Discriminating Models of New Physics at the LHC

Vikram Rentala (U. Arizona/ UC Irvine)

Presentation Outline

- Spin Measurement (SUSY/Extra Dimensions)
- Strongly coupled Higgs sector

Spin Measurement

- Using Quantum Interference of Helicity Amplitudes to measure spin
- Challenge of spin measurement at the LHC
- Application of this technique to the RS graviton case at the LHC

Why measure spin?

UED: Spin-1/2

Susy: Spin-0

Collider Physics Angles

Back to Fundamentals

- Spin is a type of angular momentum
- Angular momentum generates rotations

$$U(\vec{n},\phi) = e^{i(\vec{J}.\vec{n})\phi}$$

• We can isolate spin from orbital angular momentum by considering the component of angular momentum in the direction of motion of a particle

$$J_z = \vec{J}.\hat{p} = (\vec{s} + \vec{r} \times \vec{p}).\hat{p} = \vec{s}.\hat{p} = h$$

Model Independent Technique for Measuring Spins

- Production plane provides a reference orientation
- Rotating the decay plane by an angle $\phi \rightarrow$ action of this rotation on the matrix element of the decay must be equivalent to the action of rotation on the parent particle by ϕ .

$$\mathcal{M}_{decay}(\phi) = e^{+ih\phi} \mathcal{M}_{decay}(\phi = 0)$$

M.Buckley, W. Klemm, H. Murayama and VR hep-ph/0711.0364

Quantum Interference of Helicity States

If multiple helicity states are produced this phase dependence is observable

$$rac{d\sigma}{d\phi} \propto \left| \sum_{h} \mathcal{M}_{prod} e^{ih\phi} \mathcal{M}_{decay}(\phi = 0) \right|^2$$

- True within the validity of the narrow width approximation ("weakly coupled" physics)
- As a result of interference the differential cross-section develops a $cos(n\phi)$ dependence, where $n = h_{max}-h_{min} = 2s$.

The Bottom Line

Vector boson:
$$\frac{d\sigma}{d\phi} = A_0 + A_1 \cos \phi + A_2 \cos 2\phi$$

Tensor (spin-2): $\frac{d\sigma}{d\phi} = A_0 + A_1 \cos \phi + A_2 \cos 2\phi + A_3 \cos 3\phi + A_4 \cos 4\phi$

Look for the highest cosine mode to determine the spin!*

*(Can set a lower bound on the spin of a particle)

This argument is based entirely on Quantum Mechanical principles, to actually compute the coefficients requires Feynman diagrams!

The Large Hadron Collider

Applying this technique at the LHC

- Missing energy events are not reconstructible
- Odd modes disappear
- Have to adjust for detector cuts

Cuts destroy Rotational Invariance!

Matthew R. Buckley Beate Heinemann William Klemm Hitoshi Murayama arXiv:0804.0476 [hep-ph]

Randall-Sundrum Graviton spin?

RS case: Fully reconstructible! No missing energy. Spin measurement easier.

Unique signature! $\rightarrow \cos(4\emptyset)$ mode

 $\frac{d\sigma}{d\phi} = A_0 + A_1 \cos\phi + A_2 \cos 2\phi + A_3 \cos 3\phi + A_4 \cos 4\phi$

Background is from spin-1 particles. No contribution to the 4-mode! ... but contributes to the overall normalization of the cross-section.

Parameter Space

hep-ph/0006041 <u>H. Davoudiasl</u> J.L. Hewett <u>T.G. Rizzo</u>

Results from Simulation

- The green curve shows the differential distribution
- 2-mode is easily visible. Is there a 4-mode?
- How do we extract information about it?

Can see a $cos(4\emptyset)$ mode in addition to the $cos(2\emptyset)$ mode! (with about 3% strength) Error in $|A_4/A_0|$ in this example is ~ 20%

2-σ determination of Graviton spin

for 100 fb⁻¹ Integrated Luminosity

H. Murayama, VR arXiv:0904.4561

2-σ determination of Graviton spin

2-σ distinction from scalar

for **10 fb⁻¹** Integrated Luminosity

Conclusions and Summary

- Spin measurement at LHC is a challenge, but for RS gravitons looks quite feasible
- ~3% signal in $|A_4/A_0|$ for values of $m_1 < 1$ TeV and large values of the coupling c ~ 0.1.
- Can distinguish scalars from spin-2 objects easily even with low luminosities! (Look at |A₂/A₀|)
- Error in measurement only dependent on statistics but cross-section drops rapidly
- Important complementary, <u>model-independent</u> determination of spin possible with large integrated luminosity

Strongly Coupled Higgs Sector (with H. Murayama and J.Shu)

Strongly Coupled Higgs Sector

- EWSB similar to chiral symmetry breaking in QCD with 2 flavors
- $SU(2)_L \times SU(2)_R \rightarrow SU(2)_V$
- Chiral Lagrangian with gauged SU(2)_L and hypercharge
- Longitudinal modes of the W,Z gauge bosons are the pseudo-goldstone bosons of chiral symmetry breaking i.e. the pions
- π π scattering is unitarized through exchange of heavy resonances such at the ρ
- Resonance might be very broad / No visible peak in the W-Z invariant mass plot

Can we detect a strongly coupled Higgs sector without directly observing the resonance?

If we do observe a resonance can we discern some properties of its interactions with SM gauge bosons?

Look back at QCD

• π - π scattering picks up a phase shift!

This is parametrized as a form factor

Partial waves and unitarity

Quick review of elastic scattering $\pi\pi\to\pi\pi$

- Incoming partial wave
- Outgoing partial wave can only pick up a phase shift from unitarity $e^{i2\delta_J}$

$$\mathcal{T}_J \propto e^{i2\delta_J} - 1$$
$$= \sin \delta_J e^{i\delta_J}$$

What is the phase shift in QCD? LET - Low energy theorem $U = e^{i \frac{\pi^a T^a}{f_{\pi}}}$ $\mathcal{L}_{chiral} = \frac{f_{\pi}^2}{4} \operatorname{Tr}[\partial_{\mu}U\partial^{\mu}U^{\dagger}]$

- Without a resonance amplitudes growing like
 - ~ s would violate unitarity
- In QCD, resonances restore unitarity

WZ scattering

- What does this imply for WZ scattering?
- Only longitudinal modes pick up a phase from scattering in the high energy limit

T. Barklow, G. Burdman, Chivakula, Dobrescu ... hep-ph/9704217

Longitudinal WZ modes pick up this phase shift!

WZ production at LHC

Look for W⁺Z fully leptonic modes

Only the Longitudinal modes pick up the phase shift from Strong dynamics

Interference of helicity states New phase shift in the longitudinal modes!

$$\mathcal{M}_{\uparrow} \propto e^{i\phi_{1}}$$
$$\mathcal{M}_{0} \propto F(q^{2}) = Ae^{i\delta(s)}$$
$$\mathcal{M}_{\downarrow} \propto e^{-i\phi_{1}}$$
$$\frac{d\sigma}{d\phi} \propto \left| \sum_{h} \mathcal{M}_{prod} e^{ih\phi} \mathcal{M}_{decay}(\phi = 0) \right|^{2}$$
$$\frac{d\sigma}{d\phi} = A_{0} + A_{1} \cos(\phi + \delta) + A_{2} \cos 2\phi$$
$$= A_{0} + A_{1} \cos\phi + B_{1} \sin\phi + A_{2} \cos 2\phi$$

Interference of helicity states New phase shift in the longitudinal modes!

$$\mathcal{M}_{\uparrow} \propto e^{i\phi_{1}}$$

$$\mathcal{M}_{0} \propto F(q^{2}) = Ae^{i\delta(s)}$$

$$\mathcal{M}_{\downarrow} \propto e^{-i\phi_{1}}$$

$$\frac{d\sigma}{d\phi} \propto \mathbf{M}_{errod}e^{ih\phi}\mathcal{M}_{decay}(\phi = 0) \Big|^{2}$$

$$\mathbf{NEW}$$

$$\mathbf{NEW}$$

$$\mathbf{NEW}$$

$$\mathbf{NEW}$$

$$\mathbf{M}_{decay}(\phi = 0) \Big|^{2}$$

$$\mathbf{NEW}$$

Look for sin ϕ mode to tell you if the Higgs sector is strongly coupled !

The sign of $\sin \varphi$

• If the lepton is moving upwards $\sin \phi > 0$

• If the lepton is moving downwards $\sin \phi < 0$

Define a new observable

$$AS = \frac{N^{+} - N^{-}}{N^{+} + N^{-}}$$

• N^+ is the number of leptons going above the plane

• N^- is the number of leptons going below the plane

Define a new observable

WHAT DEFINES ABOVE THE PLANE AND BELOW THE PLANE WHEN THE BEAMS ARE IDENTICAL?

Orientation of the plane

• W^+ preferentially emitted in the direction of the u-quark

• Use this to guess the direction of the u-quark

Counting Experiment

$$AS = \frac{N^{+} - N^{-}}{N^{+} + N^{-}}$$

- The error in AS is from counting
- Background is negligible* and zero at tree level
- Can calculate ΔAS for a given integrated luminosity
- Significance is defined as $S = \frac{AS}{\Delta AS}$

* after cuts

Cuts

- $\Delta r > 0.4$ between leptons or lepton and jet
- p_t >20 GeV and η < 2.5 cuts on the leptons and jets
- Invariant mass cut on the W Z system between M 3 Γ and M + 3 Γ
- Cos θ cut (0.4 0.6) on the W in the CM frame to maximize the interference

Significance with $\sqrt{s} = 14 \text{ TeV}$ (500 fb⁻¹ integrated luminosity)

$\frac{\Gamma/M}{Mass}$	10%	20%	30%	40%
800 GeV	6.56	6.84	4.46	4.72
1 TeV	3.59	3.89	2.1	2.4
1.2 TeV	1.54	2.21	1.08	1.48
				NT-

 $AS = \frac{N^+ - N^-}{N^+ + N^-}$

Conclusions

- Looking for up-down asymmetry can be a good probe of a strongly coupled Higgs sector in the absence of a resonance
- Even when a resonance can be observed, AS is a probe of the nature of strong interactions
- Need large integrated luminosity, large phase shift and enhancement in longitudinal modes (Best case Form factor)
- Need to optimize cuts
- Need to compute the SM background at loop level

QUESTIONS, COMMENTS, SUGGESTIONS?

Backup Slides

Software Tools used

- HELAS: "HELicity Amplitude Subroutines for Feynman diagram calculation" used to get differential cross-section
 - (H. Murayama, I. Watanabe, Kaoru Hagiwara, 1992)
- HELAS with spin 2-particles
 - K. Hagiwara, J. Kanzaki, Q. Li, K. Mawatari, 2008
- BASES: adaptive Monte Carlo package to integrate the differential distributions
 - (S. Kawabata, 1986)
- LHApdf (CTEQ6I)