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Outline
•Brief intro to monopoles 

•A toy model for EWSB

•Detour on anomalies

•Monopole scattering and Rubakov-Callan effect

•Non-abelian magnetic charges

•A model with a heavy top

•Basic phenomenology



A Brief History of Monopoles

•J.J. Thomson 1904: monopole + charge

•Implies Dirac quantization

•Implies the Rubakov-Callan effect
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•Dirac 1930: Dirac string/monopole

•Dirac quantization:



•Schwinger generalized quantization condition
to dyons

q,g

E

B



•Schwinger also tries to write theory of strong inter’s
using a model of hadrons with monopoles and
dyons

•Our proposal in similar spirit, try to replace 
“technicolor-type” interactions with strong 
U(1) effects from dyons

•To our knowledge only known
attempt to connect monopoles
with “low-scale” particle pheno



•1974: ‘t Hooft Polyakov monopole

•Topological monopoles without singularity



•1976: ‘t Hooft – Mandelstam: condensation of 
magnetic charges causes electric confinement

•Dual of Meißner effect where electric condensation
confines magnetic fields



•Witten effect: magnetically charged objects 
pick up electric charge in the presence of q

•θ can be physical in U(1) theories, if fermions 
massive 



•Heuristic proof by Coleman

•Monopole field plus arbitrary field:

•The Lagrangian, integrating by parts:

•Like a charge at the origin, q→q+q/(2p) g



•1994: Seiberg, Witten: monopoles in N=2 SUSY
theories can become massless (and condense if
broken to N=1)



•Argyres Douglas (and also Intriligator and Seiberg):

•The points where monopoles and dyons are massless
can coincide. Expect a fixed point (4D CFT)
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Idea:  use strong interactions between monopoles
and electric charges to break electroweak symm.

Similar to: Schwinger 1960’s theory of strong 
interactions using interactions of dyons (in the paper
where he coined the term “dyon”

Would be like a technicolor-type theory built
on U(1) dyons (“monocolor”)

Could have some advantages wrt.
technicolor
•Rubakov-Callan for top mass
•No new gauge group needed, just SM
•Different phenomenology…



What kind of theory could be interesting?

•If only electric charges: U(1) IR free

•If only magnetic charges: dual U(1) IR free (free
magnetic phase)

•Need electric and magnetic charges at the same time

•Argyres-Douglas: this is possible (in N=2 SUSY
at very special points…)



•Want massless monopoles (relevant for IR dynamics)

•Should be fermionic (to avoid hierarchy problem)

•Should be chiral (to have quantum # of Higgs)

•All anomalies should cancel

•All Dirac quantization obeyed

•Magnetic charges should be vectorlike (to avoid 
confinement of electric charges)

What we need for an interesting theory



A toy model

•An extra generation with magnetic hypercharges

•All anomalies cancel, Dirac quantization OK



A detour on anomalies with 
monopoles

•What is the chiral anomaly in the presence of dyons?

•Assume, can calculate anomalies for fields 
independently 

•Then can do SL(2,Z) rotation where field is just an
electron



SL(2,Z)
•A set of field redefinitions that leaves physics 
unchanged (but Lagrangian NOT invariant, no sym)

•S-duality: has effect of 

•Also exchanges electric and magnetic charges

•T-duality: shift of q: 

•Together SL(2,Z). Can introduce “holomorphic”
coupling parameter τ, under SL(2,Z)



•Here a,b,c,d are integers and ad-bc=1

•The SL(2,Z) transformation of charges:

•Where n=gcd(q,g) can always be achieved

•In this frame anomalies easy, just usual 



•To transform back need SL(2,Z) for fields

•Maxwell equations:

•Will be SL(2,Z) covariant if fields transform (New?):

•Chiral anomaly:



•Need to cancel all terms separately!

•Can argue similarly for gauge symmetries

•Need some Lagrangian formulation

•Use Zwanziger Lagrangian (local, gauge 
invariant but not Lorentz invariant)

•Two gauge fields, A electric, B magnetic

•Equations of motion Lorentz invariant Daniel Zwanziger



•We found a trivial generalization including q term

•Using this we showed (similarly) that mixed 
gauge anomalies should cancel too:



A toy model

•An extra generation with magnetic hypercharges

•All anomalies cancel, Dirac quantization OK



• Conformal fixed point – if β- function like 1-loop: 
expect fixed point, not interesting for EWSB

• IR-free – electric charge outweighs magnetic
charge, like in QED.  Magnetic coupling becomes very
large, forming of condensates and mass gap

• Free magnetic  Magnetic charge outweighs electric

• Assume: not a fixed point. In this case plausible
that it is IR free (more electric fields) - condensation

What IR phase?
3 possibilities



•Don’t carry magnetic charge

•Have quantum number of Higgs

•Assume some of these condensates generated

•Λmag is a dynamical of order few x 100 GeV

Possible condensates

would be for it to sit at an IR fixed point, similar to those of Argyres and Douglas [1].

In this case the theory would not be useful for electroweak symmetry breaking. The other

plausible option is that the full non-perturbative β-function of the theory is very different

from the naive one-loop β-function, and that the electric hypercharge from 3+1 generations

actually dominates over the contributions of the magnetic hypercharge from 1 generation.

In this case the electric hypercharge would become weaker as one goes towards the IR, while

the magnetic hypercharge would keep increasing (and by our hypothesis its contribution to

the β-function would keep decreasing). In this case the theory is driven to a very strongly

interacting magnetic theory, and magnetic charges could condense as quarks do in QCD. Such

chiral symmetry breaking is observed in strongly coupled U(1) theories on the lattice [14,15].

The charges in (3.1) have been chosen such that the plausible set of condensates have the

right quantum numbers to play the role of the SM Higgs:

QD̄ ∼ (1, 2,
1

2
) ∼ H, QŪ ∼ (1, 2,−1

2
) ∼ H

∗
,

LĒ ∼ (1, 2,
1

2
) ∼ H, LN̄ ∼ (1, 2,−1

2
) ∼ H

∗
. (3.2)

Thus we need to assume that the upper component of the doublet Q, aka UL, condenses

with Ū , the lower component of Q, aka DL with D̄, the upper component of L, aka NL, with

N̄ and the lower component of L, aka EL, with Ē:

�ULŪ� ∼ �DLD̄� ∼ �NLN̄� ∼ �ELĒ� ∼ Λd
mag (3.3)

where Λmag is the scale of condensation that would be dynamically generated by the strong

magnetic interactions of hypercharge, and d is the a priori unknown scaling dimension of the

bilinear operators. In the rest of the paper we will assume that the low-energy dynamics of

the theory is indeed of this type: magnetic interactions generate a mass gap of order Λmag,

all particles carrying magnetic hypercharge pick up a dynamical mass of this order, and the

condensates in (3.3) are formed giving rise to electroweak symmetry breaking as in ordinary

QCD and technicolor theories.

We should check whether the conjecture above agrees with our experience in QCD-like

theories. The Dirac quantization condition

�
1

6

�2

αY 3
2αm =

1

4
(3.4)

and the hypercharge coupling αY ∼ 0.0102 lead to αm ∼ 98 while one would naively expect

condensation to happen for αm ∼ 4π. However we do not have any experience with theories

containing massless electric and magnetic charges and such theories have not been studied

in lattice simulations. If lattice simulations were to confirm the naive expectation, one can

still use the mechanism outlined above for electroweak symmetry breaking, except that one

would need to use a U(1) different from hypercharge, for which the coupling constant can be

freely adjusted. Later in the paper we will develop a more realistic model that has a much

smaller value for αm.
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The Rubakov-Callan effect



The Rubakov-Callan effect

•Even though no interaction between monopole 
and charge, angular momentum changes

•There has to be a contact interaction between
monopoles and charges which is marginal



The quantum picture

•Dirac equation in the presence of monopole peculiar
for J=0

•For electron, positive helicity purely outgoing
                       negative helicity purely incoming

•For positron just the opposite

•This is because                        and 

•Need boundary condition at core of monopole –
chirality should flip (or electric charge…)



For spin 1/2 

Using the ansatz Φ = f(r)Yqlm where Yqlm are the monopole harmonics of Yang et al. we
can rewrite the equation in a simple form. A useful formula is

(∂µ − ieAµ)
2 = − 1

r2
∂

∂r
(r2

∂

∂r
) +

1

r2
(�L2 − q2) (5.2)

Using this we find for the radial equation of motion
�
− 1

r2
∂

∂r
(r2

∂

∂r
) +

1

r2
(l(l + 1)− q2)− (E2 −m2)

�
f(r) = 0. (5.3)

The solutions around r = 0 have the behavior ∼ rp where p = −1
2 ±

�
(l + 1

2)
2 − q2. Since

for the scalar wave function l ≥ we find that one of the solutions always has p > 0 vanishing
at the origin, and it can be used as the scattering amplitude. So for a scalar there should be
NO Callan-Rubakov effect.

5.2 Spin 1/2

Here we now need to use the Dirac equation. The starting point can be the squared Dirac
equation which is of the form

�
(∂µ − ieAµ)

2 − e

2
σµνFµν −m2

�
Ψ = 0 (5.4)

The term proportional to F for a monopole background can be written as

−e

2
σµνFµν = −e

�σ

2
· �B = −q

�σ · r̂
r2

(5.5)

So the full Dirac equation, again using the same trick as before, is written as
�
− 1

r2
∂

∂r
(r2

∂

∂r
) +

1

r2
(�L2 − q2)− q

�σ · r̂
r2

− (E2 −m2)

�
Ψ± = 0. (5.6)

The wave functions Ψ± here refer to the eigenfunctions of the total angular momentum given
by

�J = �L+
1

2
�σ (5.7)

where of course
�L = �r × (�p− e �A) + qr̂ (5.8)

Yang et al. have found the analogs of the spherical harmonics for the case of monopoles,
called monopole harmonics Yq,l,m. Their explicit expression is

Yq,l,m(θ,ϕ) = Mq,l,m(1− x)
α
2 (1 + x)

β
2Pα,β

n (x)ei(q+m)ϕ (5.9)
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Eigenfunctions: “Monopole harmonics” (C.N. Yang and 
T.T. Wu)



µ =

�
(j +

1

2
)2 − q2

∼ rµ or rµ−1

Need to diagonalize Dirac equation

polynomial Pαβ
0 = 1. The sin θ factor will be indeed absorbed by the prefactors of the Jacobi

polynomials, and Z12 is a pure number as expected. It’s value is simply

Z12 = −
Mq,j−1/2,−j+1/2

Mq,j+1/2,−j−1/2

�
2j + 2

2j + 1

� 1
2

(5.16)

Plugging in the explicit expression of the M’s most of the factorials cancels, and one is left

with the result

Z12 = −1

2

�
(j + 1

2)
2 − q2

2j + 1
(5.17)

Since we are talking about spin 1/2 objects, on the solution j = l + 1/2 or j = l − 1/2.
The explicit form of the matrix elements of �σ · r̂ were calculated by Yang et al. and is given

by 


2q

2j+1

[(2j+1)2−4q2]
1
2

2j+1

[(2j+1)2−4q2]
1
2

2j+1 − 2q
2j+1



 (5.18)

In this basis the non-universal part of the Dirac matrix is written in the following form (we

use that L2
commutes with the Hamiltonian and J2

, and the above expression for �σ · r̂):

�L2 − q2 − q�σ · r̂ =




(j + 1

2)(j +
3
2)− q2 − 2q2

2j+1 −q
[(2j+1)2−4q2]

1
2

2j+1

−q
[(2j+1)2−4q2]

1
2

2j+1 (j − 1
2)(j +

1
2)− q2 + 2q2

2j+1



 (5.19)

The eigenvalues of this matrix are given by where µ =

�
(j + 1

2)
2 − q2. In this case the

radial equation has solutions of the form rp with p = µ or p = µ − 1. The main difference
compared to the scalar case is that now µ can be zero, and thus there is a situation where

none of the wave functions vanish at the origin (at the core of the monopole), so you need

to impose some boundary condition that picks out a non-singular solution.

5.3 Spin 1

There are several non-trivial issues here. The spin-1 equation of motion contains an addi-

tional coupling to the magnetic moment, and one has to deal with gauge invariance. I will

follow the discussion of Holstein. The equation of motion is given by

∇µUµν + ieκFµνU
µ
+m2Uν = 0 (5.20)

where κ is the anomalous magnetic moment of the spin 1 field U , for the W-boson κ = 1.

∇ is the covariant derivative in the monopole background, and Uµν = ∇µUν − ∇µUν . The

old trick (used by Holstein) is to view these as two separate first order equations for the

variable Uµ and Uµν . Then U0 and Uij will be expressed in terms of equations without time
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by 


2q

2j+1

[(2j+1)2−4q2]
1
2

2j+1

[(2j+1)2−4q2]
1
2

2j+1 − 2q
2j+1



 (5.18)

In this basis the non-universal part of the Dirac matrix is written in the following form (we

use that L2
commutes with the Hamiltonian and J2

, and the above expression for �σ · r̂):

�L2 − q2 − q�σ · r̂ =




(j + 1

2)(j +
3
2)− q2 − 2q2

2j+1 −q
[(2j+1)2−4q2]

1
2

2j+1

−q
[(2j+1)2−4q2]

1
2

2j+1 (j − 1
2)(j +

1
2)− q2 + 2q2

2j+1



 (5.19)

The eigenvalues of this matrix are given by µ(µ± 1) where µ =

�
(j + 1

2)
2 − q2. In this case

the radial equation has solutions of the form rp with p = µ or p = µ−1. The main difference
compared to the scalar case is that now µ can be zero, and thus there is a situation where

none of the wave functions vanish at the origin (at the core of the monopole), so you need

to impose some boundary condition that picks out a non-singular solution.

5.3 Spin 1

There are several non-trivial issues here. The spin-1 equation of motion contains an addi-

tional coupling to the magnetic moment, and one has to deal with gauge invariance. I will

follow the discussion of Holstein. The equation of motion is given by

∇µUµν + ieκFµνU
µ
+m2Uν = 0 (5.20)

where κ is the anomalous magnetic moment of the spin 1 field U , for the W-boson κ = 1.

∇ is the covariant derivative in the monopole background, and Uµν = ∇µUν − ∇µUν . The

old trick (used by Holstein) is to view these as two separate first order equations for the

variable Uµ and Uµν . Then U0 and Uij will be expressed in terms of equations without time
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Eigenvalues: with

Wave function at origin:

Since j=q±½ (for vanishing orbital) it is now possible that 
neither solution vanishes at core of monopole - need BC -
leads to RC operators...



But for toy model



•No Rubakov-Callan generated 

•Want something like tRUL→tLUR

•Jin=3 x 2/3=2

•Jfin=-3 x 1/6 =-1/2

•Can not compensate with chirality flips…

•Need to modify model such that minimal
Dirac charge is allowed



•Question similar to early 80’s: can you have 
minimal Dirac charge with down quark e=-1/3?

•Naively contradicts Dirac quantization

•If monopole also carries color magnetic charge
then possible

•This is what happens for GUT monopole

•Need to embed magnetic field into non-abelian
groups as well – “non-abelian monopoles”

Need for non-abelian magnetic charges



GUT monopole:

•Specific U(1) transformations:

•Monopole also carries discrete SU(3)xSU(2)
magnetic charges

•Group really SU(3)xSU(2)xU(1)/Z6



Conserved quantity in presence of monopole

SU(3)

SU(2)

•The actual conserved quantity

•Leads to non-trivial Dirac quantization



Non-abelian monopoles

•Magnetic field not aligned with U(1)Y

•Dirac quantization loop

•Now replaced by

so that the long range fields point in a particular direction in the gauge space. Thus for
a monopole with charge g we can have the following SU(3)c × SU(2)L × U(1)Y long range
fields [16]:

�Ba
Y =

g

gY

r̂

r2
, (5.1)

�Ba
L = δa3

L

g βL

gL

r̂

r2
, (5.2)

�Ba
c = δa8

c

g βc

gc

r̂

r2
, (5.3)

where, at this point, βL and βc and simply some parameters that fix the relative orientation
of the monopole within the various gauge groups. Then the usual Dirac calculation of
transporting a charge around the monopole

�

loop

e q Aµdxµ (5.4)

is generalized to
�

loop

(gc T a
c Gaµ + gL T a

L W aµ + gY Y Bµ) dxµ , (5.5)

which now can be thought of as a (diagonal) matrix, and all of the eigenvalues have to satisfy
the Dirac quantization condition. The matrix structure is obvious if there is a GUT group
embedding, otherwise one can simply have indices that range over all the fields of the model.
One can evaluate (5.5) in the standard way: the vector potential for a Dirac string at θ = −π
giving rise to (5.1)-(5.3) in a suitable gauge is

�AY =
g

gY

1− cos θ

r sin θ
êφ . (5.6)

�Aa
L = δa3

L

g βL

gL

1− cos θ

r sin θ
êφ , (5.7)

�Aa
c = δa8

c

g βc

gc

1− cos θ

r sin θ
êφ , (5.8)

Then the absence of an observable Aharonov-Bohm phase of a particle which carries color,
SU(2)L and U(1)Y charges leads to the generalized Dirac quantization condition:

4π
�
T 8

c g βc + T 3
L g βL + Y g

�
= 2πn . (5.9)

This condition has to be satisfied for all components of the diagonal matrix.
In a given model (5.9) may, in general, be satisfied for several different choices of βL.

However, as we will now argue, the value βL = 1 is desirable for a phenomenologically viable
model. The reason is that we want to avoid magnetic couplings to the Z-boson, otherwise it
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êφ , (5.7)

�Aa
c = δa8

c

g βc

gc

1− cos θ

r sin θ
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•Dirac quantization: every component of matrix 
has to obey

•The gauge field for Dirac calculation:
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A model with a heavy top

•We choose bL=1 and bc=1 for colored monopoles
•Dirac quantization now satisfied with minimal (1/2) Dirac 
charge



•Since bL=1 magnetic field actually points always in direction
of QED photon

•Can instead just look at QED electric and magnetic charges

•Quantization condition now will be:

•Dyons:



•With this embedding:

•Rubakov-Callan now generated:

•uRNL→uLNR satisfies the RC condition

•Initial spin +1, EM field J= 2/3 x (-3/2)=-1

•Final spin -1, EM field J= - 2/3 x (-3/2)=1

•Operator needs to be present:



•Gauge invariant version:

•Some up-type quarks have to have large masses

•BUT: don’t expect RC to break global symmetry

•Need to assume flavor physics at high scales
breaks all flavor symmetries

•RC can be used to transmit flavor violation to low
scales

•Can decouple flavor and EWSB scales via RC 

magnetic charge is always proportional to one of the electric generators, as is the case for
the color magnetic charge. The only non-trivial conditions involve the SU(2)L Z2 magnetic
charge, whose anomalies must vanish mod 2 [19]. These anomalies are SU(2)2

L,magU(1)el,mag
Y

and an analog of the SU(2) Witten anomaly [20]. The mixed anomalies vanish because all
the fourth generation fields have a Z2 charge and the sums of both electric and magnetic
U(1)Y charges vanish. On the other hand, the analog of the Witten anomaly in SU(2)L is
absent since there are an even number of fields with Z2 magnetic charge.

One immediate advantage of this model is that the Dirac quantization condition now
allows smaller magnetic couplings: the quantization condition now will be exactly the naive
QED Dirac quantization condition, implying that the magnetic coupling is

αmag =
α−1

4
∼ 32 , (6.4)

still a factor of few bigger than 4π, but significantly smaller than in the previous case.
The main advantage is that now a Rubakov-Callan operator related to the top mass is

generated. Let us again consider scattering of a RH up-type quark on NL. The angular
momentum of the electromagnetic field is 2

3 ×
−3
2 = −1, while the spin of the incoming

particles is +1. After the particles scatter in the forward direction, the angular momentum
of the field flips, and that can be compensated by the simultaneous chirality flip of the top
quark and the monopole. Thus an operator

λ(u)
ij ui

RNL

�
uj

LNR

�†
(6.5)

should be present, in fact we must have the full gauge invariant operator

λ(u)
ij ui

RLL

�
qj
LNR

�†
, (6.6)

which, after monopole condensation, can give rise to the large top mass, depending on the
details of the flavor physics contained in λ(u)

ij . So we see that the marginal Rubakov-Callan
operator allows for a large top mass while decoupling the underlying flavor physics of the
UV theory that usually gives rise to FCNC’s in technicolor models. Operators with four
ordinary quarks do not involve strong magnetic charges, so they are suppressed by the UV
scale of flavor physics. In fact, the model has an additional success, since the consistency
of the low-energy requires that at least one of the up-type quarks has a large mass, where
as most extensions of the standard model would still be self-consistent with a 10 GeV top
quark. Why there is only one heavy up-type quark is not explained. Indeed, monopole
interactions can not break anomaly free flavor symmetries. Thus the appearance of a single
heavy mass state requires an existence of a non-trivial flavor physics in the underlying UV
theory. Discussion of this flavor physics is beyond the scope of the current paper.

What about the other quarks and leptons? There are no four-fermion Rubakov-Callan
operators that can generate the masses for the down-type quarks or leptons. There are
however six-fermion Rubakov-Callan operators that can generate these masses, however since
they involve more ordinary fermions, the masses generated are suppressed by a factor of an
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QLER(LLDR)
†

QLNR(LLUR)
†

•Down-type masses: 6-fermion RC operator

• After closing up up-quark leg get down mass

•mb ~ mt/(16p2)

•Similarly for charged leptons. Neutrinos strongly
suppressed

•PNGB’s: RC can save us again, can transmit 
symmetry breaking:

ordinary fermion mass over an effective monopole mass. We find the following Rubakov-
Callan scattering process

dR + EL + uL + d†
L → uL + ER (6.7)

A down-type mass is then generated from this operator by closing up the up-quark loop.
While this diagram appears naively to be quadratically divergent, the Rubakov-Callan op-
erator will not be present for very energetic external legs, which will provide the appropriate
cutoff for these diagrams. Then we get an estimate for the heaviest down-type quark mass
of

mb ∼
mt

16π2
, (6.8)

which is just a one-loop suppression relative to the top mass. There are similar operators
for the charged leptons. Since neutrinos are electrically neutral, they cannot get Dirac
masses through Rubakov-Callan operators in this type of model. Thus the model necessarily
requires that neutrinos are much lighter, just because they are neutral. Dirac masses for the
neutrinos can be radiatively generated from other fermion masses, this happens, for example,
in Pati-Salam models [21] where the quark masses feed down to the neutrino masses.

7 Basic phenomenology

Our model contains massless chiral monopoles which become vector-like after electroweak
symmetry breaking (bilinear monopole condensation). It is then reasonable to expect that
these monopoles themselves pick up a mass of the order of the monopole condensate Λmag ∼
500 GeV - 1 TeV. One important question is whether these monopoles would be confined
or not. As we have explained above that question crucially depends on the direction of
magnetic charges in the space of gauge generators. In the model of Sec. 6, the alignment of
the magnetic charges is chosen such that the magnetic field is a combination of the ordinary
QED photon and the QCD gluon, both of which remain massless. Thus the electric group
remains unbroken, implying that the monopoles will be unconfined. Of course the color
magnetic charge will be screened at distances corresponding to ΛQCD, so at long distances
our monopoles would act as ordinary massive dyons of QED (some with minimal Dirac
magnetic charge and some with three times this charge), subject to all of the collider and
direct monopole searches applicable to them. An advantage of this type of model is that the
monopoles have no magnetic coupling to the Z boson, otherwise it would have been hard
to imagine any possible way to avoid disastrously large corrections to electroweak precision
measurements. Thus the electroweak precision operators are shielded from direct corrections
from the strong magnetic interactions. However, there will still be corrections to S and T
since the monopoles also carry electric charges (otherwise they couldn’t possibly break the
electroweak gauge symmetry). However, from the point of view of electroweak precision
corrections the corrections will be similar to a fourth generation model, which can be made
to agree with electroweak precision data if the masses within the fourth generation have the
right splittings [22, 23].
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Basic Phenomenology

•After EWSB theory vectorlike, expect monopoles
to pick up mass of order Lmag~500 GeV – TeV

•Since monopole points in QED direction, not
confined, like “ordinary” QED monopole

•No magnetic coupling to Z

•Electric coupling is there, expect EWPO (S,T) like
a heavy fourth generation – could be OK?



•At LHC: likely pair produced. Due to strong force
strong attraction, will always annihilate at LHC.
Large radiation, then annihilation. Lots of photons,
some of them hard. Cross section? Not calculable. 
Naive estimate ~ few x pb (A. Weiler)

•Cosmic ray bounds? SLIM upper bound on
monopole flux 1.3 10-15 cm-2 sr-1 s-1. Implies
1 mb bound on cross section, not strong.

•Dark matter? Monopole number conserved, baryon
type monopole UUDE or UDDN could be stable



Summary

•Use strong interactions from magnetic
sector of U(1) to break EWS via condensation

•Monopoles can be aligned with QED, then no 
coupling to Z, not confined, minimal Dirac charge.

•Rubakov-Callan operators can transmit high scale
flavor violation, separate flavor scale

•Should be visible at the LHC, lots of photons…
CMS will trigger on it! 


