Technicolor at Criticality

Luca Vecchi

(LANL)

Based on: Phys.Rev.D82:045013,2010 & 1007.4573 The SM with a fundamental Higgs remarkably explains the EW physics: the EW precision parameters are compatible with "zero" ($S, T \approx 0$).

This suggests that **the Higgs sector of the SM is weakly coupled**. If so, what about naturalness, then?

More fundamental descriptions:

- Supersymmetry is technically natural, but... its perturbative formulation (though predictive) does not solve the hierarchy problem
- <u>Technicolor</u> (potentially) solves the hierarchy problem but... does it have an IR weakly coupled Higgs?

Dynamical EW Symmetry Breaking¹

– Start with a chirally invariant strong dynamics (Technicolor = TC) and "weakly" gauge an $SU(2) \times U(1)$ subgroup of the flavor group. – Spontaneous Chiral Symmetry Breaking, i.e. $\langle \bar{\psi}\psi \rangle \sim \Lambda_{\chi}^3$, implies EWSB. – Choose appropriate boundary conditions so that the dynamical scale is set to $\Lambda_{\chi} = O(1)$ TeV.

YOU GET:

- \bullet a natural explanation, and stabilization, of the hierarchy $\Lambda_\chi \ll \Lambda_{UV}$
- $\mathcal{W}^{\pm}, \mathcal{Z}^0$ masses at the right scale (and ho=1)

BUT:

- what about Fermion Masses ?!
- what about Precision Tests ?!
- ¹S. Weinberg '76, Susskind '79

Luca Vecchi (LANL)

We would need to couple the SM fermions q to the Higgs operator $\bar{\psi}\psi$. This is generally accomplished with an Extended TC framework², and leads to (f, y, G = O(1))

$$f\frac{(\bar{\psi}\psi)(\bar{\psi}\psi)}{\Lambda_{ETC}^2} \qquad y\frac{(\bar{q}q)(\bar{\psi}\psi)}{\Lambda_{ETC}^2} \qquad G\frac{(\bar{q}q)(\bar{q}q)}{\Lambda_{ETC}^2}$$

- $f \neq 0$: masses for the (pseudo) NGBs;
- $y \neq 0$: SM Fermion Masses;
- $G \neq 0$: FCNC !

²Dimopoulos and Susskind '79, Eichten and Lane '80

Fermion Mass Generation (2)

The typical SM fermion mass $m_f(\mu \sim \Lambda_{ETC})$ strongly depends on the scaling dimension $\Delta(\bar{\psi}\psi)$ of the Higgs:

$$m_f = y \Lambda_{\chi} \left(\frac{\Lambda_{\chi}}{\Lambda_{ETC}} \right)^{\Delta - 1} \qquad \Lambda_{ETC} > 10^3 \,\mathrm{TeV} \,\,(\mathrm{FCNC})$$

- with $\Delta(\bar{\psi}\psi) \sim 3$ (QCD-like) we have $m_f \sim 1$ MeV we cannot explain the 2nd and 3rd generations;
- with $\Delta(\bar{\psi}\psi) \sim 2$ we could explain the 2nd generation³ (still, the top is too heavy...)
- with $\Delta(\bar{\psi}\psi) \sim 1$ we could explain also the 3rd generation (hierarchy hidden in *y*...)

³Holdom '81

The S parameter tends to be too large in models of Dynamical EW Symmetry Breaking.

• with $\Delta(\bar{\psi}\psi) \sim 3$ the Higgs $\bar{\psi}\psi$ is a loose bound state of N_{dof} techni-quarks and we expect

$$S\sim rac{N_{dof}}{6\pi}$$

• with $\Delta(\bar{\psi}\psi) < 3$ in the UV, the perturbative estimates are not reliable (2nd WSR is not satisfied, AdS/CFT) and the S parameter decreases⁴

⁴Sundrum and Hsu '93, Appelquist et al. '99, ...

The bottom line of the above discussion is that models with

- $\Delta(\bar{\psi}\psi) < 3$ in the UV: asymptotic NON-freedom
- $\Delta(\bar\psi\psi)\sim 1$ in the IR: "weakly coupled" Higgs

are phenomenologically very compelling $(m_f, S, ...)$

Nice. But:

- (i) Are there explicit examples? (main criticism to Holdom's)
- (ii) What about Naturalness? (main motivation for Technicolor)

In order to answer (i) and (ii), a deeper understanding of the IR structure of non-abelian gauge theories is required.

This aim motivates the present talk.

I will assume that

- the TC physics is analytic in N_f (number of massless flavors)
- Chiral Symmetry Breaking (χSB) is responsible for confinement and the Schwinger-Dyson (SD) equation approach is a sensible tool

and conjecture that

• non-abelian gauge theories posses an asymptotically non-free phase where χ SB is induced by an order parameter with scaling dimension

$$(\mathsf{IR})$$
 $1 \lesssim \Delta \leq 2$ (UV)

• and that such a theory (TC at criticality) admits a description in terms of a NJL-like model

Outline

Basic idea behind TC at Criticality

Phases of non-abelian gauge theories

- The Banks-Zaks (BZ) fixed point and the Conformal Window
- Confinement without χ SB or Asymptotic Non-Freedom?
- Asymptotic Non-Freedom?!
 - Lattice?
 - Schwinger-Dyson equation and Quenched QED
 - An effective (dual) approach
- TC at Criticality
 - The Composite Higgs
 - Flavor Physics

The Basic Ideas

The Nambu Jona-Lasinio (NJL) model

$$\bar{\psi}i\partial\psi + \frac{f}{2}(\bar{\psi}\psi)^2$$

nicely describes dynamical chiral symmetry breaking. However, it suffers from 2 big problems:

- it is non-renormalizable (a scalar d.o.f. is hidden in the description...)
- it is unnatural: if defined at a scale A, then χSB occurs at $\Lambda_\chi \sim \Lambda$ unless fine-tuning is allowed

NJL in d = 2 dimensions

The problems of the NJL model can be solved by defining the theory in a generic space-time dimension d:

- renormalizability (Taylor expansion in 1/N) for $d < 4^5$
- naturalness in d = 2 (Gross-Neveu model): $\Lambda_{\chi} = \Lambda e^{-1/f(\Lambda)}$

Lessons from the NJL in d = 2 dimensions

• The theory is natural (namely, the IR scale depends only very mildly on the UV cutoff) because it is defined (at the UV cutoff!) in terms of marginally relevant operators:

the mass term of the Higgs field $\bar{\psi}\psi$ is marginally relevant

• It might be phenomenologically interesting (in a d = 2 dimensional world...) because the order parameter $\bar{\psi}\psi$ behaves as a "weakly coupled" scalar in the IR:

the scale dimension of the order parameter is $\Delta(\bar{\psi}\psi) = O\left(\frac{1}{4\pi}\right)$ at $\mu \sim \Lambda_{\chi}$ (recall that $\Delta = 0$ for a free scalar and $1/4\pi$ is the loop factor in d = 2)

Can we construct a similar model in d = 4 dimensions?

Interestingly, it turns out that the large class of theories defined as

 $CFT + fO^2$

(where *CFT* is a large *N* conformal field theory, and $\mathcal{O} \in CFT$ with arbitrary scaling dimension Δ)

has an universal behavior at leading order in a planar analysis⁶.

Examples include:

- the NJL model with $\mathcal{O} = \bar{\psi}\psi$ and massless L σ M with $\mathcal{O} = \phi^2$ (where the CFT is trivial)
- quenched QED with $O = \bar{\psi}\psi$ and orb. proj. of N = 4 with $O = \phi^2$ (where the CFT is nontrivial)

⁶[LV '10]

Universal properties

These models have the same phase structure:

$$\mu \frac{df}{d\mu} = -f^2 + (2\Delta - d)f$$

$$\Delta(\mathcal{O}) = \Delta - f$$

Focusing on d = 4:

• for $\Delta=2$ we have $eta_f=-f^2$ and the theory is natural $(\Lambda_\chi\ll\Lambda)$

•
$$\Delta(\mathcal{O}) <$$
 2 at scales $\mu > \mathsf{A}_{\chi}$

Idea:

If we are able to find a CFT such that $\Delta(\bar{\psi}\psi) = 2$, and place on top of it the 4-fermion deformation $f(\bar{\psi}\psi)^2$, then we would have

(i) a natural model for dynamical symmetry breaking: $\Lambda_{\chi} = \Lambda e^{-1/f}$ (ii) a "weakly coupled" Higgs field in the IR: $\Delta(\bar{\psi}\psi) < 2$ for $\mu > \Lambda_{\chi}$

NOW: Is there any candidate CFT?

The Conformal Window

Technicolor at Criticality (TCC) is based on the well established existence of the Conformal Window (CW) in non-abelian gauge theories:

CW: a region in flavor space in which the UV-free dynamics flows towards an interacting IRFP. In the CW the IR dimension satisfies

$$2 \le \Delta(\bar{\psi}\psi) < 3$$
 (1)

In particular, there exists $N_f = N_f^c$ such that $\Delta(\bar{\psi}\psi) = 2$

TC at Criticality

TC at Criticality is defined via

$$\langle e^{i\int f(ar{\psi}\psi)^2}
angle_{CFT}$$
 with $\Delta(ar{\psi}\psi)=2$

with $\langle \dots \rangle_{CFT}$ the Green's functions of the SU(N) gauge theory at $\lambda = \lambda_{IR}$ and $N_f = N_f^c$:

• in the broken phase (f > 0) we have

$$\Lambda_{\chi} = \Lambda e^{-1/f(\Lambda)}$$

• and the scaling dimension of the quark bilinear (for $f \neq 0$) satisfies

$$1\lesssim \Delta(ar\psi\psi)\leq 2$$

What is the physical meaning of this construction?

Phases of non-abelian gauge theories

Consider a non-supersymmetric SU(N) gauge theory with a number N_f of massless fermions and 't Hooft coupling λ .

1-loop analysis and the QCD example tell us that:

(i) if N_f is "large" asymptotic freedom is lost ($\lambda \rightarrow 0$ in the IR)

(ii) if N_f is "small" the theory manifests χ SB and confines

The Banks-Zaks fixed point and the conformal window

More precisely:

- for $N_f > N_f^{af}$ asymptotic freedom is lost: positive beta function β_{λ} . ($\lambda = 0$ is an IR fixed point)
- for $N_f < N_f^{af}$ asymptotic freedom sets in: negative beta function. ($\lambda = 0$ is an UV fixed point)

Q: Is the physics smooth at $N_f = N_f^{af}$?

Banks and Zaks ⁷ assumed the physics is smooth (analytic) in N_f . Continuity of β_{λ} requires a zero: fixed point. There are 2 possibilities:

• UV fixed point approaching $\lambda_* = 0$ with $N_f \rightarrow N_f^{af} + 0$:

Since in both cases we expect $\lambda_* \to 0$ we can use perturbation theory to verify our guess.

⁷Banks and Zaks '81

It turns out that Nature has chosen the first possibility: $\lambda_* = \lambda_{IR}$

Continuity of β_{λ} requires the BZ fixed point

Conformality lost

The existence of the BZ IR fixed point has been established. Still, we expect confinement to occur for "small" N_f . Hence:

- for $N_f > N_f^{af}$ the theory is IR-free
- for $N_f^c < N_f < N_f^{af}$ the theory is IR-conformal: conformal window.
- for $N_f < N_f^c$ we expect confinement and χSB : negative beta function.

Q: Is the physics smooth at $N_f = N_f^c$?

Assume the physics is smooth (analytic) in N_f . There are 2 possibilities ⁸:

• the Banks-Zaks IR fixed point approaches $\lambda_{IR} = \infty$ for $N_f \rightarrow N_f^c + 0$:

• there exists a nontrivial UV fixed point $\lambda_{UV} \neq 0$ approaching λ_{IR} as $N_f \rightarrow N_f^c + 0$:

In both cases λ can be "large": perturbation theory may not be reliable.

⁸D.B. Kaplan et al. '09

The first possibility

there are reasons to believe it is realized in SUSY QCD:

- existence of a weakly coupled $(\lambda_{mag} \sim 1/\lambda_{IR} \rightarrow 0)$ "magnetic" dual theory.
- at N_f = N^c_f the dual theory is weakly coupled: confinement without χSB!

The second possibility

- there exists an asymptotically non-free branch $\lambda \ge \lambda_{UV}$ with χSB
- for $N_f \leq N_f^c \chi SB$ becomes visible to the UV-free phase: χSB drives the theory away from conformality!

We cannot prove analytically either the first nor the second guess (lattice!). Yet, in both cases we expect remarkable implications:

- if the first possibility is realized we might hope that a magnetic QCD dual actually exists (this would solve the strongly coupled theory!)
- if the second possibility is realized we would have at our disposal an *asymptotically non-free* phase with new, and potentially interesting, phenomenological properties (realization of Holdom's idea ⁹)

I will propose a number of arguments in favor of the second possibility

and conjecture TC at Criticality to be a dual description of the strong branch $\lambda > \lambda_{IR}$ for $N_f \sim N_f^c$

Main features of this physics:

- **(**) there exists an asymptotically non-free branch $\lambda \ge \lambda_{UV}$ with χSB .
- for $N_f = N_f^c$ the two nontrivial fixed points merge. The order parameter for χ SB has the form characterizing a <u>Conformal Phase Transition</u> ¹⁰(c > 0):

$$\Lambda_{\chi} = heta(N_f^c - N_f) \Lambda \, e^{-c/|\Delta(N_f) - \Delta_c|}$$

with $\Delta_c = \Delta(N_f^c)$ the dimension of the quark bilinear $\bar{\psi}\psi$ at the IR fixed point ($\Delta_c = 2$ in ¹¹)

§ for $N_f < N_f^c \chi SB$ becomes visible to the UV-free phase if $\lambda > \lambda_c$

Luca Vecchi (LANL)

¹⁰Miransky and Yamawaki '97¹¹Cohen and Georgi '89

Q: Can we confirm this picture?

 $\lambda = g^2 N$

- LATTICE (?!)
- ANALYTICAL TOOLS

Lattice

Lattice simulations seem to suggest that χ SB and confinement are tightly connected (no indication of confinement without χ SB). In this sense, the second possibility seems more appropriate... Now:

• does the confining phase extends all the way to the chiral limit?

• is the bulk transition 2nd order?

Luca Vecchi (LANL)

TC at Criticality

SD approach

If the conjectured picture is right χ SB is expected to play a crucial role (as opposed to the SUSY case...)

A study of the Schwinger-Dyson equations in this case would provide useful information, but requires approximations in order to be handled.

For example, in the "rainbow approximation":

A solution of the equation gives the dynamical fermion mass $\Sigma(p)$: χ SB occurs if $\Sigma(0) \neq 0$ in the chiral limit.

Quenched QED (1)

Consider massless QED

$$\mathcal{L}_{CFT} = -rac{1}{4\lambda}F^2 + ar{\psi}iD\psi$$

In the quenched limit (fermion loops are suppressed as in large N QCD) the rainbow approximation is justified.

An analysis of the SD equation reveals that

$$\Sigma(0)\simeq \Lambda e^{-\pi/\sqrt{rac{\lambda}{\lambda_c}-1}} \qquad \lambda_c={\sf number}.$$

(i) χ SB requires $\lambda > \lambda_c$ (ii) $\beta_{\lambda} \propto -\left(\frac{\lambda}{\lambda_c} - 1\right)^{3/2} \neq 0$ (Miransky scaling ¹²) with λ_c an UVFP. (iii) Conformal Phase Transition (CPT) at $\lambda = \lambda_c$, where $\Delta(\bar{\psi}\psi) = 2$ ¹²Miransky '85 Luca Vecchi (LANL) TC at Criticality

Quenched QED (2)

Note that:

• $\beta_{\lambda} \neq 0$ is not consistent with the quenched approximation (not true in the non-abelian case...)

• for $\lambda = \lambda_c$ the 4-fermion deformation $(\bar{\psi}\psi)^2$ is marginal

We are thus led to consider¹³

$$-rac{1}{4\lambda}F^2+ar{\psi}iD\psi+f(ar{\psi}\psi)^2$$

This theory belongs to the general class introduced earlier:

(i) $\lambda = const$ in the leading quenched approximation (ii) $\beta_f = -f^2 + (2\Delta - 4)f$ and χ SB for $f > f_{UV}$. (iii) CPT at $\lambda = \lambda_c$, where $\Delta(\bar{\psi}\psi) = 2$ and $\Lambda_{\chi} = \Lambda e^{-1/f} \propto \Sigma(0)$.

¹³[W.A.Bardeen et al. '86]

Extrapolating these results to the non-abelian case, χ SB requires:

• either a strong coupling $\lambda > \lambda_c$ and f = 0

OR

• $\lambda = const$ and a $f(\bar{\psi}\psi)^2$ deformation

Are these theories 2 equivalent descriptions of the same dynamics ?!

If this is true the dynamical mass (and phase structure) must be the same:

IF:
$$\Lambda e^{-\pi/\sqrt{\frac{\lambda}{\lambda_c}-1}} \equiv \Lambda e^{-1/f} \quad \Leftrightarrow \quad f \propto \sqrt{\frac{\lambda}{\lambda_c}-1}$$
 ???

THEN:
$$\beta_f = -f^2 \quad \Leftrightarrow \quad \beta_\lambda \propto -\left(\frac{\lambda}{\lambda_c} - 1\right)^{3/2} \quad !!!$$

Where do the "equivalence" come from?

Assume we would like to model the strong branch defined at $\lambda = \lambda_{UV}$:

 $\lambda = g^2 N$

How can this be done? There are two equivalent ways:

- 1. Study the Yang Mills action at strong coupling (this is $\lambda = large$ and f = 0...)
- 2. Use an effective approach! Sit at λ_{IR} and add CFT deformations (this is $\lambda = const$ and $f \neq 0...$)

Conformal Perturbation Theory:

introduce on the top of the CFT all operators compatible with the symmetries. The theory is now defined by the path integral

$$\langle e^{i\int \mathcal{L}_{pert}}
angle_{CFT} = \int \mathcal{D}[\mathsf{CFT}] \, e^{i\int \mathcal{L}_{pert}}$$

In order for this theory to describe the strong, asymptotically non-free branch:

- The CFT must be defined in terms of the Green's functions of the SU(N) gauge theory with $\lambda = \lambda_{IR}$.
- *L*_{pert} = ∑_n f_nO_n must include the CFT deformations responsible for the flow λ_{UV} → λ_{IR} (*L*_{pert} is relevant at λ_{UV}). Because *L*_{pert} is "dynamical" we expect f_n = f_n(λ)

What is \mathcal{L}_{pert} ??? The SD approach strongly suggests that

$$\mathcal{L}_{pert} = f(\bar{\psi}\psi)^2 + \dots$$
 with $f = f(\lambda)$

At leading order in the planar expansion we can consistently assume the 4-fermion operator is the ONLY deformation and consider the path integral $^{\rm 14}$

$$\langle e^{i\int f(ar{\psi}\psi)^2}
angle$$
CFT

CONJECTURE: This generalized formulation of the Nambu-Jona Lasinio model represents an effective (dual) description of the asymptotically non-free phase of non-abelian gauge theories

¹⁴LV '10

Q: Is there any indications in favor of the conjecture?

Yes. From a large N (colors) analysis of

 $\langle e^{i\int f(\bar\psi\psi)^2}\rangle_{CFT}$

we find

- 2 fixed points f = f_{IR,UV} only if 2 ≤ Δ < 3 (namely if the CW of the gauge theory is there)
- f_{IR} is mapped into λ_{IR} via $f_{IR} = f(\lambda_{IR})$. The same for f_{UV} (λ_{UV} is predicted ONLY if the CW exists!)
- The fixed points $f_{IR,UV}$ merge when $\Delta = 2$: Conformal Phase Transition and $\Lambda_{\chi} = \Lambda e^{-1/f}$ (agreement with the SD equation approach)

The emerging physical picture is the following:

• the UV free phase is described by the Yang-Mills action

- the UV non-free phase $(\lambda > \lambda_{IR})$ is dual to CFT+ $f(\bar{\psi}\psi)^2$, where $\lambda = \lambda_{IR}$ is mapped into $f_{IR} = 0$, while $\lambda = \lambda_{UV}$ into $f = f_{UV}$.
- When $N_f = N_f^c$ the fixed points merge $\lambda_{IR} = \lambda_{UV} \equiv \lambda_c \ (f_{IR} = f_{UV})$
 - $\bullet\,$ the dual model consistently predicts a CPT at $\Delta=2.$
 - λ_c must be identified as the Miransky UV fixed point.

TC at Criticality: the physical meaning

Technicolor at Criticality is expected to describe the non-abelian dynamics defined at $\lambda > \lambda_{IR} = \lambda_{UV} = \lambda_c$

 $\lambda = g^2 N$

The Composite Higgs

A "weakly coupled" Higgs $\bar{\psi}\psi$ is anticipated by analogy with the Gross-Neveu model (the natural version of the NJL).

The Higgs physics can be understood by identifying H with a dilaton, i.e. the pseudo NGB of dilatation invariance (in analogy with the η' of QCD, in our framework the Higgs/dilaton mixing is maximal...)

- if $\Delta = 1 + \epsilon$ is the IR dimension of the Higgs ($\epsilon \leq O(0.1)$ from NJL), then ϵ is the explicit CFT breaking ($\Lambda_{\chi} = 0$ for $\epsilon = 0$)
- by symmetry arguments $m_{Higgs}^2 \sim \epsilon \Lambda_{\chi}^2$. More generally, $g_{\bar{\psi}\psi} = g_{SM Higgs}(1 + O(\epsilon))$ for any coupling

The phenomenology is analogous to that of CH models¹⁵: The Higgs in TCC is a pseudo-NGB of an Approximate Dilatation Invariance of the Strong Dynamics

¹⁵D.B. Kaplan and Georgi '84

The Flavor Sector

The renormalization effects from the scale Λ_{ETC} (at which the Yukawa operator is generated) down to Λ_{χ} (at which the chiral condensate is formed) gives

$$m_{f} = y \frac{\Lambda_{\chi}^{3}}{\Lambda_{ETC}^{2}} \exp\left(\int_{\Lambda_{\chi}}^{\Lambda_{ETC}} \gamma \, \mathrm{d} \log \mu\right)$$
$$= y \frac{\Lambda_{\chi}^{2}}{\Lambda_{ETC}} \left[e \log\left(\frac{\Lambda_{ETC}}{\Lambda_{\chi}}\right)\right].$$

There are two competing contributions:

- $\Lambda_{\chi}/\Lambda_{ETC}$ suppression typical of $\Delta(\bar{\psi}\psi)\sim$ 2 (WTC)
- Log enhancement coming from $f(\mu)$ $(1 \sim \Delta(\bar{\psi}\psi) < 2$ in TCC)

The Flavor Sector: i = 1, 2

The fermion mass in TCC lies in between a WTC dynamics with $\Delta(\bar\psi\psi)\sim$ 2 and a fundamental Higgs with $\Delta(\bar\psi\psi)\sim 1$

$\Lambda_{ETC}^{i=1,2} > O(10^4)$ TeV for 1st and 2nd generations

The Flavor Sector: i = 3

The fermion mass in TCC lies in between a WTC dynamics with $\Delta(\bar\psi\psi)\sim$ 2 and a fundamental Higgs with $\Delta(\bar\psi\psi)\sim 1$

 $\Lambda_{ETC}^{i=3}={\it O}(10^2)$ TeV for the top

Luca Vecchi (LANL)

TC at Criticality

Summery

- the well established phases of QCD with many massless flavors N_f :
 - 1) $N_f > N_f^{af}$: the theory is in an IR-free phase
 - 2) $N_f^c < N_f < N_f^{af}$: the theory is IR conformal
 - 3) $N_f < N_f^c$: the theory develops a chiral condensate and confines
- the Conformal Window exists because the beta function β_{λ} is continuous at $N_f = N_f^{af}$
- continuity of the beta function β_{λ} at $N_f = N_f^c$ admits two scenarios:
 - a) the theory manifests confinement without χ SB (and possibly a magnetic dual)
 - b) the theory has an asymptotically non-free phase

Lattice simulations are needed!!!

Conclusions (1)

- (1) I presented a number of argument in support of the existence of an asymptotically non-free phase for ordinary (non SUSY) non-abelian theories. In particular I (re)interpreted the analysis of Miransky as an indication in favor of this physics:
 - the Miransky scaling would be the running close to the non-trivial UV fixed point
 - the (unphysical) statement " χ SB occurs at $\lambda > \lambda_c$ " would be replaced by the (physical) statement " χ SB occurs in the phase $\lambda > \lambda_{UV}$ "
- (2) I speculated on the existence of a dual description of the strong branch. The physics agrees with that extracted from the SD equation approach:
 - χ SB becomes visible to the UV-free phase when $\Delta(\bar{\psi}\psi) = 2$ (agreement with Georgi and Cohen)
 - at that critical point the theory undergoes a Conformal Phase Transition (the asymptotically non-free theory is natural!)

Conclusions (2)

(3) I proposed a class of asymptotically non-free theories (these exist irrespective of the validity of the above conjectures on non-abelian gauge theories!) strong coupling throughout the RG flow: dual AdS/CFT description?!

(4) **Technicolor at Criticality** represents one such example:

- TCC solves the hierarchy problem ($\Delta(ar\psi\psi)=2$ in the UV)
- TCC predicts the existence of a "weakly coupled" Higgs in the IR (i.e. a dilaton $\Delta(\bar{\psi}\psi) \simeq 1$ in the IR) strong impact on Flavor Physics and (potentially) on EW physics

Thank You

Luca Vecchi