Higgs and Jet Color-Connections
Jet Superstructure and Event Kinematics

Jason Gallicchio

UC Davis

27 September 2011
Higgs Status and \(H \rightarrow b\bar{b} \) Motivation
Higgs Status and $H \to b\bar{b}$ Motivation

Jets beyond (E, η, ϕ): Color Superstructure
 - Color Connection Primer
 - QCD radiation *between* and *within* jets
 - DØ Data on Higgs and Top and ATLAS work
Outline

- Higgs Status and $H \rightarrow b\bar{b}$ Motivation
- Jets beyond (E, η, ϕ): Color Superstructure
 - Color Connection Primer
 - QCD radiation between and within jets
 - DØ Data on Higgs and Top and ATLAS work
- Multivariate Kinematics+Color
 - New kinematic observables
 - Ranking observables
 - Combining observables (multivariate Boosted Decision Trees)
LEP Precision Electroweak

\[\Delta \chi^2 \]

\[m_H \text{ [GeV]} \]

Excluded

Preliminary

\[\Delta \alpha_{\text{had}}^{(5)} = 0.02761 \pm 0.00036 \]

0.02747 \pm 0.00012

incl. low Q^2 data

LHC Possibilities 2011

\[\int L dt = 1.0 - 2.3 \text{ fb}^{-1} \]

\[\sqrt{s} = 7 \text{ TeV} \]

90%

95%

99%

ATLAS Preliminary

Observed

Expected
Production at LHC

\[\sigma(pp \rightarrow H + X) [\text{pb}] \]

\[\sqrt{s} = 14 \text{ TeV} \]

MRST/NLO

\[m_t = 178 \text{ GeV} \]

Decay Branching Ratios

\[\text{BR}(H) \]
Improve search for $H \rightarrow b\bar{b}$ associated with a Z/W for $m_H \approx 120$ GeV.
Kinematic variables to distinguish **signal** from **background** somewhat...

Good ones are p_T^H, $\Delta \eta_{bb}$, $\Delta \phi_{bb}$, ...

Full multivariate treatment after a long interlude...
Long History: ‘String Effect’ or ‘Drag Effect’ on planar events:

\[e^+ e^- \rightarrow \]

Gluons are treated as a colinear \(q\bar{q} \) pair with \textit{different} colors...

... equivalent up to \(1/N_C^2 \) corrections
An Unexploited Handle for Higgs

bs form color singlet

Higgs Signal
An Unexploited Handle for Higgs

Higgs Signal

- bs form color singlet

$Z + b\bar{b}$ QCD Background

- bs color connected to beams
Showering Same Hard Event Millions of Times
Showering Same Hard Event Millions of Times
Showering Same Hard Event Millions of Times

Higgs example:

\[\Delta \eta_{b\bar{b}} = 1 \]
\[\Delta \phi_{b\bar{b}} = 2 \]

Add up \(p_T \) in each cell:
But event-by-event?
Higgs+Z Signal Event Example
$Z + b\bar{b}$ Background Event Example
Probability that a GeV of p_T somewhere is from Higgs

Higgs:

Background:
Probability that a GeV of p_T somewhere is from Higgs

Higgs:

![Higgs distribution plot]

Background:

![Background distribution plot]

Important discrimination isn’t at jet center — it’s $\Delta R \approx 0.5 - 1.5$ away.
Focus on Jets Themselves — Pull

Signal Accumulated p_t

Background Accumulated p_t
Add up particles or calorimeter energy deposits within a jet:

Pull Vector \(\vec{m} = \sum_{i \in \text{jet}} \frac{p_T^i |r_i|}{p_T^{\text{jet}}} \vec{r}_i \) where \(\vec{r}_i \equiv (y_i - y_{\text{jet}}, \phi_i - \phi_{\text{jet}}) \)
Add up particles or calorimeter energy deposits *within* a jet:

\[
Pull Vector \quad \vec{m} = \sum_{i \in jet} \frac{p_T^i |r_i|}{p_T^{jet}} \vec{r}_i\quad \text{where} \quad \vec{r}_i \equiv (y_i - y_{jet}, \phi_i - \phi_{jet})
\]

- Angle of moment \vec{m} gives “pointing” direction of teardrop
- Length of moment $|\vec{m}|$ doesn’t help much
Distribution of the pull angle (one b-jet) with $\Delta y_{b\bar{b}} = 1$ and $\Delta \phi_{b\bar{b}} = 2$
Signal Accumulated p_t

Signal pull: $\alpha = \sqrt{\alpha_1^2 + \alpha_2^2}$

Background Accumulated p_t

Background pull: $\beta = \sqrt{\beta_1^2 + \beta_2^2}$
Pull Distributions for Full Z+Higgs Search

- Pull of high-p_T b jet: α_1
- Pull of low-p_T b jet: α_2
- Pull signal-distance: α

- Pull of high-p_T b jet: β_1
- Pull of low-p_T b jet: β_2
- Pull background-distance: β
Pull in DØ Data for (background to) $ZH \to b\bar{b}\nu\bar{\nu}$!

α_1

pull of high-p_T b jet: α_1

DØ Note 6087-CONF Aug 2010, Andy Haas: $ZH \to b\bar{b}\nu\bar{\nu}$ (data consistent with flat background)

Andy claims 5% improvement in multivariate search
- The two b jets are color-connected to the beam (like $Z + b\bar{b}$ background earlier)

- The two light quark jets from W are color-connected to each other
Validating Pull through Semileptonic $t\bar{t}$

- The two b jets are color-connected to the beam (like $Z + b\bar{b}$ background earlier)
- The two light quark jets from W are color-connected to each other

Test QCD and the Monte Carlos: Given b tags and clean top sample, what do the pulls look like?
Event Example 1

Jason Gallicchio (UC Davis)

Higgs and Jet Color-Connections

27 September 2011 20 / 49
$t\bar{t}$ Pull in DØ Data!

\textbf{\ttbar Pull in DØ Data!}

\textbf{\ttbar Jets:}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{ttbar_pull}
\end{figure}
t\bar{t} Pull in DØ Data!

t\bar{t}Jets:

![Graph 1](image1.png)
DØ, L=5.3 fb⁻¹
Data $\chi^2/ndf: 0.95$
- t\bar{t}
- Other
- W+jets
- Multijets

![Graph 2](image2.png)
DØ, L=5.3 fb⁻¹
Data $\chi^2/ndf: 0.95$
- t\bar{t}
- Other
- W+jets
- Multijets

![Graph 3](image3.png)
DØ, L=5.3 fb⁻¹
Data $\chi^2/ndf: 1.08$
- t\bar{t}
- Other
- W+jets
- Multijets

W + 2jets (no b tags, so not from top):
W looks like a color singlet, not octet
W looks like a color singlet, not octet

\[
f_{\text{Singlet}} = 0.56 \pm 0.36\text{(stat)} \pm 0.22\text{(syst)}
\]

... or exclude $f_{\text{Singlet}} = 0$ to three standard deviations
Measure W’s f_{Singlet} to 10% at ATLAS (DØ got 40%)
\begin{itemize}
\item Measure W's f_{Singlet} to 10\% at ATLAS (DØ got 40\%)
\item $t\bar{t}$ cross section \times acceptance at ATLAS is 25x to 80x Tevatron
\end{itemize}
- Measure W’s f_{Singlet} to 10% at ATLAS (DØ got 40%)
- $t\bar{t}$ cross section \times acceptance at ATLAS is 25x to 80x Tevatron
- Better calorimeter, tracking, and calo/track matching
- Measure W's f_{Singlet} to 10% at ATLAS (DØ got 40%)
- $t\bar{t}$ cross section \times acceptance at ATLAS is 25x to 80x Tevatron
- Better calorimeter, tracking, and calo/track matching
- Use true boost-invariant jet rapidity (not pseudo-rapidity)
Improvements and ATLAS Plans

- Measure W’s f_{Singlet} to 10% at ATLAS (DØ got 40%)
- $t\bar{t}$ cross section \times acceptance at ATLAS is 25x to 80x Tevatron
- Better calorimeter, tracking, and calo/track matching
- Use true boost-invariant jet rapidity (not pseudo-rapidity)
- Take into account primary vertex location (affects p_T and rapidity)
Improvements and **ATLAS** Plans

- Measure W’s f_{Singlet} to 10% at ATLAS (DØ got 40%)
- $t\bar{t}$ cross section \times acceptance at ATLAS is 25x to 80x Tevatron
- Better calorimeter, tracking, and calo/track matching
- Use true boost-invariant jet rapidity (not pseudo-rapidity)
- Take into account primary vertex location (affects p_T and rapidity)
- Use pull in ZH and in $t\bar{t}H$ searches

(This is a way to measure color of new particles!)
Improving the $H \rightarrow b\bar{b}$ search

Higgs Window

Higgs Invariant Mass $m_{b\bar{b}}$ using anti-k_T $R=0.5$ jets

ZH signal (solid blue) and $Zb\bar{b}$ background. Normalized to same area (or you couldn’t even see signal.)

Pick initial window: 90 GeV $< m_{b\bar{b}} < 124$ GeV (justified later)
LHC and TVT cross sections for ZH and QCD

<table>
<thead>
<tr>
<th>Integrated Luminosity, $\int L$</th>
<th>LHC (14 TeV)</th>
<th>Tevatron (1.96 TeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$30 \ fb^{-1}$</td>
<td>$10 \ fb^{-1}$</td>
</tr>
<tr>
<td>Xsec times Branching Ratio</td>
<td>$pp \rightarrow ZH$</td>
<td>$pp \rightarrow Zbb$</td>
</tr>
<tr>
<td></td>
<td>$33.4 \ fb$</td>
<td>$57,200 \ fb$</td>
</tr>
<tr>
<td>After Generator-Level Cuts</td>
<td>$31.5 \ fb$</td>
<td>$26,000 \ fb$</td>
</tr>
<tr>
<td>Two b Tags % (of Gen-Level)</td>
<td>$57%$</td>
<td>$25%$</td>
</tr>
<tr>
<td>Higgs Window % (of Gen-Level)</td>
<td>$40%$</td>
<td>$4%$</td>
</tr>
<tr>
<td>Initiated by gg</td>
<td>$0%$</td>
<td>$90%$</td>
</tr>
<tr>
<td>Xsec (in Higgs Window)</td>
<td>$12.3 \ fb$</td>
<td>$1100 \ fb$</td>
</tr>
<tr>
<td>Events ($Xsec \times \int L$)</td>
<td>370</td>
<td>$33,700$</td>
</tr>
<tr>
<td>Starting B/S</td>
<td>91.1</td>
<td>8.2</td>
</tr>
<tr>
<td>Starting S/\sqrt{B}</td>
<td>2.02</td>
<td>1.47</td>
</tr>
</tbody>
</table>

Hard-parton level cuts
- $p_T^b > 7 \ GeV$
- $p_T^\mu > 3 \ GeV$
- $p_T^e > 3 \ GeV$
- $|\eta_b| < 5$ and $|\eta_e| < 5$

Detector level cuts
- $p_T^b > 15 \ GeV$
- $p_T^\mu > 6 \ GeV$
- $p_T^e > 20 \ GeV$ (LHC), $10 \ GeV$ (Tevatron)
- $|\eta_b| < 2.5$ and $|\eta_e| < 2.5$
Standard Kinematic Variables

![Graphs showing distributions for Standard Kinematic Variables](image)

All In Higgs Mass-Window: $90 \text{GeV} < m_{b\bar{b}} < 124 \text{GeV}$ (and equal area)
Twist $\tau = \pi/2$

Higgs-Like

Beam

$\tau = \frac{\pi}{2}$

Twist $\tau = 0$

QCD-Like

Beam

$\tau = 0$
Twist Distributions

Parton level with no cuts

Jet level with detector cuts

Jason Gallicchio (UC Davis) Higgs and Jet Color-Connections 27 September 2011 32 / 49
Higgs Rest Frame: Helicity and Azilicity

- b direction
- \bar{b} direction
- H boost direction
- θ_h
- ϕ_a
- Z direction
- Beam direction

Jason Gallicchio (UC Davis)
Madgraph hard partons with no cuts:

H Frame \(\cos(\theta_h) \) helicity angle

H Frame \(\phi_\alpha \) azilicity angle

Showered and reconstructed, with detector cuts:

H Frame \(\cos(\theta_h) \) helicity angle

H Frame \(\phi_\alpha \) azilicity angle
Menu-Method Variables: ‘One from Column A…’
How to Evaluate a Variable?

How do we pick the most useful variables?

We want to find clean variables that can be used for separation.

![Sliding Cut](image-url)
Background vs Signal Efficiency "ROC Curve"

LHC HZ: Signal and Background Efficiencies

- $\Delta \eta_{bb}$
- $\Delta y_{H,b2}$
- $\Delta y_{H,b1}$
- p_{T}^{b1}
- p_{T}^{b2}
- $CM \cos(\theta_{b2})$
- τ_{bb}
- ΔR_{bb}
- $\Delta \phi_{\ell^{+}\ell^{-}}$
- p_{T}^{Z}
\[
\frac{S}{B} \xrightarrow{\text{cut}} \frac{\varepsilon_S S}{\varepsilon_S B} = \left(\frac{\varepsilon_S}{\varepsilon_B} \right) \frac{S}{B}
\]

LHC HZ : Signal over Background

- $\Delta \eta_{b\bar{b}}$
- $\Delta y_{H,b2}$
- $\Delta y_{H,b1}$
- p_T^{b1}
- p_T^{b2}
- $CM \cos(\theta_{b2})$
- $\tau_{b\bar{b}}$
- $\Delta R_{b\bar{b}}$
- $\Delta \phi_{\ell^+\ell^-}$
- p_T^Z
\[\sigma \equiv \frac{S}{\sqrt{B}} \rightarrow \frac{\varepsilon S S}{\sqrt{\varepsilon_B B}} = \left(\frac{\varepsilon S}{\sqrt{\varepsilon_B}} \right) \sigma \]

LHC HZ : Significance

![Graph showing significance improvement with Higgs signal efficiency \(\varepsilon_S \)]
2D Likelihood

Signal

Background

\[\Delta \eta_{b2}, \ell_1 \]

\[\Delta \theta_{b1}, \ell_1 \]
Boosted Decision Trees

![Decision Tree Diagram]

- Root node
- \(x_i > c_1 \) node
 - \(x_j > c_2 \) node
 - \(B \)
 - \(x_j < c_2 \) node
 - \(S \)
- \(x_i < c_1 \) node
 - \(x_j > c_3 \) node
 - \(S \)
 - \(x_j < c_3 \) node
 - \(x_k > c_4 \) node
 - \(B \)
 - \(x_k < c_4 \) node
 - \(S \)
Boosted Decision Trees

BDT 2

BDT 8

BDT 32

BDT 64

BDT 256

Likelihood

Jason Gallicchio (UC Davis) Higgs and Jet Color - Connections 27 September 2011 42 / 49
Tevatron ZH improvements, up to 10 variables

TVT HZ : Significance

Higgs Signal Efficiency ε_S
Linear Correlation Sig

<table>
<thead>
<tr>
<th>girth b₂</th>
<th>-22.4</th>
<th>-17.5</th>
<th>-24.3</th>
<th>-16.8</th>
<th>-9.4</th>
<th>-9.9</th>
<th>4.3</th>
<th>1.2</th>
<th>4.6</th>
<th>100.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{b1}</td>
<td>-15.5</td>
<td>-12.2</td>
<td>-8.9</td>
<td>-10.1</td>
<td>-4.4</td>
<td>-5.2</td>
<td>0.2</td>
<td>-0.7</td>
<td>100.0</td>
<td>4.6</td>
</tr>
<tr>
<td>pull β</td>
<td>-5.3</td>
<td>-8.0</td>
<td>-7.4</td>
<td>-6.9</td>
<td>-6.0</td>
<td>-6.1</td>
<td>41.1</td>
<td>100.0</td>
<td>-0.7</td>
<td>1.2</td>
</tr>
<tr>
<td>pull α</td>
<td>-13.4</td>
<td>-15.4</td>
<td>-15.3</td>
<td>-13.5</td>
<td>-8.0</td>
<td>-7.5</td>
<td>100.0</td>
<td>41.1</td>
<td>0.2</td>
<td>4.3</td>
</tr>
<tr>
<td>$E_{\text{prim.}}^{\text{vis}}$</td>
<td>38.1</td>
<td>37.2</td>
<td>37.3</td>
<td>37.3</td>
<td>92.0</td>
<td>100.0</td>
<td>-7.5</td>
<td>-6.1</td>
<td>-5.2</td>
<td>-9.9</td>
</tr>
<tr>
<td>$E_{\text{obj.}}^{\text{vis}}$</td>
<td>41.5</td>
<td>41.0</td>
<td>40.5</td>
<td>38.1</td>
<td>100.0</td>
<td>92.0</td>
<td>-8.0</td>
<td>-6.0</td>
<td>-4.4</td>
<td>-9.4</td>
</tr>
<tr>
<td>m_{H,b_1}</td>
<td>84.3</td>
<td>84.5</td>
<td>87.2</td>
<td>100.0</td>
<td>36.1</td>
<td>37.3</td>
<td>-13.5</td>
<td>-6.9</td>
<td>-10.1</td>
<td>-16.8</td>
</tr>
<tr>
<td>$</td>
<td>p_T^Z</td>
<td>-</td>
<td>p_T^{b_1}</td>
<td>$</td>
<td>83.6</td>
<td>88.6</td>
<td>100.0</td>
<td>87.2</td>
<td>40.5</td>
<td>37.3</td>
</tr>
<tr>
<td>$</td>
<td>p_T^H</td>
<td>-</td>
<td>p_T^{b_1}</td>
<td>$</td>
<td>93.4</td>
<td>100.0</td>
<td>88.6</td>
<td>84.5</td>
<td>41.0</td>
<td>37.2</td>
</tr>
<tr>
<td>$</td>
<td>p_T^{b_1}</td>
<td>+</td>
<td>p_T^{b_2}</td>
<td>$</td>
<td>100.0</td>
<td>93.4</td>
<td>83.6</td>
<td>84.3</td>
<td>41.5</td>
<td>38.1</td>
</tr>
</tbody>
</table>

Linear Correlation Bkg

<table>
<thead>
<tr>
<th>girth b₂</th>
<th>22.4</th>
<th>-8.7</th>
<th>-18.3</th>
<th>-8.1</th>
<th>-7.2</th>
<th>-10.4</th>
<th>0.0</th>
<th>0.0</th>
<th>7.8</th>
<th>100.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{b1}</td>
<td>29.5</td>
<td>-20.9</td>
<td>-16.4</td>
<td>-13.3</td>
<td>-6.4</td>
<td>-9.6</td>
<td>-0.7</td>
<td>-1.2</td>
<td>100.0</td>
<td>7.8</td>
</tr>
<tr>
<td>pull β</td>
<td>1.6</td>
<td>1.2</td>
<td>1.0</td>
<td>0.2</td>
<td>-3.4</td>
<td>-4.6</td>
<td>59.4</td>
<td>100.0</td>
<td>-1.2</td>
<td>0.0</td>
</tr>
<tr>
<td>pull α</td>
<td>1.0</td>
<td>0.8</td>
<td>0.1</td>
<td>-0.3</td>
<td>-2.2</td>
<td>-2.9</td>
<td>100.0</td>
<td>59.4</td>
<td>-0.7</td>
<td>0.0</td>
</tr>
<tr>
<td>$E_{\text{prim.}}^{\text{vis}}$</td>
<td>32.4</td>
<td>27.8</td>
<td>30.1</td>
<td>34.5</td>
<td>80.4</td>
<td>100.0</td>
<td>-2.9</td>
<td>-4.6</td>
<td>-9.6</td>
<td>-10.4</td>
</tr>
<tr>
<td>$E_{\text{obj.}}^{\text{vis}}$</td>
<td>28.4</td>
<td>27.4</td>
<td>28.6</td>
<td>28.7</td>
<td>100.0</td>
<td>80.4</td>
<td>-2.2</td>
<td>-3.4</td>
<td>-6.4</td>
<td>-7.2</td>
</tr>
<tr>
<td>m_{H,b_1}</td>
<td>53.6</td>
<td>55.9</td>
<td>63.5</td>
<td>100.0</td>
<td>28.7</td>
<td>34.5</td>
<td>0.3</td>
<td>0.2</td>
<td>-13.3</td>
<td>-8.1</td>
</tr>
<tr>
<td>$</td>
<td>p_T^Z</td>
<td>-</td>
<td>p_T^{b_2}</td>
<td>$</td>
<td>69.3</td>
<td>69.3</td>
<td>100.0</td>
<td>63.5</td>
<td>28.6</td>
<td>30.1</td>
</tr>
<tr>
<td>$</td>
<td>p_T^H</td>
<td>-</td>
<td>p_T^{b_2}</td>
<td>$</td>
<td>75.3</td>
<td>100.0</td>
<td>69.3</td>
<td>55.9</td>
<td>27.4</td>
<td>27.8</td>
</tr>
<tr>
<td>$</td>
<td>p_T^{b_1}</td>
<td>+</td>
<td>p_T^{b_2}</td>
<td>$</td>
<td>100.0</td>
<td>75.3</td>
<td>69.3</td>
<td>53.6</td>
<td>28.4</td>
<td>32.4</td>
</tr>
</tbody>
</table>
Tevatron Improvement

TVT HZ : Significance

- 11: TVT HZ best
- 9: D0 HZ
- 7: CDF HZ

TVT HW : Significance

- 11: TVT HW best
- 8: CDF HW
- 13: D0 HW
Results:

- Tevatron Searches can be Improved 10% to 20%
- LHC’s current “boosted Higgs” can be improved as much as 200%
Results:

- Tevatron Searches can be Improved 10% to 20%
- LHC’s current “boosted Higgs” can be improved as much as 200%

Take Aways:

- Color-Connections and Jet Pull
Results:

- Tevatron Searches can be Improved 10% to 20%
- LHC’s current “boosted Higgs” can be improved as much as 200%

Take Aways:

- Color-Connections and Jet Pull
- Ranking Variables (significance improvement)
Conclusions

Results:

- Tevatron Searches can be Improved 10% to 20%
- LHC’s current “boosted Higgs” can be improved as much as 200%

Take Aways:

- Color-Connections and Jet Pull
- Ranking Variables (significance improvement)
- Boosted Decision Trees are not mysterious
Conclusions

Results:
- Tevatron Searches can be Improved 10% to 20%
- LHC’s current “boosted Higgs” can be improved as much as 200%

Take Aways:
- Color-Connections and Jet Pull
- Ranking Variables (significance improvement)
- Boosted Decision Trees are not mysterious
- Correlated variables still provide improvement
Results:
- Tevatron Searches can be Improved 10% to 20%
- LHC’s current “boosted Higgs” can be improved as much as 200%

Take Aways:
- Color-Connections and Jet Pull
- Ranking Variables (significance improvement)
- Boosted Decision Trees are not mysterious
- Correlated variables still provide improvement

Thank You
CDF and DØ Variables

<table>
<thead>
<tr>
<th>CDF ZH</th>
<th>DØ ZH</th>
<th>CDF WH</th>
<th>DØ WH</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m_{b\bar{b}}$</td>
<td>$m_{b\bar{b}}$</td>
<td>$m_{b\bar{b}}$</td>
<td>$m_{b\bar{b}}$</td>
</tr>
<tr>
<td>p_T^{b1}</td>
<td>p_T^{b1}</td>
<td>$p_T^{imbalance}$</td>
<td>p_T^{b1}</td>
</tr>
<tr>
<td>p_T^{b2}</td>
<td>p_T^{b2}</td>
<td>$m_{W,b1}$</td>
<td>p_T</td>
</tr>
<tr>
<td>$\Delta R_{b\bar{b}}$</td>
<td>$\Delta R_{b\bar{b}}$</td>
<td>$m_{W,b2}$</td>
<td>E_{b2}</td>
</tr>
<tr>
<td>ΔR_{e+e-}</td>
<td>ΔR_{e+e-}</td>
<td>η_{ℓ}</td>
<td>$\Delta R_{b\bar{b}}$</td>
</tr>
<tr>
<td>ΔR_{ZH}</td>
<td>ΔR_{ZH}</td>
<td>$\Sigma p_T^{b\bar{b}}$</td>
<td>$\Delta \phi_{b\bar{b}}$</td>
</tr>
<tr>
<td>CM $\cos \theta_H$</td>
<td>CM $\cos \theta_H$</td>
<td>p_T^{H}</td>
<td>$\Delta \phi_{b1,\ell}$</td>
</tr>
<tr>
<td>P_T^{H}</td>
<td>P_T^{H}</td>
<td>p_T^{W}</td>
<td>p_T^{H}</td>
</tr>
<tr>
<td>H_T</td>
<td>H_T</td>
<td>H_T</td>
<td>p_T^{W}</td>
</tr>
<tr>
<td>Sphericity^{obj.}</td>
<td>Sphericity^{obj.}</td>
<td>\hat{s}</td>
<td>\hat{s}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\Delta R_{W,H}$</td>
<td>$\Delta R_{W,H}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H_{z}</td>
<td>H_{z}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CM $\cos \theta_H$</td>
<td>CM $\cos \theta_H$</td>
</tr>
</tbody>
</table>
Our Top Variables: (GROUP LENGTH IN - GROUP LENGTH OUT)

<table>
<thead>
<tr>
<th>LHC ZH</th>
<th>LHC WH</th>
<th>TVT ZH</th>
<th>TVT WH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-10 $</td>
<td>\vec{p}_T^{b1}</td>
<td>+</td>
<td>\vec{p}_T^{b2}</td>
</tr>
<tr>
<td>1-3 $\Delta \eta_{b\bar{b}}$</td>
<td>1-10 Δy_{WH}</td>
<td>1-10 $\Delta \eta_{b\bar{b}}$</td>
<td>1-10 Δy_{WH}</td>
</tr>
<tr>
<td>1-2 $\Delta y_{H,b2}$</td>
<td>2-10 $</td>
<td>\vec{p}_T^{b1}</td>
<td>+</td>
</tr>
<tr>
<td>2-4 $</td>
<td>\vec{p}_T^H</td>
<td>-</td>
<td>\vec{p}_T^{b2}</td>
</tr>
<tr>
<td>3-5 $\Delta y_{H,\ell1}$</td>
<td>1-2 CM cos θ_H</td>
<td>2-10 Centrality</td>
<td>3-10 $H_T^{\text{prim.}}$</td>
</tr>
<tr>
<td>3-4 Δy_{ZH}</td>
<td>2-4 $\Delta \phi_{\ell+\ell-}$</td>
<td>2-7 $\text{Twist } \tau_{b\bar{b}}$</td>
<td>4-10 $\Delta \eta_{b\bar{b}}$</td>
</tr>
<tr>
<td>4-10 $</td>
<td>\vec{p}_T^Z</td>
<td>+</td>
<td>\vec{p}_T^{b2}</td>
</tr>
<tr>
<td>4-10 $m_{H,\ell1}$</td>
<td>2-10 $</td>
<td>\vec{p}_T^{b1}</td>
<td>$</td>
</tr>
<tr>
<td>4-9 Sphericity</td>
<td>3-10 pull β</td>
<td>3-10 $m_{H,\ell2}$</td>
<td>4-10 pull α</td>
</tr>
<tr>
<td>5-9 $\Sigma y_{Z,b1}$</td>
<td>4-10 $\text{pull } \beta$</td>
<td>3-5 $\cos \theta_{\ell2}$</td>
<td>4-10 pull β</td>
</tr>
<tr>
<td>5-9 $\Sigma y_{Z,b1}$</td>
<td>4-6 $\Delta \phi_{W,\ell 2}$</td>
<td>(Z Frame)</td>
<td>7-10 avg. subj. p_T</td>
</tr>
<tr>
<td>5-9 $\Sigma y_{Z,b1}$</td>
<td>5-10 $m_{W,b1}$</td>
<td>5-8 girth g_{b2}</td>
<td>7-10 m_{b2}/p_T^{b2}</td>
</tr>
<tr>
<td>5-10 $E_{\text{vis}}^{\text{obj.}}$</td>
<td>6-10 $\Delta R_{H,b2}$</td>
<td>6-10 angul. $A_{b2}^{-0.1}$</td>
<td>8-9 m_T^{bb}</td>
</tr>
<tr>
<td>5-10 pull α</td>
<td>5-10 angul. $A_{b1}^{0.90}$</td>
<td>7-9 m_{b2}/p_T^{b2}</td>
<td>8-10 $m_{W,b1}$</td>
</tr>
<tr>
<td>6-10 pull β_2</td>
<td>5-10 $</td>
<td>\vec{p}_T^W</td>
<td>-</td>
</tr>
<tr>
<td>8-10 angul. $A_{b1}^{0.01}$</td>
<td>8-9 pull α</td>
<td>9-10 $\Delta \phi_{b\bar{b}}$</td>
<td>9-10 $m_{W,b1}$</td>
</tr>
</tbody>
</table>