Recasting Susy

Jay Wacker HEFTI Workshop on SUSY Recast April 9, 2011

work with

Daniele Alves, Eder Izaguirre, Konstantin Matchev, Gaurab Sarangi, Partha Konar, Kyle Cramner, Itay Yavin

Outline

Simplified Models

Current Limits

Needed Topologies for the Closure Test

From Anomalies to Discoveries

(Effective Field Theories for Collider Physics)

Limits of specific theories Only keep particles and couplings relevant for searches A full Lagrangian description

Removes superfluous model parameters Masses, Cross Sections, Branching Ratios Add in relevant modification to models (*e.g.* singlets)

Not fully model independent, but greatly reduce model dependence

Captures specific models Including ones that aren't explicitly proposed Easy to explore

Imagine a simple world...

Theory of nature is a single variable function, y=f(x), Can only do measurements of y near x=0

A very complicated space to explore! ∞ -dimensional

Imagine a simple world...

Theory of nature is a single variable function, y=f(x), Can only do measurements of y near x=0

A very complicated space to explore! ∞ -dimensional In this world, the leading theory is $f(x) = e^{\alpha(x-x_0)}$

Imagine a simple world...

Theory of nature is a single variable function, y=f(x), Can only do measurements of y near x=0

A very complicated space to explore! ∞ -dimensional

In this world, the leading theory is $f(x) = e^{\alpha(x-x_0)}$

Could design a measurement strategy to discover $f(x) \neq 0, \ \alpha, \ x_0$

What happens if we're wrong about our theoretical assumption?

What happens if we're wrong about our theoretical assumption?

 $f(x) = -e^{\alpha(x-x_0)}$

f(x) is negative

What happens if we're wrong about our theoretical assumption?

$$f(x) = -e^{\alpha(x-x_0)}$$
$$f(x) = \sinh(x)$$

f(x) is negative

f(x) vanishes at 0

What happens if we're wrong about our theoretical assumption?

$$f(x) = -e^{\alpha(x - x_0)}$$
$$f(x) = \sinh(x)$$
$$f(x) = \cos(x)$$

f(x) is negative

f(x) vanishes at 0

Doesn't grow asymptotically

What happens if we're wrong about our theoretical assumption?

$$f(x) = -e^{\alpha(x-x_0)}$$
 $f(x)$ is negative $f(x) = \sinh(x)$ $f(x)$ vanishes at 0 $f(x) = \cos(x)$ Doesn't grow asymptotically

Could enumerate all possibilities

What happens if we're wrong about our theoretical assumption?

$$f(x) = -e^{\alpha(x-x_0)}$$

 $f(x) = \sinh(x)$
 $f(x) = \cosh(x)$
 $f(x) = \cos(x)$
 $f(x)$ is negative
 $f(x)$ vanishes at 0
Doesn't grow asymptotically

Could enumerate all possibilities <u>A better strategy</u>

$$f(x) = a_0 + a_1 x + a_2 x^2 + \cdots$$

Easy to identify special cases (any systematic approximation)

Not a cure-all

Still infinite dimensional

But there is some notion of simplicity

 $f(x) = -x^6 + x^{12}$ less likely than f(x) = 1

Not a cure-all

Still infinite dimensional But there is some notion of simplicity $f(x) = -x^6 + x^{12}$ less likely than f(x) = 1There could be technicalities: Radius of convergence problems $f(x) = \log(1+x)$

Assumes the function is continuous/differentiable

$$f(x) = \Theta(x)$$
 $f(x) = \sum_{n=0}^{\infty} a^n \cos(b^n \pi x)$

Direct Decays

One-Step Cascade Decays

Two-Step Cascade Decays

Outline

Simplified Models

Current Limits

Needed Topologies for the Closure Test

From Anomalies to Discoveries

Outline

Simplified Models

Current Limits

Needed Topologies for the Closure Test

From Anomalies to Discoveries

Current Searches

Estimates of Current Reach

Madgraph \longrightarrow Pythia \longrightarrow PGS \longrightarrow Cuts $pp \rightarrow \tilde{g}\tilde{g} + \leq 2j$ $\tilde{g} \rightarrow 2j \chi_1^0$ (MLM matched)

Efficiency is the fraction of events that passed the cuts Do this for each $(m_{\tilde{g}}, m_{\chi})$ pair

	Signal region A	Signal region B	Signal region C	Signal region D
QCD	$7^{+8}_{-7}[u+j]$	$0.6^{+0.7}_{-0.6}[u+j]$	9 ⁺¹⁰ ₋₉ [u+j]	$0.2^{+0.4}_{-0.2}$ [u+j]
W+jets	$50 \pm 11[u] {}^{+14}_{-10}[j] \pm 5[\mathcal{L}]$	$4.4 \pm 3.2[u] {}^{+1.5}_{-0.8}[j] \pm 0.5[\mathcal{L}]$	$35 \pm 9[u] {}^{+10}_{-8}[j] \pm 4[\mathcal{L}]$	$1.1 \pm 0.7[u] {}^{+0.2}_{-0.3}[j] \pm 0.1[\mathcal{L}]$
Z+jets	$52 \pm 21[u] {}^{+15}_{-11}[j] \pm 6[\mathcal{L}]$	$4.1 \pm 2.9[u] {}^{+2.1}_{-0.8}[j] \pm 0.5[\mathcal{L}]$	$27 \pm 12[u] {}^{+10}_{-6}[j] \pm 3[\mathcal{L}]$	$0.8 \pm 0.7[u] {}^{+0.6}_{-0.0}[j] \pm 0.1[\mathcal{L}]$
$t\bar{t}$ and t	$10 \pm 0[u] + \frac{3}{2}[j] \pm 1[\mathcal{L}]$	$0.9 \pm 0.1[u] {}^{+0.4}_{-0.3}[j] \pm 0.1[\mathcal{L}]$	$17 \pm 1[u] + \frac{6}{4}[j] \pm 2[\mathcal{L}]$	$0.3 \pm 0.1[u] {}^{+0.2}_{-0.1}[j] \pm 0.0[\mathcal{L}]$
Total SM	$118 \pm 25[u] {}^{+32}_{-23}[j] \pm 12[\mathcal{L}]$	$10.0 \pm 4.3[u] {}^{+4.0}_{-1.9}[j] \pm 1.0[\mathcal{L}]$	$88 \pm 18[u] {}^{+26}_{-18}[j] \pm 9[\mathcal{L}]$	$2.5 \pm 1.0[u] {}^{+1.0}_{-0.4}[j] \pm 0.2[\mathcal{L}]$
Data	87	11	66	2

combined search regions

Only a small fraction of events are visible in Jets + MET

Multiple Search Regions

• 6 search regions to have "near-optimal" reach:

Dijet high MET $\not{E}_T > 500 \text{ GeV}, H_T > 750 \text{ GeV}$ Trijet high MET $\not{E}_T > 450 \text{ GeV}, H_T > 500 \text{ GeV}$ Multijet low MET $\not{E}_T > 100 \text{ GeV}, H_T > 450 \text{ GeV}$ Multijet very high HT $\not{E}_T > 150 \text{ GeV}, H_T > 950 \text{ GeV}$ Multijet moderate MET $\not{E}_T > 250 \text{ GeV}, H_T > 300 \text{ GeV}$ Multijet high MET $\not{E}_T > 350 \text{ GeV}, H_T > 600 \text{ GeV}$

• Number of search regions depends on desired "Efficacy"

 $\mathcal{E}(\mathcal{M}, \mathcal{S}) = \frac{\sigma_{\lim}(\mathcal{M}, \mathcal{S})}{\sigma_{\lim}^{\text{best}}(\mathcal{M})} \geq 1 \quad \begin{array}{l} \mathcal{M} = \text{ Model} \\ \mathcal{S} = \text{ Search Region} \end{array}$

Multiple Search Regions

ch	MET	Η _T
2+j	500	750
3+j	450	500
4+j	100	450
4+j	150	950
4+j	250	300
4+j	350	600
	2+j 3+j 4+j 4+j 4+j	2+j 500 3+j 450 4+j 100 4+j 150 4+j 250

Outline

Simplified Models

Current Limits

Needed Topologies for the Closure Test

From Anomalies to Discoveries

Outline

Simplified Models

Current Limits

Needed Topologies for the Closure Test

From Anomalies to Discoveries

Want to cover mSugra Topologies

Qualitative features of mSugra may be generic

Prevents having to do both mSugra searches & Simplified Model searches

> Illustrative to see how to interpret Simplified Model limits/discoveries in mSugra

Production Topologies

Gluino Decay Topologies

Gluino Decay Topologies

Simple

Gluino Decay Topologies

Simple

Complicated

Gluino Decay Topologies

Gluino Decay Topologies

Squark Decay Topologies

Gluino-Squark Decay Topologies

Still more study necessary

Squark-Gluino Simplified Models are a big hole

More work on heavy flavor necessary

Only a few studies of 2-step cascades performed

Adding Higgs as a cascade particle

Still more study necessary So far, more complicated Simplified Models don't dramatically change the discovery process

Outline

Simplified Models

Current Limits

Needed Topologies for the Closure Test

From Anomalies to Discoveries

Outline

Simplified Models

Current Limits

Needed Topologies for the Closure Test

From Anomalies to Discoveries

Anomalies to Discoveries

A single channel anomaly is good, but other channels need to verify it

Multiple Discovery Channels:

 $nj + \not\!\!\!E_T, \qquad nj + \not\!\!\!\!E_T \ 1\ell,$

 $nj + \not\!\!E_T 2\ell$, $nj + \not\!\!E_T 2\ell_{\rm SS}$, $nj + \not\!\!E_T 2\ell_{\rm OS}$

Where we are Today

Good Coverage, we'd have a good anomaly in $nj + E_T$

How quickly is does it appear in another channel?

Significance of discovery (# of σ 's) for different channels assuming $\sigma^{\text{prod}} = \sigma^{\text{QCD}}$, ($m_g = 400 \text{ GeV}$, $p_T^{\ell} = 20 \text{ GeV}$ requirement/veto & Lum = 50/pb)

Choose best search region in each channel

Only anomaly in all-hadronic channel

350 I J J

300

250

200

150

100

50

0

 $m_{\chi}({\rm GeV})$

 $m_{_V}^+$ (GeV)

Significance of discovery (# of σ 's) for different channels assuming $\sigma^{\text{prod}} = \sigma^{\text{QCD}}$, (mg = 800 GeV, $p_T^{\ell} = 20$ GeV requirement/veto & Lum = 5000/pb)

Outlook

Beginning a systematic search for BSM physics

Progress is occurring quickly

Exploration of Simplified Models still underway

Weak closure test will be demonstrated

2011 is the year for anomalies to appear

Once discoveries are made, we'll want to know how much we know based upon data rather than priors