Delta + 2 \qquad l$$

- ▶ Superconformal symmetry fixes coefficients of $\langle \phi \phi^{\dagger} J \rangle, \langle \phi \phi^{\dagger} N \rangle, \langle \phi \phi^{\dagger} D \rangle$ in terms of $\langle \phi \phi^{\dagger} \mathcal{O} \rangle$
- \blacktriangleright Must also normalize J, N, D to have canonical 2-pt functions
- ▶ Superconformal block is then a sum of $g_{\Delta,l}$'s for \mathcal{O}, J, N, D

Superconformal Block Derivation

We find,1

$$\mathcal{G}_{\Delta,l} = g_{\Delta,l} - \frac{(\Delta+l)}{2(\Delta+l+1)} g_{\Delta+1,l+1} - \frac{(\Delta-l-2)}{8(\Delta-l-1)} g_{\Delta+1,l-1} + \frac{(\Delta+l)(\Delta-l-2)}{16(\Delta+l+1)(\Delta-l-1)} g_{\Delta+2,l}$$

- \blacktriangleright When unitarity bound $\Delta \geq l+2$ is saturated, multiplet is shortened
- $\mathcal{G}_{\Delta,l}$ can also be determined from consistency with $\mathcal{N}=2$ superconformal blocks computed by [Dolan, Osborn '01]

¹after plenty of algebra

- 2 Bounds from Crossing Relations
- Superconformal Blocks
- 4 Bounds on CFTs and SCFTs
- **5** Outlook

Bounds from Crossing Relations

Isolating the lowest dimension scalar $\Phi^{\dagger}\Phi \in \Phi \times \Phi^{\dagger}$, we have

$$|\lambda_{\Phi^{\dagger}\Phi}|^2 \mathcal{F}_{\Delta_{\min},0} = 1 - \sum_{\mathcal{O} \neq \Phi^{\dagger}\Phi} |\lambda_{\mathcal{O}}|^2 \mathcal{F}_{\Delta,l},$$

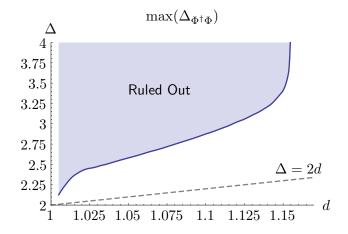
where $\Delta_{\min} = \dim \Phi^{\dagger} \Phi$, and $\mathcal{F}_{\Delta,l}$ is $F_{\Delta,l}$ with $g_{\Delta,l} \to (-1)^l \mathcal{G}_{\Delta,l}$.

Now minimize $\alpha(1)$ subject to

- $ightharpoonup \alpha(\mathcal{F}_{\Delta,0}) > 0$ for all $\Delta > \Delta_{\min}$
- $ightharpoonup \alpha(\mathcal{F}_{\Delta,l}) \geq 0$ for all $\Delta \geq l+2$ and $l \geq 1$,
- $\qquad \alpha(\mathcal{F}_{\Delta_{\min},0}) = 1$

If $\alpha(1) < 0$, we get $|\lambda_{\Phi^{\dagger}\Phi}|^2 < 0 \implies \Phi^{\dagger}\Phi$ can't have dim Δ_{\min}

Upper Bound on Dimension of $\Phi^\dagger\Phi$



 \blacktriangleright Scanning over Δ_{\min} , minimizing $\alpha(1)$ over 21 dimensional space of derivatives

Flavor Currents

CFT Review

• If ϕ transforms under flavor symmetry with charges T^I , conserved currents J^I appear in the $\phi \times \phi^{\dagger}$ OPE:

$$\langle \phi \phi^{\dagger} J^I \rangle \sim -\frac{i}{2\pi^2} T^I$$
 (Ward id.)

Superconformal Blocks

 Flavor current conformal blocks are then determined by current 2-pt functions

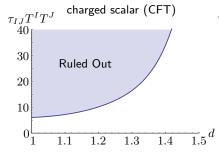
$$\langle J^I J^J \rangle \sim \frac{3}{4\pi^4} \tau^{IJ}$$

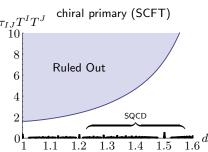
$$\langle \phi \phi^{\dagger} \phi \phi^{\dagger} \rangle \sim -\frac{1}{3} \tau_{IJ} T^I T^J g_{3,1} \qquad \text{(general CFTs)},$$

$$\langle \phi \phi^{\dagger} \phi \phi^{\dagger} \rangle \sim \tau_{IJ} T^I T^J \mathcal{G}_{2,0} \qquad \text{(SCFTs)},$$

where $\tau_{IJ}=(\tau^{IJ})^{-1}$ (in SCFTs, $\tau^{IJ}=-3\mathrm{Tr}(RT^IT^J)$).

Upper Bounds on $\tau_{IJ}T^IT^J$





- ▶ Example: SUSY QCD with $\frac{3}{2}N_c < N_f < 3N_c$, $M = Q\tilde{Q}$ $\langle MM^\dagger MM^\dagger \rangle$: $d = 3 \frac{3N_c}{N_f}$ and $\tau_{IJ}T^IT^J = \frac{2}{3}\frac{N_f-1}{N_c^2}$
- ▶ In dual AdS₅, $(8\pi^2 L)\tau_{IJ} = g_{IJ}^2$. Gauge coupling can't be too strong in presence of charged scalar.

The Stress Tensor

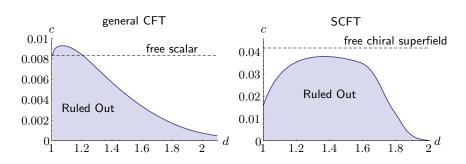
CFT Review

- ▶ Ward identity ensures $T^{ab} \in \phi \times \phi$
- lacktriangle $\langle TT
 angle$ is proportional to the central charge c(trace anomaly $16\pi^2 \langle T_a^a \rangle = c(\text{Wevl})^2 - a(\text{Euler})$)
- ▶ In an SCFT, T lives in the supercurrent multiplet $\mathcal{J}^a = J_B^a + \theta \sigma_b \overline{\theta} T^{ab} + \dots$, and c determined by $U(1)_B$
- Conformal block contributions are

$$\langle \phi \phi \phi \phi \rangle \sim \frac{d^2}{90c} g_{4,2}$$
 (general CFTs)
 $\langle \phi \phi^{\dagger} \phi \phi^{\dagger} \rangle \sim -\frac{d^2}{36c} \mathcal{G}_{3,1}$ (SCFTs)

Bounds on CFTs and SCFTs

Lower Bound on c in General CFT



▶ In dual AdS₅, $c \sim \pi^2 L^3 M_P^3$. Gravity can't be arbitrarily strong in presence of light bulk scalar!

(See also Rattazzi, Rychkov, Vichi [arXiv:1009.2725])

- CFT Review
- 2 Bounds from Crossing Relations
- Superconformal Blocks
- A Bounds on CFTs and SCFTs
- 6 Outlook

Outlook

CFT Review

We calculated:

- Superconformal blocks
- ▶ Bound dim $\Phi^{\dagger}\Phi < f_{\Phi^{\dagger}\Phi}(d)$
- ▶ Bound $\tau_{IJ}T^IT^J < f_{\tau}(d)$ in CFT, SCFT
- ▶ Bound $c \ge f_c(d)$ in CFT, SCFT

In the future, we'd like:

- Stronger bounds to make contact with BSM motivation!
- Better algorithms (esp. to deal with global symmetries)
- ▶ SUSY theories that come close to saturating bounds on τ , c.
- Bounds in other numbers of dimensions.
- Understand bounds from bulk dual perspective.