

Exploring with Simplified Models

Daniel Whiteson, UC Irvine

- I. Motivation
- II. Strategy
- III. Results
 - CDF ss dilepton result ← Brand new!
 - Heavy quark searches

Outline

- I. Motivation
- II. Strategy
- III. Results

Searching for new physics

Our goals:

- Maximize possibility for discovery
- Learn something no matter what we see

Traditional approach

Bet on a specific full theory

Optimize analysis to squeeze out maximal sensitivity to new physics.

Model independent search

Discard the model

compare data to standard model

"Never listen to theorists."

-Aaron Pierce, Theorist

Compromise

Admit the need for a model

New signal requires a coherent physical explanation, even trivial or effective

Generalize your model

Focus on the general experimental sensitivity

Construct simple models that describe classes of new physics

Examples

Simple SM extensions: fourth generation, Z', resonances (X->tt) etc

Effective Lagrangian

A natural, compact language for communication between theory and experiment.

A Theorist's dream?

Unfolded cross-sections

Deconvolution to remove detector effects

Publish measured differential cross-sections

Theorists don't need to know/have detector description

This is hard!

Backgrounds ————Yield Limits

RECAST

RECAST

Backgrounds

Signal efficiency

Signal' efficiency

Done by experiment

Problem: people move on

- code rots away
- jobs/interests change
- tend to reoptimize cuts

Done by theorist

Problem: approximate

- No access to bg, fitting codes, etc

Dataset archive

Backgrounds

Signal efficiency

Signal' efficiency

Dataset archive

Experiments require published analysis to archive (1) bg description (weighted events)

(2) code to produce weighted signal events from full MC

(3) fitting code

Allows anyone in expt to recast

Dataset archive

Dataset archive

Backgrounds

Signal efficiency

Signal' efficiency

Outline

- I. Motivation
- II. Strategy
- III. Results
 - a. CDF same-sign leptons
 - ss tops
 - Simplified SUSY
 - b. Heavy quarks (CDF/ATLAS)

Outline

- I. Motivation
- II. Strategy
- III. Results
- II. Results
 a. CDF same sign leptons
 - Just seleps
 - Simplified SUSY
 - b. Heavy quarks (CDF/ATLAS)

CDF like-sign dileptons

	$n_{ m obs}$	n_{pred}
$e_{si}e_{si}$	11	6.3 ± 1.0
ee	3	1.3 ± 0.3
$e_{\rm si}e$	9	9.1 ± 1.8
$e_{si}\mu$	11	6.8 ± 0.8
$e\mu$	5	6.4 ± 1.2
$\mu\mu$	5	3.2 ± 0.3
Total	44	33.2 ± 4.7

1/fb PRL 2007

s dileptons 6.1/fb_{UCI grad student}

Robert Porter

<u>CDF</u>	RunII	Preliminary	6.1/fb
top	quark	pairs	0.1 ± 0.1
Z			26.6 ± 3.4
WW,V	NZ,ZZ		28.4 ± 2.0
W+ga	amma		16.2 ± 2.4
Fake	es		51.6 ± 24.2

 123.0 ± 24.6

145 Data

Total

same-sign tops

Many models predict ss tops (esp. to explain CDF top A_{fb})

Use 4f effective operators (LL,LR,RR) modes

same-sign leptons+2jets

Process	Total $\ell\ell$
$\overline{tar{t}}$	0.1 ± 0.0
$Z o \ell \ell$	5.9 ± 1.7
WW, WZ, ZZ	7.2 ± 0.5
$W(o\ell u)\gamma$	0.9 ± 0.7
Fakes	13.8 ± 7.2
Total	28.0 ± 7.5
Data	27

coupling $|C|/\Lambda^2$ cross-section $\propto C^2/\Lambda^4$

Cross-section limits

Coupling limits

RE CAST

No like-sign tops at Tevatron: Constraints on extended models

and implications for the $t\bar{t}$ asymmetry.

http://arxiv.org/abs/1104.1385

SUSY

Goal

Set limits on SUSY-like processes in as general a fashion as possible

Approach

Use effective lagrangian, explicitly set particle masses (EW scale): simple to handle, easy to interpret

Set limits as functions of these masses, not parameters of specific models: can be easily translated into arbitrary models

Hows

How many particles & parameters needed?

Want leptons needs Ws and Zs, so chargino/neutralinos and sleptons

Want strong production so squarks and gluinos

R-Parity conserving need LSP

Large sections of this space are 3 or 4-dimensional

Squark pairs

+WW,ZZ modes

Upper limits on number of SUSY events: N95 (sparticle masses)

Need: data, background shapes, signal shapes Independent of signal efficiency, theoretical signal xs

<u>Upper limits on SUSY xs: σ⁹⁵(sparticle masses)</u>

Need: N⁹⁵(sparticle masses), signal efficiency: E(sparticle masses) Independent of theory cross-sections

Sparticle mass limits

Compare upper limits on SUSY xs: σ^{95} (sparticle masses) to theory cross-sections.

Squark limits

Gluinos

+WW,ZZ modes

Gluino limits

Outline

- I. Motivation
- II. Strategy
- III. Results
 - a. Heavy resonances (Z')
 - b. Heavy quarks (b', t')
 - c. Simplified SUSY

b' decays

UCI undergrad Reza AmirArjomand

same-sign lepton selection: ~2% consider single-lepton mode

Data, >= 1 b-tag

Direct searches

 $m_{b'} > 372 \text{ GeV}$

 $m_{t'} > 335 \text{ GeV}$

Direct searches

$$\frac{m_{b'} > 372 \text{ GeV}}{\text{If } BR(b' \rightarrow Wt) = 100\%}$$

$$\frac{m_{t'} > 335 \text{ GeV}}{\text{If } BR(t' \rightarrow Wq) = 100\%}$$

UCI postdoc UCI undergrad Christian Flacco Matt Kelly

If
$$m_{t'} > m_{b'}$$

Re-casting...

RECAST:

Have: t't' -> WqWq -> Iv q qqq

Want: t't' -> Wb'Wb' -> WWqWWq-> lv q qqqqqq

Top mass is fit per event

how does new signal look?

signal and background templates are fit

how does this perform?

Used rate of WqWq only

b'b' -> WqWq ignored any non-WqWq contribution

t' and b'

0.2

PRL 2010, PRD 2011

ATLAS t'

UCI grad student Michael Werth

Selection

2 OS leptons

pt>20 GeV

2 jets

pt>20 GeV

Missing transverse energy

>20 GeV

<u>Sample</u>

35/pb

topology

Boosted tops

topology

Boosted Ws!

Lepton-neutrino angles

Mass reconstruction

Assume lepton and neutrino are ~collinear

Data

No sign of heavy quarks...

Limit

 $\frac{\text{Limit}}{m_{t'}} > 275 \text{ GeV}$

Limit

 $\frac{\text{Limit}}{\text{m}_{t'}} > 275 \text{ GeV}$

Dark Matter+4th gen Kanishka Rao Kanishka Rao

Look for ttbar + invisible X

Transverse mass

Limits

Summary

Simplified models are powerful, but

- limited ability to recast
- need to address issue of combining results

New searches:

- CDF same-sign dileptons same-sign tops supersymmetry

http://www-cdf.fnal.gov/~danielw/lsdil/lsdil.html

- CDF/ATLAS heavy quark searches

backups

CDF RunII Preliminary $\int \mathcal{L}dt = 6.1 \text{ fb}^{-1}$				
Process	Total $\ell\ell$	$\mu\mu$	ee	$e\mu$
$tar{t}$	0.1 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.1 ± 0.0
Z o ee	15.7 ± 2.7	0.0 ± 0.0	15.7 ± 2.7	0.0 ± 0.0
$Z o \mu \mu$	8.7 ± 2.0	0.0 ± 0.0	0.0 ± 0.0	8.7 ± 2.0
Z o au au	2.2 ± 0.9	0.0 ± 0.0	1.3 ± 0.6	1.0 ± 0.6
WZ	24.7 ± 1.3	7.0 ± 0.4	5.1 ± 0.3	12.7 ± 0.7
WW	0.2 ± 0.1	0.0 ± 0.0	0.1 ± 0.1	0.1 ± 0.0
ZZ	3.5 ± 0.2	0.9 ± 0.1	0.8 ± 0.1	1.7 ± 0.1
$W(o e u) \gamma$	7.8 ± 1.7	0.0 ± 0.0	7.8 ± 1.7	0.0 ± 0.0
$W(o \mu u)\gamma$	7.8 ± 1.7	0.0 ± 0.0	0.0 ± 0.0	7.8 ± 1.7
$W(o au u)\gamma$	0.6 ± 0.4	0.0 ± 0.0	0.3 ± 0.3	0.3 ± 0.3
Fakes	51.6 ± 24.2	8.2 ± 5.3	22.1 ± 8.9	21.3 ± 10.6
Total	123.0 ± 24.6	16.1 ± 5.4	53.3 ± 9.5	53.6 ± 10.9
Data	145	14	66	65