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FIG. 3: (color online). (a) The 95% C.L. expected (dashed line) and observed (points plus solid line) limits on σ × B2 as
a function of mLQ for the pair production of third-generation leptoquarks where B is the branching fraction to bν. The
theory band is shown in grey with an uncertainty range as discussed in the text. The long-dashed line indicates the expected
suppression of σ × B2 above the tτ threshold for equal bν and tτ couplings. (b) The 95% C.L. exclusion contour in the
(mb̃1

,mχ̃0
1
) plane. Also shown are results from previous searches at LEP [23] and the Tevatron [7, 24].

expected from known SM processes. We set limits on
the cross section multiplied by square of the branching
fraction B to the bν final state as a function of lepto-
quark mass. These results are interpreted as mass limits
and give a limit of 247 GeV for B = 1 for the produc-
tion of charge-1/3 third-generation scalar leptoquarks.
We also exclude the production of bottom squarks for
a range of values in the (mb̃1

,mχ̃0
1
) mass plane such as

mb̃1
> 247 GeV for mχ̃0

1
= 0 and mχ̃0

1
> 110 GeV for

160 < mb̃1
< 200 GeV. These limits significantly extend

previous results.
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CDF, Run II, 2.5 fb-1, gluino pair production,  g̃ → bb̃ b̃→ bχ̃0
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two or more jets, large MET, 2b-tagging
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CDF, Run II, 2.7 fb-1, stop pair production,  

mst > 150 - 185 GeV 

t̃1 → bχ̃±1 → bχ̃0
1lν

A. G. Ivanov [CDF Collaboration], arXiv:0811.0788 [hep-ex]. 
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ATLAS searches with b-tag
-

0-lepton 1-lepton 1-lepton
Monte Carlo data-driven

tt̄ and single top 12.2± 5.0 12.3± 4.0 14.7± 3.7
W and Z 6.0± 2.0 0.8± 0.4 -
QCD 1.4± 1.0 0.4± 0.4 0+0.4

−0.0

Total SM 19.6± 6.9 13.5± 4.1 14.7± 3.7
Data 15 9 9

Table 2: Summary of the expected and observed event yields. The
QCD prediction for the zero-lepton channel is based on the semi-
data-driven method described in the text. For the one-lepton chan-
nel, the results for both the Monte Carlo and the data-driven ap-
proach are given. Since the data-driven technique does not distin-
guish between top and W/Z backgrounds the total background es-
timate is shown in the top row. The errors are systematic for the
expected Monte Carlo prediction and statistical for the data-driven
technique.

tive values of the stop mass. Gluino masses below 520 GeV
are excluded for stop masses in the range between 130 and
300 GeV.
Finally, the results of both analyses were used to calcu-

late 95% C.L. exclusion limits in the MSUGRA/CMSSM
framework with large tanβ. Figure 4 shows the observed
and expected limits in the (m0,m1/2) plane, assuming
tanβ = 40, and fixing µ >0 and A0 = 0. The largest
sensitivity is found for the zero-lepton analysis. The
combination of the two analyses, which takes account of
correlations between systematic uncertainties of the two
channels, is also shown. Sbottom and stop masses be-
low 550 GeV and 470 GeV are excluded across the plane,
respectively. Due to the MSUGRA/CMSSM constraints,
this interpretation is also sensitive to first and second gen-
eration squarks. From the present analysis, masses of these
squarks below 600 GeV are excluded for mg̃ ! mq̃. Gluino
masses below 500 GeV are excluded for the m0 range be-
tween 100 GeV and 1 TeV, independently on the squark
masses. Changing the A0 value from 0 to −500 GeV lead
to significant variations in third generation squark mixing.
Across the (m0,m1/2) parameter space, sbottom and stop

masses decrease by about 10% and 30%, respectively, if
A0 is changed from 0 to −500 GeV. The exclusion region
of the one-lepton analysis, mostly sensitive to stop final
states, extends the zero-lepton reach by about 20 GeV in
m1/2 for m0 <600 GeV.

8. Conclusions

The ATLAS collaboration has presented a first search
for supersymmetry in final states with missing transverse
momentum and at least one b-jet candidate in proton-
proton collisions at 7 TeV. The results are based on data
corresponding to an integrated luminosity of 35 pb−1 col-
lected during 2010. These searches are sensitive to the
gluino-mediated and direct production of sbottoms and
stops, the supersymmetric partners of the third genera-
tion quarks, which, due to mixing effects, might be the
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lightest squarks.

Since no excess above the expectations from Standard
Model processes was found, the results are used to exclude
parameter regions in various R-parity conserving SUSY
models. Under the assumption that the lightest squark b̃1
is produced via gluino-mediated processes or direct pair
production and decays exclusively via b̃1 → bχ̃0
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Figure 3: Observed and expected 95% C.L. upper limits, as obtained
with the one-lepton analysis, on the gluino-mediated and stop pair
production cross section as a function of the gluino mass for two
assumed values of the stop mass and BR(t̃1 → bχ̃±

1
) = 1. The

chargino is assumed to have twice the mass of the neutralino (=
60 GeV) and NLO cross sections are calculated using PROSPINO in
the hypothesis of mq̃

1,2

! mg̃. Theoretical uncertainties on the

NLO cross sections are included in the limit calculation.

lightest squarks.

Since no excess above the expectations from Standard
Model processes was found, the results are used to exclude
parameter regions in various R-parity conserving SUSY
models. Under the assumption that the lightest squark b̃1
is produced via gluino-mediated processes or direct pair
production and decays exclusively via b̃1 → bχ̃0

1, gluino

7

 1 lepton, 2 j (1b) Small mgluino-mst, mst - mχ1±  mχ1± - mχ10

might lose lepton, also suffer from small Br(l)

Fully hadronic channel with b-tag
๏ more jets (≥ 5, 6) 
๏ ΔΦmin
๏ other values for MET, Meff
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Figure 4: Observed and expected 95% C.L. exclusion limits as ob-
tained from the zero- and one-lepton analyses, separately and com-
bined, on MSUGRA/CMSSM scenario with tanβ = 40, A0 = 0,
µ > 0. The light-grey dashed lines are the iso-mass curves for gluinos
and sbottom – stop masses are 15% lower than sbottom masses,
across the (m0, m1/2

) parameter space. The results are compared to

previous limits from the LEP experiments [13].

masses below 590 GeV are excluded with 95% C.L. up to
sbottom masses of 500 GeV. Alternatively, assuming that
t̃1 is the lightest squark and the gluino decays exclusively
via g̃ → t̃1t, and t̃1 → bχ̃±

1 , gluino masses below 520 GeV
are excluded for stop masses in the range between 130 and
300 GeV.
In specific models based on the gauge group SO(10),

gluinos with masses below 500 GeV and 420 GeV are ex-
cluded for the DR3 and HS models, respectively.
In an MSUGRA/CMSSM framework with large tanβ, a

significant region in the (m0,m1/2) plane can be excluded.
For the parameters tanβ = 40, A0 = 0 and µ > 0, sbottom
masses below 550 GeV and stop masses below 470 GeV are
excluded with 95% C.L. Gluino masses below 500 GeV are
excluded for the m0 range between 100 GeV and 1 TeV,
independently on the squark masses.
These analyses improve significantly on the regions of

SUSY parameter space excluded by previous experiments
that searched for similar scenarios.
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