

Outline

Simplified Models

Current Limits

Needed Topologies for the Closure Test

From Anomalies to Discoveries

Simplified Models

(Effective Field Theories for Collider Physics)
Limits of specific theories
Only keep particles and couplings relevant for searches A full Lagrangian description

Removes superfluous model parameters
Masses, Cross Sections, Branching Ratios
Add in relevant modification to models (e.g. singlets)
Not fully model independent, but greatly reduce model dependence

Captures specific models
Including ones that aren't explicitly proposed
Easy to explore

Imagine a simple world...

Theory of nature is a single variable function, $y=f(x)$,
Can only do measurements of y near $x=0$

A very complicated space to explore! ∞-dimensional

Imagine a simple world...

Theory of nature is a single variable function, $y=f(x)$,
Can only do measurements of y near $x=0$

A very complicated space to explore! ∞-dimensional
In this world, the leading theory is $f(x)=e^{\alpha\left(x-x_{0}\right)}$

Imagine a simple world...

Theory of nature is a single variable function, $y=f(x)$,
Can only do measurements of y near $x=0$

A very complicated space to explore! ∞-dimensional
In this world, the leading theory is $f(x)=e^{\alpha\left(x-x_{0}\right)}$
Could design a measurement strategy to discover

$$
f(x) \neq 0, \alpha, x_{0}
$$

Problem with this strategy

What happens if we're wrong about our theoretical assumption?

Problem with this strategy

What happens if we're wrong about our theoretical assumption?

$$
f(x)=-e^{\alpha\left(x-x_{0}\right)}
$$

$f(x)$ is negative

Problem with this strategy

What happens if we're wrong about our theoretical assumption?

$$
\begin{aligned}
& f(x)=-e^{\alpha\left(x-x_{0}\right)} \\
& f(x)=\sinh (x)
\end{aligned}
$$

$f(x)$ is negative
$f(x)$ vanishes at 0

Problem with this strategy

 What happens if we're wrong about our theoretical assumption?$$
\begin{aligned}
& f(x)=-e^{\alpha\left(x-x_{0}\right)} \\
& f(x)=\sinh (x) \\
& f(x)=\cos (x)
\end{aligned}
$$

$f(x)$ is negative
$f(x)$ vanishes at 0
Doesn't grow asymptotically

Problem with this strategy

What happens if we're wrong about our theoretical assumption?

$$
\begin{aligned}
& f(x)=-e^{\alpha\left(x-x_{0}\right)} \\
& f(x)=\sinh (x) \\
& f(x)=\cos (x)
\end{aligned}
$$

$f(x)$ is negative
$f(x)$ vanishes at 0
Doesn't grow asymptotically

Could enumerate all possibilities

Problem with this strategy

 What happens if we're wrong about our theoretical assumption?$$
\begin{aligned}
& f(x)=-e^{\alpha\left(x-x_{0}\right)} \\
& f(x)=\sinh (x) \\
& f(x)=\cos (x)
\end{aligned}
$$

$f(x)$ is negative
$f(x)$ vanishes at 0

Doesn't grow asymptotically

Could enumerate all possibilities

A better strategy

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots
$$

Easy to identify special cases (any systematic approximation)

Not a cure-all

Still infinite dimensional

But there is some notion of simplicity

$$
f(x)=-x^{6}+x^{12} \text { less likely than } f(x)=1
$$

Not a cure-all

Still infinite dimensional

But there is some notion of simplicity

$$
f(x)=-x^{6}+x^{12} \text { less likely than } f(x)=1
$$

There could be technicalities:

Radius of convergence problems

$$
f(x)=\log (1+x)
$$

Assumes the function is continuous/differentiable

$$
f(x)=\Theta(x) \quad f(x)=\sum_{n=0}^{\infty} a^{n} \cos \left(b^{n} \pi x\right)
$$

Simplified Models

Direct Decays

MASS

Simplified Models

One-Step Cascade Decays

MASS

color octet majorana fermion ("Gluino")

$$
\tilde{g} \propto \infty \nsim \int_{\tilde{q}}^{q} \boldsymbol{\sim}_{\chi_{2}}^{\boldsymbol{S}^{W^{(*)}}} \chi_{1}^{0}
$$

electroweak majorana fermion ("Wino")

$$
m_{\tilde{\chi}^{ \pm}}=m_{\tilde{\chi}}+\frac{1}{4}\left(m_{\tilde{g}}-m_{\tilde{\chi}}\right)
$$

neutral majorana
fermion ("Bino")

Simplified Models

Two-Step Cascade Decays

MASS

Outline

Simplified Models

Current Limits

Needed Topologies for the Closure Test

From Anomalies to Discoveries

Outline

Simplified Models

Current Limits

Needed Topologies for the Closure Test

From Anomalies to Discoveries

Current Searches

Estimates of Current Reach

Madgraph \longrightarrow Pythia \longrightarrow PGS \longrightarrow Cuts

$$
\begin{gathered}
p p \rightarrow \tilde{g} \tilde{g}+\leq 2 j \quad \tilde{g} \rightarrow 2 j \chi_{1}^{0} \text { (MLM matched) }
\end{gathered}
$$

Efficiency is the fraction of events that passed the cuts Do this for each ($m_{\tilde{g}}, m_{\chi}$) pair

Radiate off additional jet

Unbalances momentum of gluinos

Getting 2 or more ISR jets not rare at the LHC

Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in $\sqrt{s}=7 \mathrm{TeV}$ proton-proton collisions

The ATLAS Collaboration

combined search regions

combined search regions

Continued improvement at low masses

$$
\sigma_{\tilde{g} \tilde{g}} \operatorname{Br}\left(\tilde{g} \rightarrow \mathbb{E}_{T}\right)^{2} \ll \sigma_{\tilde{g} \tilde{g}} \mathrm{QCD}
$$

Only a small fraction of events are visible in Jets + MET

Multiple Search Regions

- 6 search regions to have "near-optimal" reach:

Dijet high MET

Trijet high MET
Multijet low MET
Multijet very high H_{T}
Multijet moderate MET
Multijet high MET
$E_{T}>500 \mathrm{GeV}, H_{T}>750 \mathrm{GeV}$
$E_{T}>450 \mathrm{GeV}, H_{T}>500 \mathrm{GeV}$
$E_{T}>100 \mathrm{GeV}, H_{T}>450 \mathrm{GeV}$
$E_{T}>150 \mathrm{GeV}, H_{T}>950 \mathrm{GeV}$
$E_{T}>250 \mathrm{GeV}, H_{T}>300 \mathrm{GeV}$
$E_{T}>350 \mathrm{GeV}, H_{T}>600 \mathrm{GeV}$

- Number of search regions depends on desired "Efficacy"

$$
\mathcal{E}(\mathcal{M}, \mathcal{S})=\frac{\sigma_{\lim }(\mathcal{M}, \mathcal{S})}{\sigma_{\lim }^{\text {best }}(\mathcal{M})} \geq 1 \quad \begin{aligned}
& \mathcal{M}=\text { Model } \\
& \mathcal{S}=\text { Search Region }
\end{aligned}
$$

Multiple Search Regions

cut	ch	MET	H_{T}
	$2+j$	500	750
	$3+j$	450	500
	$4+j$	100	450
	$4+j$	150	950
	$4+j$	250	300
	$4+j$	350	600

Outline

Simplified Models

Current Limits

Needed Topologies for the Closure Test

From Anomalies to Discoveries

Outline

Simplified Models

Current Limits

Needed Topologies for the Closure Test

From Anomalies to Discoveries

Want to cover mSugra Topologies

Qualitative features of mSugra may be generic

Prevents having to do both mSugra searches \& Simplified Model searches

Illustrative to see how to interpret Simplified Model limits/discoveries in mSugra

mSugra (gluino) Decay Topologies

http://www.hephy.at/user/walten/msugra

Production Topologies

Gluino Decay Topologies

\tilde{g}

Simple
Complicated

Gluino Decay Topologies

\tilde{g}

Simple
Complicated

Gluino Decay Topologies

\tilde{g}

$W^{ \pm} Z^{0}$

Simple
Complicated

Gluino Decay Topologies

Simple
Complicated

Gluino Decay Topologies

Simple
Complicated

Squark Decay Topologies

Simple
Complicated

Gluino-Squark Decay Topologies

Complicated
Complicated

Still more study necessary

Squark-Gluino Simplified Models are a big hole
More work on heavy flavor necessary
Only a few studies of 2-step cascades performed
Adding Higgs as a cascade particle

Still more study necessary

So far, more complicated Simplified Models don't dramatically change the discovery process

Outline

Simplified Models

Current Limits

Needed Topologies for the Closure Test

From Anomalies to Discoveries

Outline

Simplified Models

Current Limits

Needed Topologies for the Closure Test

From Anomalies to Discoveries

Anomalies to Discoveries

A single channel anomaly is good, but other channels need to verify it

$$
\begin{gathered}
m_{\chi^{ \pm}}=m_{\tilde{\chi^{0}}}+r\left(m_{\tilde{g}}-m_{\chi^{0}}\right) \\
m_{\tilde{g}}=400 \mathrm{GeV}, 800 \mathrm{GeV} \\
\quad r=15 \% \cdots 85 \%
\end{gathered}
$$

Multiple Discovery Channels:

$$
n j+\mathbb{E}_{T}, \quad n j+\mathbb{E}_{T} 1 \ell
$$

$n j+\mathbb{E}_{T} 2 \ell$,
$n j+\mathbb{E}_{T} 2 \ell_{\mathrm{SS}}$,
$n j+\mathbb{E}_{T} 2 \ell_{\mathrm{OS}}$

Where we are Today

Good Coverage, we'd have a good anomaly in

$$
n j+\mathbb{E}_{T}
$$

How quickly is does it appear in another channel?

Significance of discovery (\# of σ 's) for different channels assuming $\sigma^{\text {prod }}=\sigma^{Q C D}$, $\left(\mathrm{m}_{\mathrm{g}}=400 \mathrm{GeV}, \mathrm{p}_{\mathrm{T}}=20 \mathrm{GeV}\right.$ requirement/veto \& Lum $\left.=50 / \mathrm{pb}\right)$
Choose best search region in each channel

Only anomaly in all-hadronic channel

Hadronic Channel

SS Dilepton Channel

1^{+}Lepton Channel

OS Dilepton Channel

Significance of discovery (\# of σ 's) for different channels assuming $\sigma^{p r o d}=\sigma^{Q C D}$, $\left(m_{g}=400 \mathrm{GeV}, \quad \mathrm{p}_{\mathrm{T}}{ }^{l}=20 \mathrm{GeV}\right.$ requirement/veto \& Lum $\left.=500 / \mathrm{pb}\right)$

Significance of discovery (\# of σ 's) for different channels assuming $\sigma^{p r o d}=\sigma^{Q C D}$, $\left(\mathrm{m}_{\mathrm{g}}=800 \mathrm{GeV}, \mathrm{pt}^{\ell}=20 \mathrm{GeV}\right.$ requirement/veto \& Lum $\left.=5000 / \mathrm{pb}\right)$

Same story

1^{+}Lepton Channel

Outlook

Beginning a systematic search for BSM physics
Progress is occurring quickly
Exploration of Simplified Models still underway
Weak closure test will be demonstrated
2011 is the year for anomalies to appear

Once discoveries are made, we'll want to know how much we know based upon data rather than priors

