

Forward-Backward Asymmetry in tt Pair Production The CDF Collaboration

charge asymmetry in QCD

• Halzen, Hoyer, Kim; Brown, Sadhev, Mikaelian; Kuhn, Rodrigo; Almeida, Sterman, Vogelsang; Bowen, Ellis, Rainwater; Dittmaier, Uwer, Weinzier

theoretical investigations

- Exotic gluons
 - massive chiral color
 - RS gluon
 - color sextets, anti-triplets
- IVB'
 - Z′
 - FV W'Z' t-channel
- FV scalars
- Effective Lagrangians
- Nice summary by Cao et al. arXiv:1003.3461
- Model building must contend with
 - total σ in good agreement with SM
 - d σ /dM_{tt} in good agreement with SM

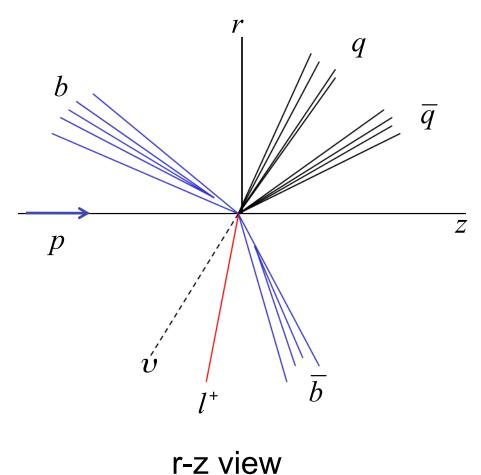
prior measurements

- CDF, 1.9 fb⁻¹, inclusive, corrected to "parton-level"
 - tt rest frame $A^{tt} = 0.24 \pm 0.14$
 - NLO QCD $A^{t\bar{t}} = 0.06 \pm 0.01$

- lab (pp) frame $A^{p\overline{p}} = 0.17 \pm 0.08$
- NLO QCD $A^{p\bar{p}} = 0.04 \pm 0.01$
- D0, inclusive, background subtracted "data-level"
 - tt rest frame $A^{t\bar{t}} = 0.12 \pm 0.08$ 0.9 fb⁻¹ PRL 100, 142002 (2008) $A^{t\bar{t}} = 0.08 \pm 0.04$ 4.3 fb⁻¹ ICEHP 2010

this analysis

- 5.3 fb⁻¹
- Standard "lepton+jets" selection, reconstruction
- Establish rapidity variables, A_{fb} definitions, in tt frame and lab frame
- Models
 - LO
 - QCD charge asymmetry
 - color-octet
- Correct the rapidity distributions for
 - backgrounds
 - selection efficiency
 - reconstruction smearing

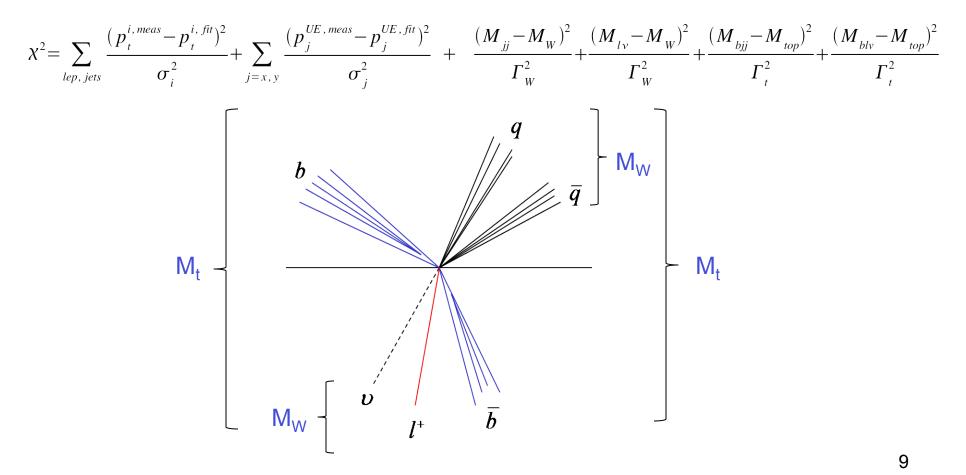

to find the model independent A_{fb} to compare to theory

- Inclusive in tt and lab frame
- Rapidity dependence in tt frame
- M_{tt} dependence in lab frame

top pair production and decay

lepton + jets mode

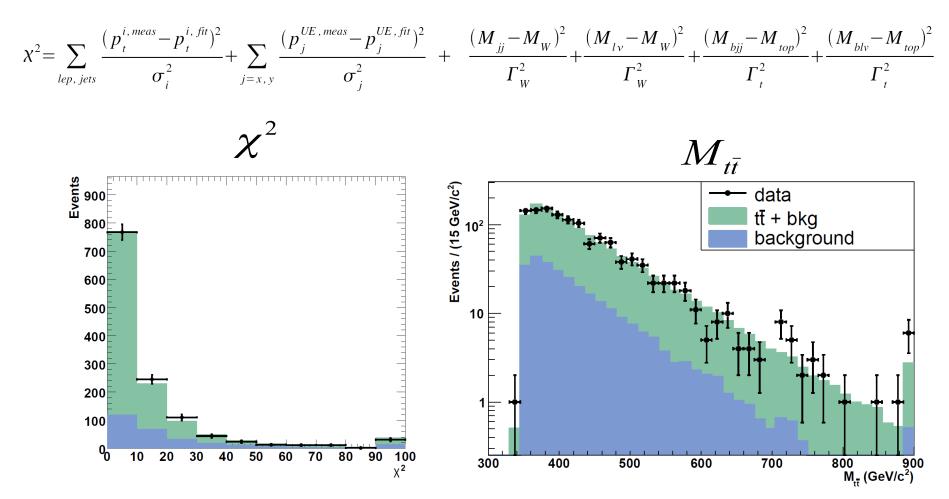
 $q\overline{q} \rightarrow g \rightarrow t\overline{t} \rightarrow (W^+b)(W^-\overline{b}) \rightarrow (l^+\upsilon b)(q\overline{q}\overline{b}) \rightarrow l^+ + E_T + 4j + \ge 1 btag$


event selection

- high p_t lepton (e/ μ)
 - E_t/p_t > 20 GeV (/c)
 - |η| < 1.0
- missing $E_t > 20 \text{ GeV}$
- four jets
 - E_t > 20 GeV
 - |η| < 2.0
- at least one b-tagged jet
 |η| < 1.0
- 1260 events
- 283±50 non-tt background
 - standard technique
 - mostly W+jets

Top Reconstruction

$$l^{+} + \mathbb{E}_{T} + 4j + \ge 1 \ btag \rightarrow (l^{+} \upsilon b)(q\overline{q}\overline{b}) \rightarrow (W^{+}b)(W^{-}\overline{b}) \rightarrow t\overline{t}$$


- Jet-parton assignment, $p_z(v)$ via minimum of simple χ^2
 - Constraints: M_W = 80.4 GeV/c2, Mt = 175 GeV/c², btag = b
 - Float jet p_t within errors

Top Reconstruction

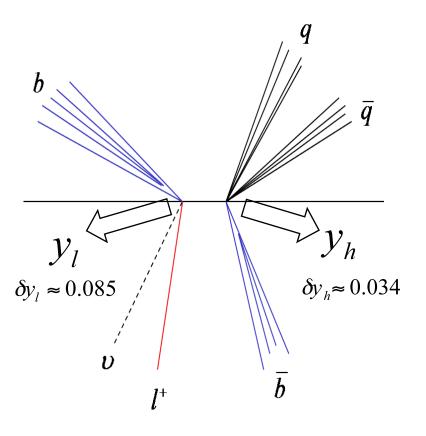
$$l^{+} + \mathbb{E}_{T} + 4j + \ge 1 \ btag \rightarrow (l^{+} \upsilon b)(q\overline{q}\overline{b}) \rightarrow (W^{+}b)(W^{-}\overline{b}) \rightarrow t\overline{t}$$

- Jet-parton assignment, $p_{\gamma}(v)$ via minimum of simple χ^2
 - Constraints: M_W = 80.4 GeV/c2, Mt = 175 GeV/c², btag = b
 - Float jet p_t within errors

rapidity : lab frame

each event has a t_{lep} and t_{had} decay

$$+ q_{l} \Rightarrow t_{leptonic} + \bar{t}_{hadronic}$$
$$- q_{l} \Rightarrow t_{hadronic} + \bar{t}_{leptonic}$$


• and a rapidity for each

$$y_{leptonic} = y_l$$

$$y_{hadronic} = y_h$$

- simple rapidity variable in lab frame: y_h
 - better measured than y₁
 - acceptance out to $|\eta| < 2.0$
- charge tag:
 - assign charge with lepton from t_{lep}
 - interchange of lepton charge $\leftarrow \rightarrow$ interchange of t and \overline{t}
 - If assume CP can combine

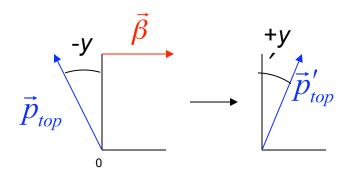
$$-q \cdot y_h = y_t^{p\overline{p}}$$

11

rapidity : tt frame

- a longitudinal boost can change the direction of the top quark
 - A_{fb} is frame dependent!
- a frame invariant variable
 - rapidity difference

$$\Delta y_{t\bar{t}} = q \cdot (y_l - y_h)$$
$$= y_t - y_{\bar{t}}$$


good : decreased dilution from boost

$$A_{FB}^{t\bar{t}} \approx 1.5 \times A_{FB}^{p\bar{p}}$$

- bad: decreased precision $\delta \Delta y \approx 0.100$
- great: ease of interpretation:

$$\Delta y_{t\bar{t}} = 2y_t^{t\bar{t}}$$

→ asymmetry in Δy_{tt} is equal to asymmetry in top quark production angle in tt rest frame

asymmetries

• lab frame asymmetry in -qy_h

$$A_{FB}^{p\overline{p}} = \frac{N(-qy_h > 0) - N(-qy_h < 0)}{N(-qy_h > 0) + N(-qy_h < 0)}$$

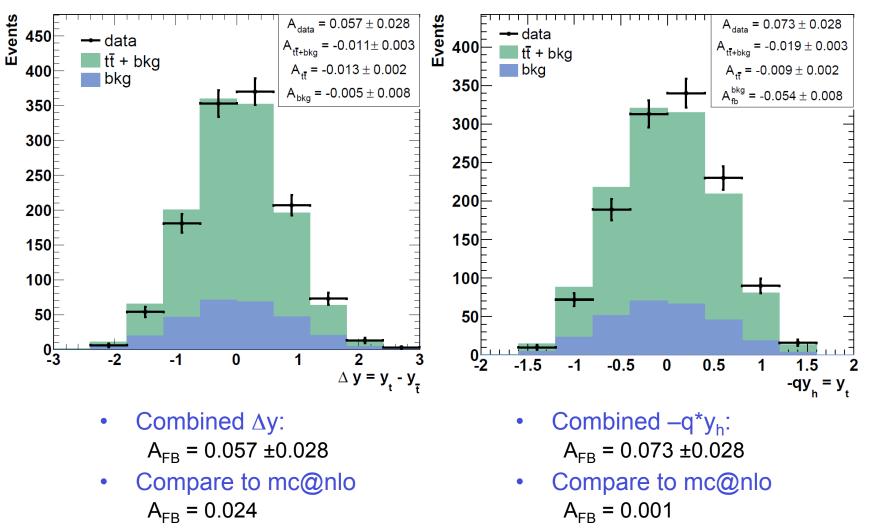
$$=\frac{N(y_t^{p\bar{p}} > 0) - N(y_t^{p\bar{p}} < 0)}{N(y_t^{p\bar{p}} > 0) + N(y_t^{p\bar{p}} < 0)}$$

• tt rest frame asymmetry in Δy :

$$A_{FB}^{t\bar{t}} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}$$

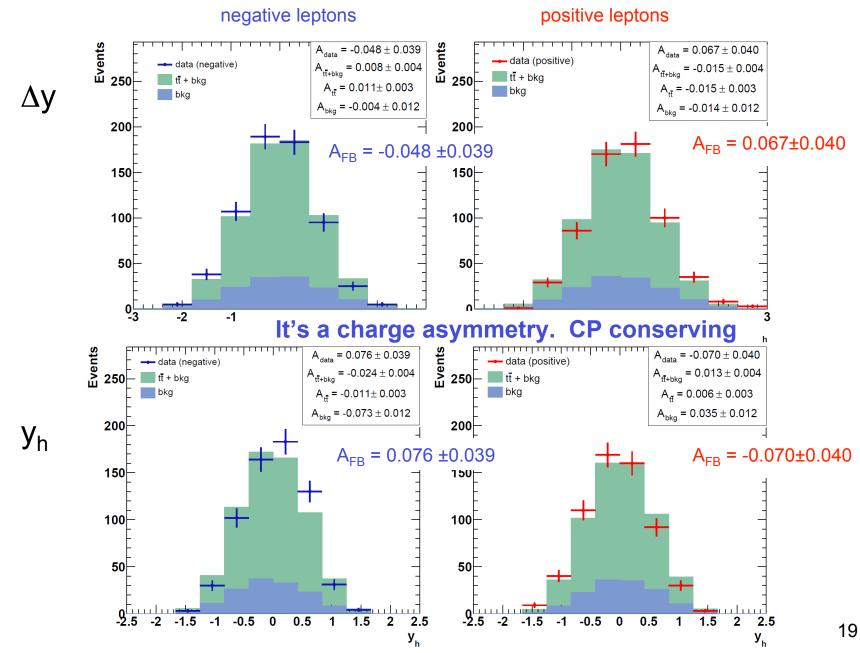
$$= \frac{N(y_t^{t\bar{t}} > 0) - N(y_t^{t\bar{t}} < 0)}{N(y_t^{t\bar{t}} > 0) + N(y_t^{t\bar{t}} < 0)}$$

• also of interest: uncharged asymmetries in y_h and y_l-y_h


expected QCD asymmetries

- MCFM NLO calculation at "parton level"
- MC@NLO + CDFSIM

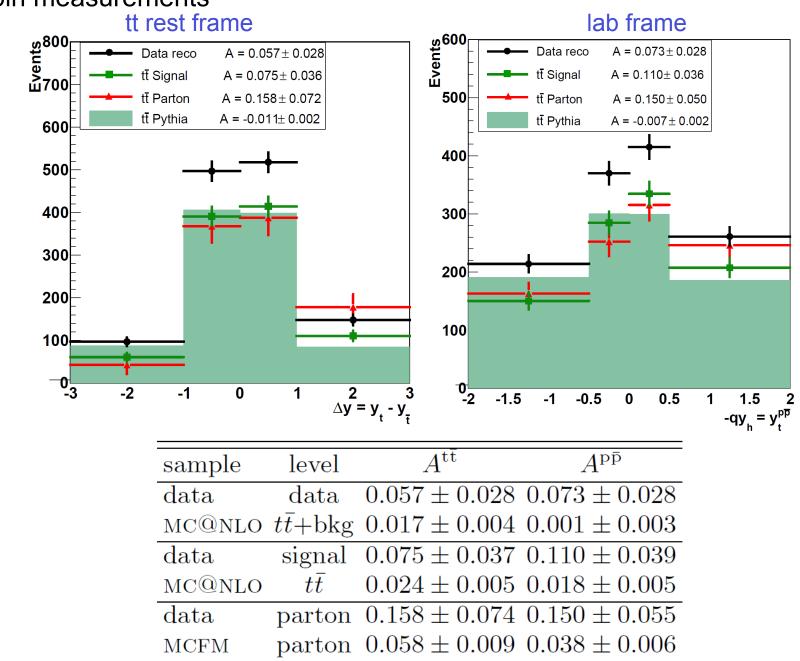
model	level	$A^{\mathrm{p}ar{\mathrm{p}}}$	$A^{\mathrm{t}\overline{\mathrm{t}}}$	
MCFM	parton	0.038 ± 0.006	0.058 ± 0.009	
MC@NLC) parton	0.032 ± 0.005	0.052 ± 0.008	truth
MC@NLC	$ t \bar{t}$	0.018 ± 0.005	0.024 ± 0.005	sim + reco
MC@NLC	$b t\bar{t}$ +bkg	0.001 ± 0.003	0.017 ± 0.004	sim + reco +bkg


- MC@NLO:
 - prediction for data level asymmetry in rest frame is zero!
 - prediciton for data level asymmetry in tt frame < stat precision (0.028)
- Pythia remains good approximation of SM

Combine charges

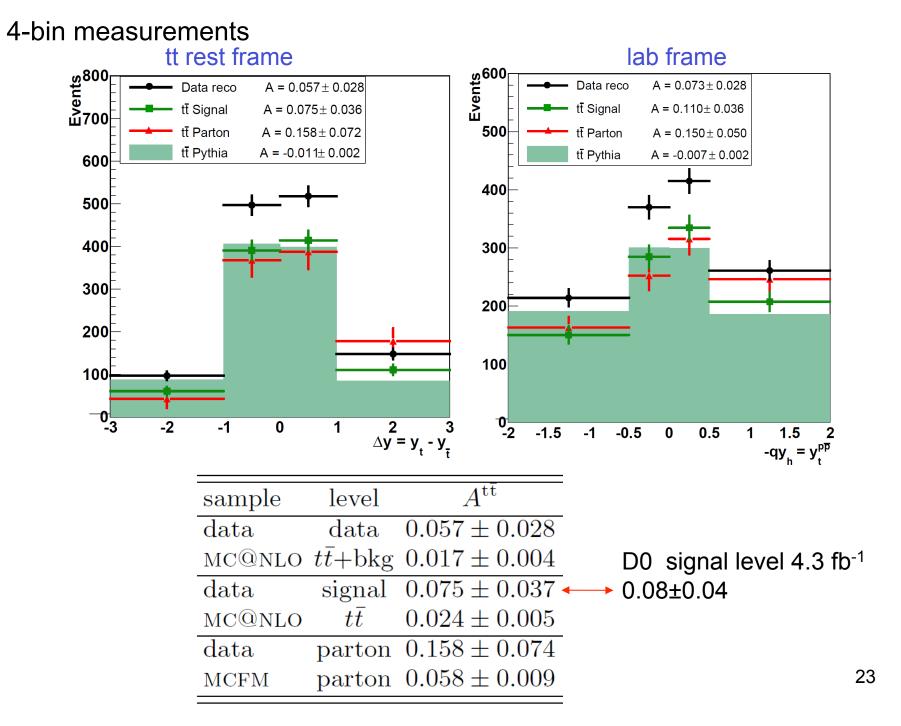
$\Delta y \sim tt frame$

Separate by lepton charge

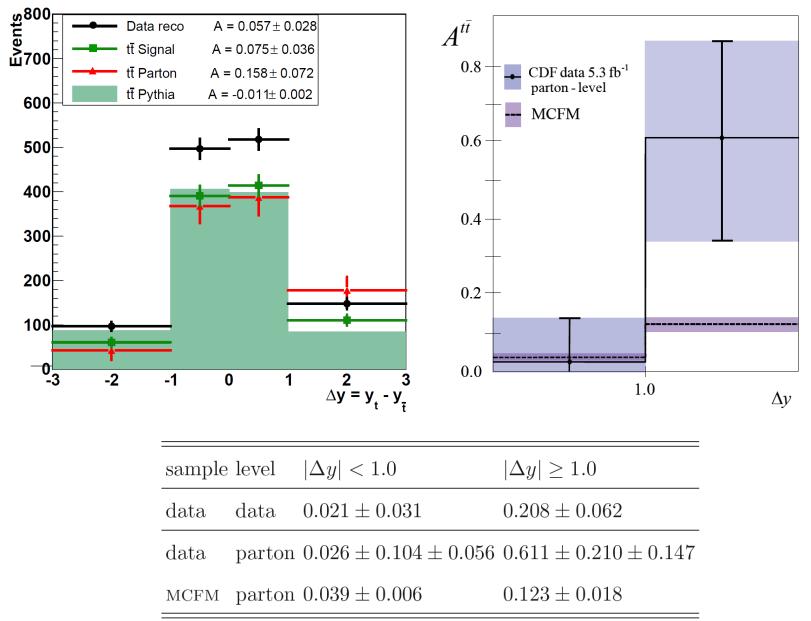


Unfold to the parton level

- dN/dy parton level histogram
 - parton level bins j w/ contents P_i
- the top data signal


 $- T_i = S_{ij} \times A_j \times P_j$

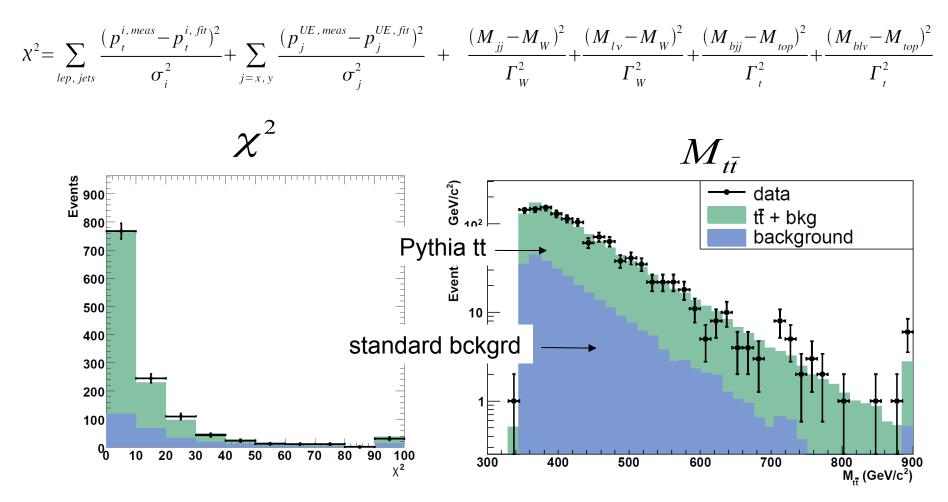
- where
 - the A_i are the acceptances for each bin
 - the S_{ii} are the bin-to-bin migration ratios
 - both measured with symmetric Pythia
- dN/dy data level histogram
 - data level bins i w/ contents D_i
 - Sum of top and bkgrd: $D_i=T_i+B_i$
- to propagate data to parton level:
 - $P_j = A_j^{-1} \times S_{ji}^{-1} \times (D_i B_i)$
- result is optimized when number of bins = 4



4-bin measurements

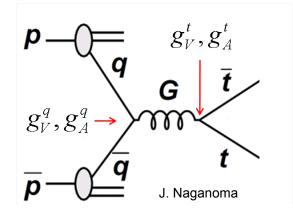
22

 $A(\Delta y)$, parton level, data



25

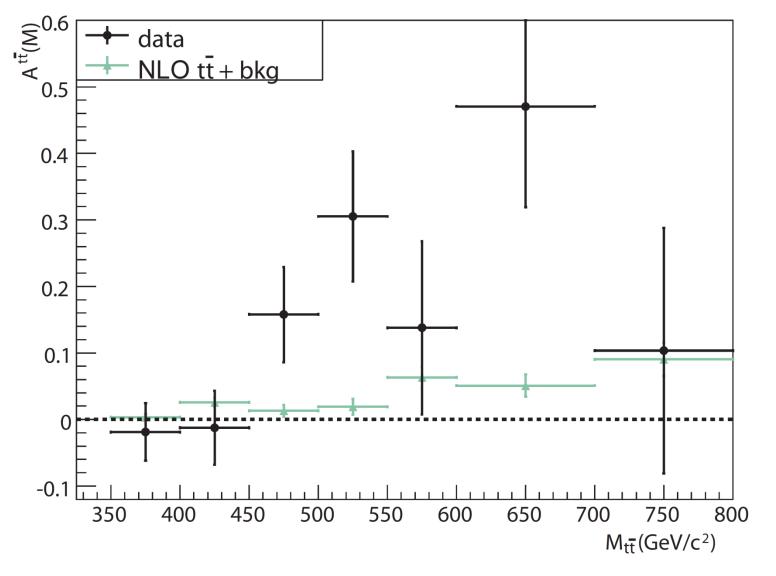
top reconstruction


$$l^{+} + \mathbb{E}_{T} + 4j + \ge 1 \ btag \rightarrow (l^{+} \upsilon b)(q\overline{q}\overline{b}) \rightarrow (W^{+}b)(W^{-}\overline{b}) \rightarrow t\overline{t}$$

- Jet-parton assignment, $p_z(v)$ via minimum of simple χ^2
 - Constraints: M_W = 80.4 GeV/c2, Mt = 175 GeV/c², btag = b
 - Float jet p_t within errors

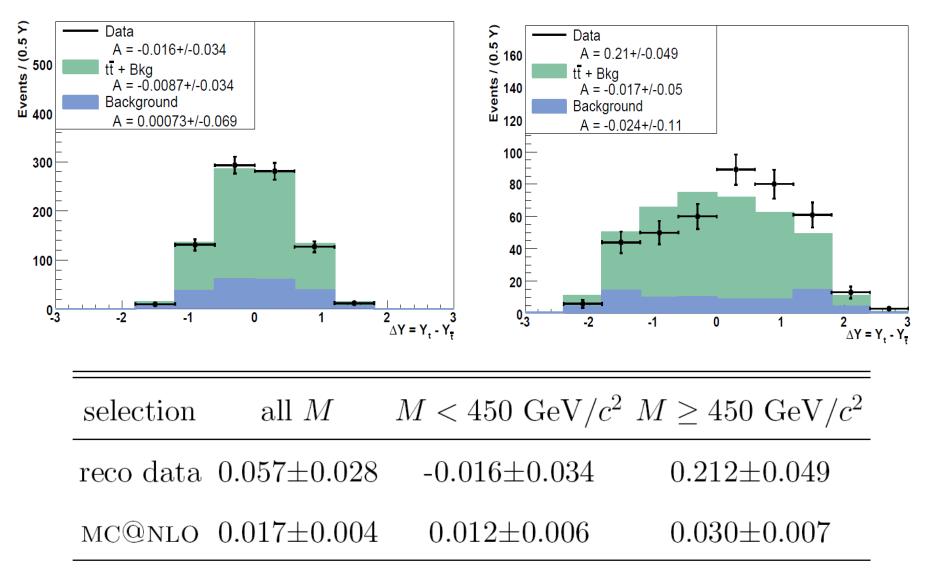
color octet model

- need to test methodology on large asymmetry
- model: color octets with axial couplings
- this is a test sample. not a hypothesis
- after Ferrario and Rodrigo arXiv:0906.5541
 - thanks to T. Tait for Madgraph
- If $g_A^q = -g_A^t$ get positive asymmetry
- Octet A
 - $g_v = 0, |g_A = 3/2|$
 - $M_{G} = 2.0 \text{ TeV}$
 - $-\sigma/\sigma_{sm} = 1.02$
 - ~ M_{tt} spectrum compares to Pythia
 - Model: True $A_{tt} = 0.16$ Reco $A_{tt} = 0.08$
 - Data: Parton $A_{tt} = 0.15$, Reco $A_{tt} = 0.06$
- Octet B
 - MG = 1.8 TeV. asymmetries bigger; σ , M_{tt} disrepancies bigger

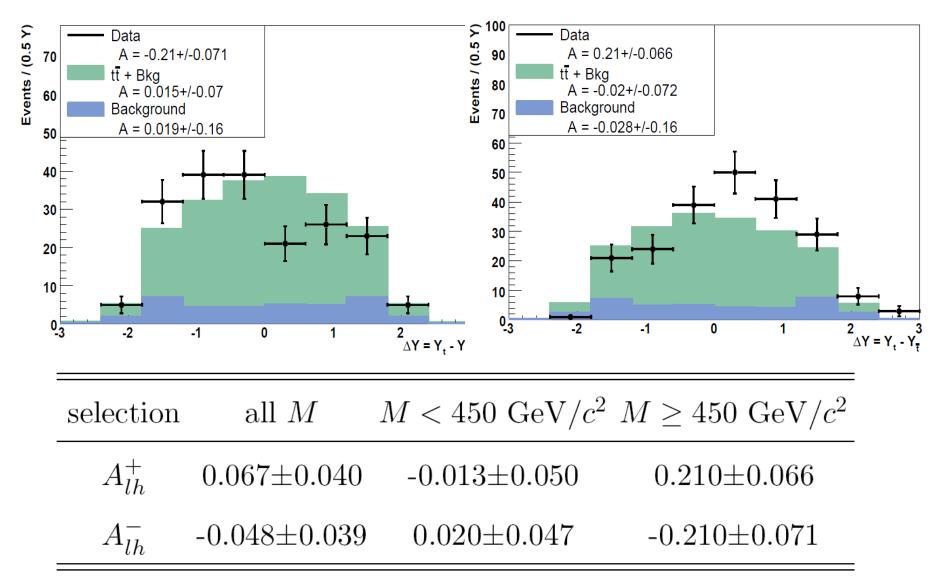


the two-bin boundary

- simplest A(M): two bins
- high and low mass
- where to put boundary?
- look at significance at high mass vs boundary
- ➢ best boundary: 450 GeV/c²


	Octe	etA	OctetB		
bin-edge	$A^{\tt tt}$	significance	$A^{\tt tt}$	significance	
(GeV/c^2)					
345	0.082 ± 0.028	2.90	0.168 ± 0.028	5.99	
400	0.128 ± 0.036	3.55	0.235 ± 0.035	6.74	
450	0.183 ± 0.047	3.91	0.310 ± 0.044	7.08	
500	0.215 ± 0.060	3.60	0.369 ± 0.054	6.81	
550	0.246 ± 0.076	3.25	0.425 ± 0.066	6.43	
600	0.290 ± 0.097	2.97	0.460 ± 0.081	5.70	

 $A^{tt}(M_{tt, i})$



• 50 /100 GeV bins below/above 600 GeV/c2

data: Δy at low and high mass

Δy at high mass by lepton charge

Consistent with CP conserving charge asymmetry.

unfold to the parton level

- dN/dy parton level histogram
 - parton level bins j w/ contents Pj
- the top data signal
 - $T_i = S_{ij} \times A_j \times P_j$
- where
 - the A_i are the acceptances for each bin
 - the S_{ii} are the bin-to-bin migration ratios
 - both measured with symmetric Pythia
- dN/dy data level histogram
 - parton level bins j w/ contents Pj
 - data: in bins i w/ contents $D_i=T_i+B_i$
- to propagate data to parton level:
 - $P_{j} = A_{j}^{-1} \times S_{ji}^{-1} \times (D_{i} B_{i})$
- result is optimized when number of bins = 4

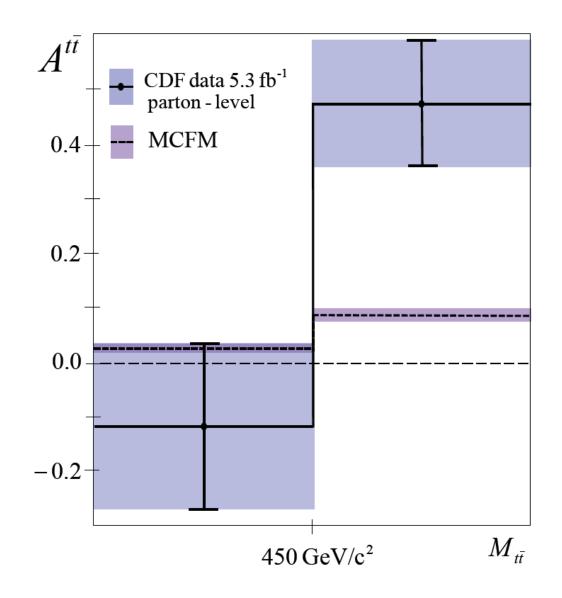
BUT NOW:

4 bins in Δy and M_{tt}

low mass forward low mass backward high mass forward high mass backward

sys uncertainty of unfold procedure

Source	$M < 450 \text{ GeV}/c^2$	$M \ge 450 \ { m GeV}/c^2$
background size	0.017	0.032
background shape	0.003	0.003
JES	0.005	0.012
ISR/FSR	0.012	0.008
color reconnection	0.009	0.004
PDF	0.018	0.004
physics model	0.035	0.035
total	0.047	0.049


TABLE XII: Systematic uncertainties in the two-mass bin unfold

A^{tt} at high and low mass: data, signal, parton level

selection	$M < 450 \ {\rm GeV}/c^2$	$M \ge 450 \ { m GeV}/c^2$
data	-0.016 ± 0.034	0.210 ± 0.049
MC@NLO $t\bar{t}$ +bkg	$+0.012 \pm 0.006$	0.030 ± 0.007
data signal	$-0.022 \pm 0.039 \pm 0.017$	$0.266 \pm 0.053 \pm 0.032$
MC@NLO $t\bar{t}$	$+0.015 \pm 0.006$	0.043 ± 0.009
data parton	$-0.116 \pm 0.146 \pm 0.047$	$0.475 \pm 0.101 \pm 0.049$
MCFM	$+0.040 \pm 0.006$	0.088 ± 0.013

FABLE XIII: Asymmetry $A^{t\bar{t}}$ at high and low mass compared to prediction.

Att at high and low mass: parton level

39

Studies of A^{tt} at the data level

selection	N events	all M	$M < 450~{\rm GeV}/c^2$	$M \geq 450~{\rm GeV}/c^2$
standard	1260	$0.057 {\pm} 0.028$	-0.016 ± 0.034	$0.212{\pm}0.049$
electrons	735	$0.026{\pm}0.037$	-0.020 ± 0.045	$0.120{\pm}0.063$
muons	525	$0.105 {\pm} 0.043$	-0.012 ± 0.054	$0.348{\pm}0.080$
data $\chi^2 < 3.0$	338	$0.030{\pm}0.054$	-0.033 ± 0.065	0.180 ± 0.099
data no-b-fit	1260	$0.062 {\pm} 0.028$	0.006 ± 0.034	0.190 ± 0.050
data single b-tag	979	$0.058 {\pm} 0.031$	-0.015 ± 0.038	$0.224{\pm}0.056$
data double b-tag	281	$0.053 {\pm} 0.059$	-0.023 ± 0.076	$0.178 {\pm} 0.095$
data anti-tag	3019	$0.033{\pm}0.018$	$0.029{\pm}0.021$	$0.044{\pm}0.035$
pred anti-tag	-	$0.010 {\pm} 0.007$	$0.013 {\pm} 0.008$	$0.001{\pm}0.014$
pre-tag	4279	$0.040 {\pm} 0.015$	$0.017{\pm}0.018$	$0.100{\pm}0.029$
pre-tag no-b-fit	4279	$0.042{\pm}0.015$	$0.023{\pm}0.018$	$0.092{\pm}0.029$

Frame dependence

• a selection of cross-checks in the lab frame using $-qy_h = y_t^{p\overline{p}}$

selection	all M	$M < 450~{\rm GeV}/c^2$	$M \geq 450~{\rm GeV}/c^2$
data reco	$0.073 {\pm} 0.028$	$0.059 {\pm} 0.034$	$0.103{\pm}0.049$
MC@NLO	$0.017 {\pm} 0.004$	-0.008 ± 0.005	$0.022{\pm}0.007$
A_h^+	-0.076 ± 0.039	$-0.085 {\pm} 0.047$	-0.053 ± 0.072
A_h^-	$0.070 {\pm} 0.040$	$0.028 {\pm} 0.050$	$0.148 {\pm} 0.066$
single b-tags	$0.095 {\pm} 0.032$	$0.079 {\pm} 0.034$	$0.130 {\pm} 0.057$
double b-tags	-0.004 ± 0.060	-0.023 ± 0.076	$0.028 {\pm} 0.097$

- the high mass asymmetry is less significant in the lab frame
 - like QCD ?
- the high mass double tag asymmetry is low in the lab frame
 - statistics?
 - $|\eta| < 1.0$ for b-tags. acceptance + physics?
 - 42

Summary

- Inclusive A in lab and tt frames in 2 sigma excess over SM
- Consistent with CP conservation
- A in the tt frame has a strong dependence on Δy , M_{tt}
- For $M_{tt} > 450 \text{ GeV/c}^2$

 $A_{reco}^{tt} = 0.210 \pm 0.049, \quad A_{parton}^{tt} = 0.475 \pm 0.112$ $A_{NLO reco}^{tt} = 0.043 \pm 0.006 \quad A_{MCFM}^{tt} = 0.088 \pm 0.013$

- The asymmetry at high mass is consistent with CP conservation
- Most cross-checks rule out non-physics, although a few puzzles
- > The modest inclusive asymmetry originates with a significant effect at large Δy , M_{tt}
- There is a lot more work to do!