Flavor in Minimal Conformal Technicolor

Jared A. Evans¹² jaevans@ucdavis.edu

Department of Physics University of California - Davis

UC Davis

¹arXiv:1001.1361 – JAE, J. Galloway, M.A.Luty and R.A.Tacchi ²In Progess – JAE, J. Galloway, M.A.Luty and R.A.Tacchi - Compared to the second sec

Evans (UCD)

MCTC: Flavor

Outline

Motivation

Technicolor The Idea

The Problems

Minimal Conformal Technicolor

The Idea The Solutions

Into the UV

Flavor

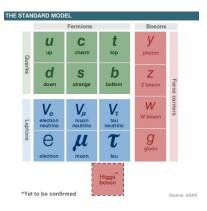
Model I Model II

Phenomenology

Conclusion

< ロ > < 同 > < 回 > < 回 >

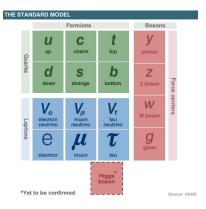
A Story of Reality



The standard model of particle physics is very successful at explaining low energy physics

э

A Story of Reality

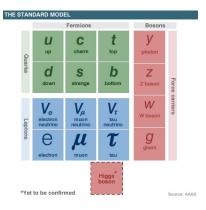


The standard model of particle physics is very successful at explaining low energy physics

One might argue that the standard model is *unreasonably* successful at explaining low energy physics

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

A Story of Reality



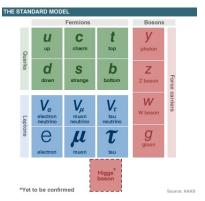
The standard model of particle physics is very successful at explaining low energy physics

One might argue that the standard model is *unreasonably* successful at explaining low energy physics

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

The Higgs boson is the only missing element

A Story of Reality



The standard model of particle physics is very successful at explaining low energy physics

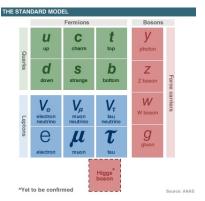
One might argue that the standard model is *unreasonably* successful at explaining low energy physics

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

The Higgs boson is the only missing element

Without a Higgs, the model predicts its own demise around a TeV

A Story of Reality



The standard model of particle physics is very successful at explaining low energy physics

One might argue that the standard model is *unreasonably* successful at explaining low energy physics

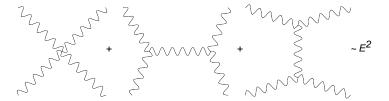
• • • • • • • • • • • • •

The Higgs boson is the only missing element

Without a Higgs, the model predicts its own demise around a TeV But with a Higgs, the electroweak scale should be dragged up to M_{pl}

The WW Scattering Problem

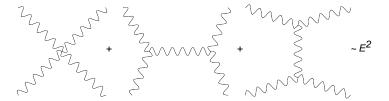
Sans Higgs contribution there are three WW scattering diagrams:



The cross section rises as $\frac{E^4}{M_W^4} \Rightarrow$ unitarity violation at a TeV!

The WW Scattering Problem

Sans Higgs contribution there are three WW scattering diagrams:

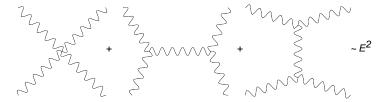


The cross section rises as $\frac{E^4}{M_W^4} \Rightarrow$ unitarity violation at a TeV!

Some *new physics* must enter to cancel this growth before a TeV

The WW Scattering Problem

Sans Higgs contribution there are three WW scattering diagrams:

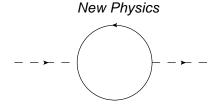


The cross section rises as $\frac{E^4}{M_W^4} \Rightarrow$ unitarity violation at a TeV! Some *new physics* must enter to cancel this growth before a TeV

Standard model Higgs s and t channel diagrams will do exactly that

The Hierarchy Problem

Higgs boson receives a mass correction from high scale physics loops

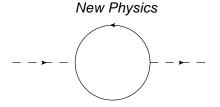


These corrections give $\Delta m^2 \sim \Lambda^2_{_{NEW} PHYSICS}$

For M_h near the electroweak scale, one needs $m_0^2 - \Delta m^2 = M_h^2$

The Hierarchy Problem

Higgs boson receives a mass correction from high scale physics loops



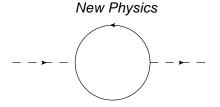
These corrections give $\Delta \textit{m}^2 \sim \Lambda^2_{_{\textit{NEW} \textit{ PHYSICS}}}$

For M_h near the electroweak scale, one needs $m_0^2 - \Delta m^2 = M_h^2$

For $\Lambda_{NP} \sim O(M_{pl})$ we have $O(10^{38}) - O(10^{38}) = O(10^4)$, meaning disagreement only after the 34th decimal place

The Hierarchy Problem

Higgs boson receives a mass correction from high scale physics loops



These corrections give $\Delta \textit{m}^2 \sim \Lambda^2_{_{\textit{NEW}} \textit{ PHYSICS}}$

For M_h near the electroweak scale, one needs $m_0^2 - \Delta m^2 = M_h^2$

For $\Lambda_{NP} \sim O(M_{pl})$ we have $O(10^{38}) - O(10^{38}) = O(10^4)$, meaning disagreement only after the 34th decimal place

A very strong suggestion that the SM Higgs is wrong

One idea is Technicolor!

 SU(N) gauge theories can introduce a completely natural hierarchy from the coupling constant running strong –

$$\mathsf{scale} = \mathsf{\Lambda}_{_{\mathit{strong}}} \sim \mathsf{\Lambda}_{_{\mathit{cutoff}}} e^{-rac{\mathsf{o}\pi}{bg^2(\mathsf{\Lambda}_{\mathit{cutoff}})}}$$

One idea is Technicolor!

► *SU*(*N*) gauge theories can introduce a *completely natural* hierarchy from the coupling constant running strong – scale = $\Lambda_{strong} \sim \Lambda_{cutoff} e^{-\frac{8\pi^2}{bg^2(\Lambda_{cutoff})}}$

► Electroweak Symmetry Breaking: $SU(2)_W \otimes U(1)_Y \rightarrow U(1)_{em}$

One idea is Technicolor!

► *SU*(*N*) gauge theories can introduce a *completely natural* hierarchy from the coupling constant running strong – scale = $\Lambda_{strong} \sim \Lambda_{cutoff} e^{-\frac{8\pi^2}{bg^2(\Lambda_{cutoff})}}$

- ► Electroweak Symmetry Breaking: $SU(2)_W \otimes U(1)_Y \rightarrow U(1)_{em}$
- Correct W and Z Mass Ratio (tree level): $\rho = M_W/M_Z \cos \theta_W = 1$

One idea is Technicolor!

► *SU*(*N*) gauge theories can introduce a *completely natural* hierarchy from the coupling constant running strong – scale = $\Lambda_{strong} \sim \Lambda_{cutoff} e^{-\frac{8\pi^2}{bg^2(\Lambda_{cutoff})}}$

- ► Electroweak Symmetry Breaking: $SU(2)_W \otimes U(1)_Y \rightarrow U(1)_{em}$
- Correct W and Z Mass Ratio (tree level): $\rho = M_W/M_Z \cos \theta_W = 1$
- Rich Phenomenology: new strong resonances near scale Λ_{strong}

One idea is Technicolor!

► *SU*(*N*) gauge theories can introduce a *completely natural* hierarchy from the coupling constant running strong – scale = $\Lambda_{strong} \sim \Lambda_{cutoff} e^{-\frac{8\pi^2}{bg^2(\Lambda_{cutoff})}}$

- ► Electroweak Symmetry Breaking: $SU(2)_W \otimes U(1)_Y \rightarrow U(1)_{em}$
- Correct W and Z Mass Ratio (tree level): $\rho = M_W/M_Z \cos \theta_W = 1$
- Rich Phenomenology: new strong resonances near scale Λ_{strong}
- No Dangerous Mass Scales: chiral symmetry protects masses

One idea is Technicolor!

 SU(N) gauge theories can introduce a *completely natural* hierarchy from the coupling constant running strong – scale = Λ_{strong} ~ Λ_{cutoff} e<sup>-^{8π²}/_{bg²(Λ_{cutoff})}
</sup>

- ► Electroweak Symmetry Breaking: $SU(2)_W \otimes U(1)_Y \rightarrow U(1)_{em}$
- Correct W and Z Mass Ratio (tree level): $\rho = M_W/M_Z \cos \theta_W = 1$
- Rich Phenomenology: new strong resonances near scale Λ_{strong}
- No Dangerous Mass Scales: chiral symmetry protects masses
- Example Already Exists (sort of): the Standard Model without a Higgs should give a mass to the W and Z bosons (QCD)

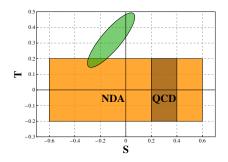
Technicolor sounds great, but ...

Although it has its merits, technicolor is definitely not without problems. The worst of which:

Technicolor sounds great, but ...

Although it has its merits, technicolor is definitely not without problems. The worst of which:

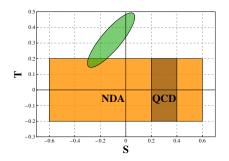
Fits to Precision Electroweak Data are awful in technicolor models



Technicolor sounds great, but ...

Although it has its merits, technicolor is definitely not without problems. The worst of which:

Fits to Precision Electroweak Data are awful in technicolor models

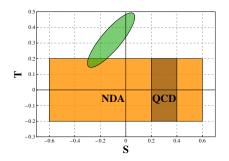


The S parameter is too large! $(S \sim N_{TC}/3\pi)$

Technicolor sounds great, but ...

Although it has its merits, technicolor is definitely not without problems. The worst of which:

Fits to Precision Electroweak Data are awful in technicolor models



The S parameter is too large! $(S \sim N_{TC}/3\pi)$

Even the most generous estimates, put the theory outside of the S-T plane ellipse

Fermion Masses:

- Generically, no simple mass mechanism for fermions
- Extended Technicolor (ETC) can be introduced

< ∃ >

Fermion Masses:

- Generically, no simple mass mechanism for fermions
- Extended Technicolor (ETC) can be introduced
- Low Mass Particles:

< ∃ >

Fermion Masses:

- Generically, no simple mass mechanism for fermions
- Extended Technicolor (ETC) can be introduced
- Low Mass Particles:

- Generic ETC models have myriad low mass PNGBs
- About as problematic as explaining absence of SUSY partners

Fermion Masses:

- Generically, no simple mass mechanism for fermions
- Extended Technicolor (ETC) can be introduced
- Low Mass Particles:

- Generic ETC models have myriad low mass PNGBs
- ► About as problematic as explaining absence of SUSY partners Flavor Changing Neutral Currents (FCNCs):

Fermion Masses:

- Generically, no simple mass mechanism for fermions
- Extended Technicolor (ETC) can be introduced

- Low Mass Particles:
 - Generic ETC models have myriad low mass PNGBs
 - About as problematic as explaining absence of SUSY partners

Flavor Changing Neutral Currents (FCNCs):

- Generically ETC adds FCNCs that require extreme fine tuning
- Adding Walking TC ameliorates these

Fermion Masses:

- Generically, no simple mass mechanism for fermions
- Extended Technicolor (ETC) can be introduced

Low Mass Particles:

- Generic ETC models have myriad low mass PNGBs
- About as problematic as explaining absence of SUSY partners

Flavor Changing Neutral Currents (FCNCs):

- Generically ETC adds FCNCs that require extreme fine tuning
- Adding Walking TC ameliorates these

Clearly the story is at best very ugly

Fermion Masses

- Generically, mechanism
- Extended Te can be intro

Low Mass Partic

- Generic ET
- About as pr
 Flavor Changing
 - Generically
 - Adding Wal

Clearly the story is at best very ugly

- 47 →

Minimal Conformal Technicolor:

A New Hope

Minimal Conformal Technicolor (MCTC) can avoid all these problems

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

An SU(2)_{CTC} coupling approaches a strong conformal fixed point

A D M A A A M M

- An SU(2)_{CTC} coupling approaches a strong conformal fixed point
- Sterile technifermions get mass terms, force the coupling strong

- An SU(2)_{CTC} coupling approaches a strong conformal fixed point
- Sterile technifermions get mass terms, force the coupling strong
- Confinement breaks the SU(4) global symmetry down to Sp(4)

- An SU(2)_{CTC} coupling approaches a strong conformal fixed point
- Sterile technifermions get mass terms, force the coupling strong
- Confinement breaks the SU(4) global symmetry down to Sp(4)
- ► VEV-less SUSY "Higgs" at high scale mediates fermion masses
 - ▶ i.e. This is a Bosonic TC model (Dine, Kagan, Samuel 1990)

- An SU(2)_{CTC} coupling approaches a strong conformal fixed point
- Sterile technifermions get mass terms, force the coupling strong
- Confinement breaks the SU(4) global symmetry down to Sp(4)
- ► VEV-less SUSY "Higgs" at high scale mediates fermion masses
 - i.e. This is a Bosonic TC model (Dine, Kagan, Samuel 1990)
- S-parameter is suppressed by a mixing angle (which can be small)

Minimal Conformal Technicolor (MCTC) can avoid all these problems

- An SU(2)_{CTC} coupling approaches a strong conformal fixed point
- Sterile technifermions get mass terms, force the coupling strong
- Confinement breaks the SU(4) global symmetry down to Sp(4)
- VEV-less SUSY "Higgs" at high scale mediates fermion masses
 i.e. This is a Bosonic TC model (Dine, Kagan, Samuel 1990)
- S-parameter is suppressed by a mixing angle (which can be small)
- Large scale separation keeps the FCNCs small

Minimal Conformal Technicolor (MCTC) can avoid all these problems

- An SU(2)_{CTC} coupling approaches a strong conformal fixed point
- Sterile technifermions get mass terms, force the coupling strong
- Confinement breaks the SU(4) global symmetry down to Sp(4)
- VEV-less SUSY "Higgs" at high scale mediates fermion masses
 - i.e. This is a Bosonic TC model (Dine, Kagan, Samuel 1990)
- S-parameter is suppressed by a mixing angle (which can be small)
- Large scale separation keeps the FCNCs small

Conformal dynamics:

▶ Need $d \equiv d(H) \lesssim 1.5$ to separate EW scale from flavor scale

• While $\Delta \equiv d \left(\mathcal{H}^{\dagger} \mathcal{H} \right) \geq 4$ to evade the hierarchy problem

э

イロト イ団ト イヨト イヨト

Dimensions in Conformal Theories

In the good ol' days, all dimensions were integer - half integer if things got really crazy!

The arguments of CTC rely on large anomalous dimensions, there exists support from both:

Theory:

Lattice:

< ロ > < 同 > < 回 > < 回 >

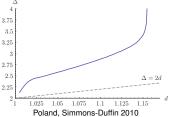
Dimensions in Conformal Theories

In the good ol' days, all dimensions were integer - half integer if things got really crazy!

The arguments of CTC rely on large anomalous dimensions, there exists support from both:

Theory: (Rattazzi, Rychkov, Tonni, Vichi 2008; Rychkov, Vichi 2009; Rattazzi, Rychkov, Vichi 2010; Poland, Simmons-Duffin 2010)

- $\Delta_M \equiv Min\{d(\mathcal{H}^{\dagger}\tau^a\mathcal{H}), d(\mathcal{H}^{\dagger}\mathcal{H})\}$ bound is very strong ($\Delta_M > 4 \Rightarrow d \gtrsim 1.6$)
- Bounds on singlet $\mathcal{H}^{\dagger}\mathcal{H}$ are weak



Lattice:

Dimensions in Conformal Theories

In the good ol' days, all dimensions were integer - half integer if things got really crazy!

The arguments of CTC rely on large anomalous dimensions, there exists support from both:

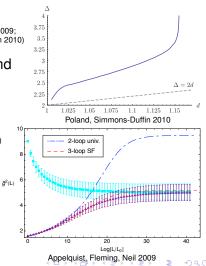
Theory: (Rattazzi, Rychkov, Tonni, Vichi 2008; Rychkov, Vichi 2009; Rattazzi, Rychkov, Vichi 2010; Poland, Simmons-Duffin 2010)

Δ_M ≡ Min{d(H[†]τ^aH),d(H[†]H)} bound is very strong (Δ_M > 4 ⇒ d ≳ 1.6)

• Bounds on singlet $\mathcal{H}^{\dagger}\mathcal{H}$ are weak

Lattice: (Appelquist, Fleming, Neil 2009; Hasenfratz 2010; Del Debbio, Lucin, Keegan, Pica, Pickup 2010; others...)

- Evidence for conformal window $N_c = 3, 12 \leq N_f \leq 16$
- Measure of d (Bursa *et al* 2010) $N_c = 2, N_f = 6, 1.97 \lesssim d \lesssim 2.87$
- S-parameter suppression! (LSD 2010)



Field Content: $(SU(2)_{CTC}, SU(2)_W)_{U(1)_Y}$ $\psi \sim (2,2)_0; \ \chi \sim (2,1)_{-\frac{1}{2}}; \ \chi' \sim (2,1)_{\frac{1}{2}}; \ \xi \sim (2,1)_0 \times N \sim 8$

$$\begin{aligned} \mathcal{L} & \ni & -\kappa \psi \psi - \tilde{\kappa} \chi \chi' - \mathcal{K} \xi \xi \\ &+ & \frac{g_t^2}{\Lambda_t^{d-1}} \left(\mathcal{Q} t^c \right)^{\dagger} (\psi \chi) + \text{h.c.} \\ &+ & \frac{g_{4TC}^2}{\Lambda_t^{d-4}} \left| \psi \chi \right|^2 + \dots \end{aligned}$$

3

Field Content: $(SU(2)_{CTC}, SU(2)_W)_{U(1)_Y}$ $\psi \sim (2, 2)_0; \quad \chi \sim (2, 1)_{-\frac{1}{2}}; \quad \chi' \sim (2, 1)_{\frac{1}{2}}; \quad \xi \sim (2, 1)_0 \times N \sim 8$ $\mathcal{L} \quad \ni \quad -\kappa \psi \psi - \tilde{\kappa} \chi \chi' \underbrace{\mathcal{K} \xi \xi}_{+} + \frac{g_t^2}{\Lambda_t^{d-1}} (Qt^c)^{\dagger} (\psi \chi) + \text{h.c.}$ $+ \frac{g_{4TC}^2}{\Lambda_t^{\Delta - 4}} |\psi \chi|^2 + \dots$

This mass term knocks $SU(2)_{CTC}$ running out of its conformal fixed point

Minimal Conformal Technicolor The Model

Field Content: $(SU(2)_{CTC}, SU(2)_W)_{U(1)_V}$ $\psi \sim (2,2)_0; \ \chi \sim (2,1)_{-rac{1}{2}}; \ \chi' \sim (2,1)_{rac{1}{2}}; \ \xi \sim (2,1)_0 imes N \sim 8$ $-\kappa\psi\psi - \tilde{\kappa}\chi\chi'$ $K\xi\xi$ gauge + $\frac{g_t^2}{\Lambda^{d-1}} (Qt^c)^{\dagger} (\psi \chi) + \text{h.c.}$ SUSY higgs $+ \frac{g_{4TC}^2}{\Lambda \Delta - 4} |\psi \chi|^2 + \dots$ Vacuum alignment

Fermion mass $\propto -\cos\theta$ Top loop, gauge, Higgs $\propto \sin^2 \theta$

EW TC true vacuum EW vacuum is $\theta = 0$ TC vacuum is $\theta = \frac{\pi}{2}$

Field Content: $(SU(2)_{CTC}, SU(2)_W)_{U(1)_V}$ $\psi \sim (2,2)_0; \ \chi \sim (2,1)_{-rac{1}{2}}; \ \chi' \sim (2,1)_{rac{1}{2}}; \ \xi \sim (2,1)_0 imes N \sim 8$ $\mathcal{L} \quad \ni \left(-\kappa\psi\psi - \tilde{\kappa}\chi\chi'\right) \mathsf{K}\xi\xi$ gauge + $\frac{g_t^2}{\Lambda^{d-1}} (Qt^c)^{\dagger} (\psi \chi) + \text{h.c.}$ $+ \frac{g_{4TC}^2}{\Lambda^{\Delta-4}} |\psi\chi|^2 + \dots$ Vacuum alignment EW

Fermion mass $\propto -\cos \theta$ Top loop, gauge, Higgs $\propto \sin^2 \theta$

The mixing angle, θ , can be small (~ 0.1)

Evans (UCD)

EW vacuum is $\theta = 0$

A D M A A A M M

TC vacuum is $\theta = \frac{\pi}{2}$

true vacuum

A B F A B F

TC

Return of the TC Model

- Fermion Masses?
- Low Mass Particles?
- FCNCs?
- S-Parameter?

э

< ロ > < 同 > < 回 > < 回 >

Return of the TC Model

Fermion Masses? Natural! (through MSSM-like Higgs messenger)

Low Mass Particles?

FCNCs?

S-Parameter?

글 🕨 🖌 글

A D M A A A M M

Return of the TC Model

- Fermion Masses? Natural! (through MSSM-like Higgs messenger)
- Low Mass Particles? A Higgs-like PNGB, h, and a "hidden" PNGB, a
- FCNCs?
- S-Parameter?

Return of the TC Model

- Fermion Masses? Natural! (through MSSM-like Higgs messenger)
- Low Mass Particles? A Higgs-like PNGB, h, and a "hidden" PNGB, a
- FCNCs? Suppressed by high scale!

S-Parameter?

Return of the TC Model

Fermion Masses?Natural! (through MSSM-like Higgs messenger)Low Mass Particles?A Higgs-like PNGB, h, and a "hidden" PNGB, aFCNCs?Suppressed by high scale!S-Parameter?Small $\theta \Rightarrow$ small S-parameter!

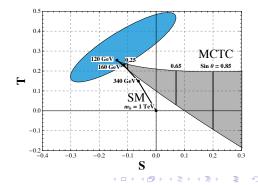
Return of the TC Model

- Fermion Masses? Natural! (through MSSM-like Higgs messenger)
- Low Mass Particles? A Higgs-like PNGB, h, and a "hidden" PNGB, a
- FCNCs? Suppressed by high scale!
- S-Parameter? Small $\theta \Rightarrow$ small S-parameter!

Small enough to fit EW data?

Return of the TC Model

- Fermion Masses? Natural! (through MSSM-like Higgs messenger)
- Low Mass Particles? A Higgs-like PNGB, h, and a "hidden" PNGB, a
- FCNCs? Suppressed by high scale!
- S-Parameter? Small $\theta \Rightarrow$ small S-parameter!
- Small enough to fit EW data?
 - Top loop contribution gives: $m_h \sim \sqrt{3c_t} M_{top}$
 - For ct & sin θ ≤ ¼, model in inside the S-T EW ellipse



 $SU(3)_{SCTC} imes SU(2)_L imes SU(2)_R \supset U(1)_Y$

3

```
SU(3)_{SCTC} 	imes SU(2)_L 	imes SU(2)_R \supset U(1)_Y
```

 $\begin{array}{rcl} \Psi & \sim & (3,2,1) \\ \Psi^c & \sim & (\bar{3},1,2) \end{array} & \rightarrow \\ \Sigma_a & \sim & (3,1,1) \\ \Sigma_a^c & \sim & (\bar{3},1,1) \end{array} & \rightarrow \\ P & \sim & (1,2,1) \\ P^c & \sim & (1,1,2) \end{array} & \rightarrow \\ H & \sim & (1,2,2) & \rightarrow \\ a & = & 1,\ldots,4 \end{array}$

$$SU(3)_{SCTC} imes SU(2)_L imes SU(2)_R \supset U(1)_Y$$

 $\begin{array}{lll} \Psi & \sim & (3,2,1) \\ \Psi^c & \sim & (\bar{3},1,2) \end{array} & \rightarrow & \text{technifermions (ultimately cause EWSB)} \\ \Sigma_a & \sim & (3,1,1) \\ \Sigma_a^c & \sim & (\bar{3},1,1) \end{array} & \rightarrow & \\ P & \sim & (1,2,1) \\ P^c & \sim & (1,1,2) \\ H & \sim & (1,2,2) \end{array} & \rightarrow & \\ a & = & 1, \dots, 4 \end{array}$

Evans (UCD)

$$SU(3)_{SCTC} imes SU(2)_L imes SU(2)_R \supset U(1)_Y$$

$$\begin{array}{rcl} \Psi & \sim & (3,2,1) \\ \Psi^c & \sim & (\bar{3},1,2) \end{array} \rightarrow \\ \Sigma_a & \sim & (3,1,1) \\ \Sigma_a^c & \sim & (\bar{3},1,1) \end{array} \rightarrow \\ P & \sim & (1,2,1) \\ P^c & \sim & (1,1,2) \end{array} \rightarrow \\ H & \sim & (1,2,2) \rightarrow \\ a & = & 1,\ldots,4 \end{array}$$

(0 0 1)

...

technifermions (ultimately cause EWSB)

sterile technifermions (break $SU(3)_{SCTC}$, get $N_f = 6$ for conformal running)

$$SU(3)_{SCTC} imes SU(2)_L imes SU(2)_R \supset U(1)_Y$$

- $\begin{array}{rcl} \Psi & \sim & (3,2,1) \\ \Psi^c & \sim & (\bar{3},1,2) \end{array} \rightarrow \\ \Sigma_a & \sim & (3,1,1) \\ \Sigma_a^c & \sim & (\bar{3},1,1) \end{array} \rightarrow \\ P & \sim & (1,2,1) \\ P^c & \sim & (1,1,2) \end{array} \rightarrow \\ H & \sim & (1,2,2) \rightarrow \\ a & = & 1, \dots, 4 \end{array}$
 - \rightarrow technifermions (ultimately cause EWSB)
 - sterile technifermions (break $SU(3)_{SCTC}$, get $N_f = 6$ for conformal running)

fields in place to cancel anomalies

$$SU(3)_{SCTC} imes SU(2)_L imes SU(2)_R \supset U(1)_Y$$

- $egin{array}{rcl} \Psi &\sim & (3,2,1) \ \Psi^c &\sim & (ar{3},1,2) \ \Sigma_a &\sim & (3,1,1) \ \Sigma_a^c &\sim & (ar{3},1,1) \ P &\sim & (1,2,1) \ P^c &\sim & (1,1,2) \end{array} -$
 - $\rightarrow~$ technifermions (ultimately cause EWSB)
 - sterile technifermions (break $SU(3)_{SCTC}$, get $N_f = 6$ for conformal running)
 - \rightarrow fields in place to cancel anomalies
 - $H \sim (1,2,2) \rightarrow$ messengers of flavor

 $a = 1, \dots, 4$

$$SU(3)_{SCTC} imes SU(2)_L imes SU(2)_R \supset U(1)_Y$$

$$egin{array}{ccc} \Psi &\sim & (\mathbf{3},\mathbf{2},\mathbf{1}) \ \Psi^c &\sim & (ar{\mathbf{3}},\mathbf{1},\mathbf{2}) \end{array}
ightarrow \ \Sigma_a &\sim & (\mathbf{3},\mathbf{1},\mathbf{1}) \ \Sigma_a^c &\sim & (ar{\mathbf{3}},\mathbf{1},\mathbf{1}) \end{array}
ightarrow$$

technifermions (ultimately cause EWSB)

sterile technifermions (break $SU(3)_{SCTC}$, get $N_f = 6$ for conformal running)

 $\begin{array}{rcl} P & \sim & (1,2,1) \\ P^c & \sim & (1,1,2) \end{array} & \rightarrow & \mbox{fields in place to cancel anomalies} \end{array}$

 $H \sim (1,2,2) \rightarrow$ messengers of flavor

Superpotential

Superpotential terms $W \ni \Sigma\Sigma^c + (\Sigma\Sigma^c)^2$ break SCTC at the SUSY scale (and gives mass to 3rd SCTC color of Σ terms)

3 > 4 3

Superconformal Technicolor Superpotential

Superpotential terms $W \ni \Sigma\Sigma^c + (\Sigma\Sigma^c)^2$ break SCTC at the SUSY scale (and gives mass to 3rd SCTC color of Σ terms)

 $W \ni \Psi H \Psi^{c} + \Psi \Sigma^{c} P + \Psi^{c} \Sigma P^{c} + \Sigma \Sigma \Sigma + \Sigma^{c} \Sigma^{c} \Sigma^{c} + \Sigma \Psi \Psi + \Sigma^{c} \Psi^{c} \Psi^{c}$

Superpotential

Superpotential terms $W \ni \Sigma\Sigma^c + (\Sigma\Sigma^c)^2$ break SCTC at the SUSY scale (and gives mass to 3rd SCTC color of Σ terms)

$$W \ni \Psi \mathcal{V}^{c} \mathcal{V} \mathcal{V}^{c} \mathcal{P} + \Psi^{c} \Sigma \mathcal{P}^{c} + \Sigma \Sigma \Sigma + \Sigma^{c} \Sigma^{c} \Sigma^{c} + \Sigma \Psi \Psi + \Sigma^{c} \Psi^{c} \Psi^{c} \Psi^{c}$$

Communicates mass to SM fermions

Superpotential

Superpotential terms $W \ni \Sigma\Sigma^c + (\Sigma\Sigma^c)^2$ break SCTC at the SUSY scale (and gives mass to 3rd SCTC color of Σ terms)

$$W \ni \Psi H \Psi^{c} + \Psi^{c} \Sigma^{c} P + \Psi^{c} \Sigma P^{c} + \Sigma \Sigma \Sigma \Sigma + \Sigma^{c} \Sigma^{c} \Sigma^{c} + \Sigma \Psi \Psi + \Sigma^{c} \Psi^{c} \Psi^{c}$$

Communicates mass to SM fermions Masses for 3rd SCTC color (and *P* fields)

Superpotential

Superpotential terms $W \ni \Sigma\Sigma^c + (\Sigma\Sigma^c)^2$ break SCTC at the SUSY scale (and gives mass to 3rd SCTC color of Σ terms)

$$W \ni \Psi H \Psi^{c} \Psi \Sigma^{c} P + \Psi^{c} \Sigma P^{c} \Psi \Sigma \Sigma \Sigma + \Sigma^{c} \Sigma^{c} \Sigma^{c} + \Sigma \Psi \Psi + \Sigma^{c} \Psi^{c} \Psi^{c}$$

Communicates mass to SM fermions Masses for 3rd SCTC color (and *P* fields) Masses for fermions of CTC

Superpotential

Superpotential terms $W \ni \Sigma\Sigma^c + (\Sigma\Sigma^c)^2$ break SCTC at the SUSY scale (and gives mass to 3rd SCTC color of Σ terms)

$$W \ni \Psi H \Psi^{c} \Psi \Sigma^{c} P + \Psi^{c} \Sigma P^{c} \Psi \Sigma \Sigma \Sigma + \Sigma^{c} \Sigma^{c} \Sigma^{c} + \Sigma \Psi \Psi + \Sigma^{c} \Psi^{c} \Psi^{c}$$

Communicates mass to SM fermions Masses for 3rd SCTC color (and *P* fields) Masses for fermions of CTC

After SUSY breaking, we find:

$$\mathcal{L}_{\mathsf{eff}} \sim \xi_{\mathsf{a}} \xi_{\mathsf{b}} + \psi \psi + \psi^{\mathsf{c}} \psi^{\mathsf{c}} + |\psi \psi^{\mathsf{c}}|^{\mathsf{2}} + (\psi \psi^{\mathsf{c}})^{\dagger} (Qt^{\mathsf{c}})$$

where $\Sigma_{1,2,3}, \Sigma_{1,2,3}^{c} \to \xi_{a} \ (a = 1, \dots, 6)$

Superpotential

Superpotential terms $W \ni \Sigma\Sigma^c + (\Sigma\Sigma^c)^2$ break SCTC at the SUSY scale (and gives mass to 3rd SCTC color of Σ terms)

$$W \ni \Psi H \Psi^{c} \Psi \Sigma^{c} P + \Psi^{c} \Sigma P^{c} \Psi \Sigma \Sigma \Sigma + \Sigma^{c} \Sigma^{c} \Sigma^{c} + \Sigma \Psi \Psi + \Sigma^{c} \Psi^{c} \Psi^{c}$$

Communicates mass to SM fermions Masses for 3rd SCTC color (and *P* fields) Masses for fermions of CTC

After SUSY breaking, we find:

$$\mathcal{L}_{\mathsf{eff}} \sim \xi_{\mathsf{a}} \xi_{b} + \psi \psi + \psi^{\mathsf{c}} \psi^{\mathsf{c}} + |\psi \psi^{\mathsf{c}}|^{\mathsf{2}} + (\psi \psi^{\mathsf{c}})^{\dagger} \left(\mathsf{Q} t^{\mathsf{c}}
ight)$$

where $\Sigma_{1,2,3}, \Sigma_{1,2,3}^{c} \to \xi_{a} \ (a = 1, \dots, 6)$

Which is almost the lagrangian for Minimal Conformal Technicolor!

Evans (UCD)

Superpotential

Superpotential terms $W \ni \Sigma\Sigma^c + (\Sigma\Sigma^c)^2$ break SCTC at the SUSY scale (and gives mass to 3rd SCTC color of Σ terms)

$$W \ni \Psi H \Psi^{c} \Psi \Sigma^{c} P + \Psi^{c} \Sigma P^{c} \Psi \Sigma \Sigma \Sigma + \Sigma^{c} \Sigma^{c} \Sigma^{c} + \Sigma \Psi \Psi + \Sigma^{c} \Psi^{c} \Psi^{c}$$

Communicates mass to SM fermions Masses for 3rd SCTC color (and *P* fields) Masses for fermions of CTC

After SUSY breaking, we find:

$$\mathcal{L}_{eff} \sim \xi_a \xi_b + \psi \psi + \psi^c \psi^c + |\psi \psi^c|^2 + (\psi \psi^c)^{\dagger} (Qt^c)$$

where $\Sigma_{1,2,3}, \Sigma_{1,2,3}^c \rightarrow \xi_a \ (a = 1, \dots, 6) + \lambda_a^{\dagger} \lambda_a$

Which is almost the lagrangian for Minimal Conformal Technicolor!

Seiberg argued SUSY QCD with $\frac{3}{2}N_c < N_f < 3N_c$ will flow to a SCFT Strong fixed points expected for $N_f \approx 2N_c$ ($N_f \approx 4N_c$ for non-SUSY)

a-Maximization

Seiberg argued SUSY QCD with $\frac{3}{2}N_c < N_f < 3N_c$ will flow to a SCFT Strong fixed points expected for $N_f \approx 2N_c$ ($N_f \approx 4N_c$ for non-SUSY)

Dimensions in SCFTs are known to be: $d(X) = \frac{3}{2}R_{SC}(X)$

Determining dimensions in the theory is done by "a-Maximization"

Seiberg argued SUSY QCD with $\frac{3}{2}N_c < N_f < 3N_c$ will flow to a SCFT Strong fixed points expected for $N_f \approx 2N_c$ ($N_f \approx 4N_c$ for non-SUSY)

Dimensions in SCFTs are known to be: $d(X) = \frac{3}{2}R_{SC}(X)$

Determining dimensions in the theory is done by "a-Maximization"

The superconformal R-symmetry, R_{SC} of any 4d SCFT is set to be that which maximizes the quantity $a(R) = \frac{3}{32} (3 \text{ Tr}R^3 - \text{Tr}R)$ (Intriligator, Wecht 2003)

Seiberg argued SUSY QCD with $\frac{3}{2}N_c < N_f < 3N_c$ will flow to a SCFT Strong fixed points expected for $N_f \approx 2N_c$ ($N_f \approx 4N_c$ for non-SUSY)

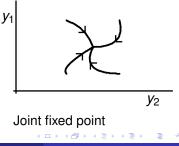
Dimensions in SCFTs are known to be: $d(X) = \frac{3}{2}R_{SC}(X)$

Determining dimensions in the theory is done by "a-Maximization"

The superconformal R-symmetry, R_{SC} of any 4d SCFT is set to be that which maximizes the quantity $a(R) = \frac{3}{32} (3 \text{ Tr}R^3 - \text{Tr}R)$ (Intriligator, Wecht 2003)

- Fix large Yukawas marginal
- Neglect other superpotential terms
- Apply a-maximization

This will try to construct the theory with Yukawa fixed points



Flavor in the UV That Dastardly Top!

We have:
$$m_{top} \sim 4\pi v_{ew} \left(\frac{y_{TC}}{4\pi}\right) \left(\frac{y_t}{4\pi}\right) \left(\frac{\Lambda_{TC}}{M_{flavor}}\right)^{d-1}$$

 $\Rightarrow \left(\frac{y_{TC}}{4\pi}\right) \left(\frac{y_t}{4\pi}\right) \left(\frac{\Lambda_{TC}}{M_{flavor}}\right)^{d-1} \sim \frac{1}{10}$

2

イロト イヨト イヨト イヨト

Flavor in the UV That Dastardly Top!

We have:
$$m_{top} \sim 4\pi v_{ew} \left(\frac{y_{TC}}{4\pi}\right) \left(\frac{y_t}{4\pi}\right) \left(\frac{\Lambda_{TC}}{M_{flavor}}\right)^{d-1}$$

 $\Rightarrow \left(\frac{y_{TC}}{4\pi}\right) \left(\frac{y_t}{4\pi}\right) \left(\frac{\Lambda_{TC}}{M_{flavor}}\right)^{d-1} \sim \frac{1}{10}$

We need both y_{TC} and y_t strong at the flavor scale!

3

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

We have:
$$m_{top} \sim 4\pi v_{ew} \left(\frac{y_{TC}}{4\pi}\right) \left(\frac{y_t}{4\pi}\right) \left(\frac{\Lambda_{TC}}{M_{flavor}}\right)^{d-1}$$

 $\Rightarrow \left(\frac{y_{TC}}{4\pi}\right) \left(\frac{y_t}{4\pi}\right) \left(\frac{\Lambda_{TC}}{M_{flavor}}\right)^{d-1} \sim \frac{1}{10}$

We need both y_{TC} and y_t strong at the flavor scale! Coincidence problem?

We have:
$$m_{top} \sim 4\pi v_{ew} \left(\frac{y_{TC}}{4\pi}\right) \left(\frac{y_t}{4\pi}\right) \left(\frac{\Lambda_{TC}}{M_{flavor}}\right)^{d-1}$$

 $\Rightarrow \left(\frac{y_{TC}}{4\pi}\right) \left(\frac{y_t}{4\pi}\right) \left(\frac{\Lambda_{TC}}{M_{flavor}}\right)^{d-1} \sim \frac{1}{10}$

We need both y_{TC} and y_t strong at the flavor scale! Coincidence problem? Not if both reach fixed points!

We have:
$$m_{top} \sim 4\pi v_{ew} \left(\frac{y_{TC}}{4\pi}\right) \left(\frac{y_t}{4\pi}\right) \left(\frac{\Lambda_{TC}}{M_{flavor}}\right)^{d-1}$$

 $\Rightarrow \left(\frac{y_{TC}}{4\pi}\right) \left(\frac{y_t}{4\pi}\right) \left(\frac{\Lambda_{TC}}{M_{flavor}}\right)^{d-1} \sim \frac{1}{10}$

We need both y_{TC} and y_t strong at the flavor scale! Coincidence problem? Not if both reach fixed points! But $d(H_u) > 1 \Rightarrow$ We need strong color group! i.e. $SU(N)_{strong} \times SU(3)_{weak} \rightarrow SU(3)_C$

3

We have:
$$m_{top} \sim 4\pi v_{ew} \left(\frac{y_{TC}}{4\pi}\right) \left(\frac{y_t}{4\pi}\right) \left(\frac{\Lambda_{TC}}{M_{flavor}}\right)^{d-1}$$

 $\Rightarrow \left(\frac{y_{TC}}{4\pi}\right) \left(\frac{y_t}{4\pi}\right) \left(\frac{\Lambda_{TC}}{M_{flavor}}\right)^{d-1} \sim \frac{1}{10}$

We need both y_{TC} and y_t strong at the flavor scale! Coincidence problem? Not if both reach fixed points! But $d(H_u) > 1 \Rightarrow$ We need strong color group! i.e. $SU(N)_{strong} \times SU(3)_{weak} \rightarrow SU(3)_C$

In SM, $N_c = 3$ and $N_f = 6 \Rightarrow$ No room for fields to do breaking

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We have:
$$m_{top} \sim 4\pi v_{ew} \left(\frac{y_{TC}}{4\pi}\right) \left(\frac{y_t}{4\pi}\right) \left(\frac{\Lambda_{TC}}{M_{flavor}}\right)^{d-1}$$

 $\Rightarrow \left(\frac{y_{TC}}{4\pi}\right) \left(\frac{y_t}{4\pi}\right) \left(\frac{\Lambda_{TC}}{M_{flavor}}\right)^{d-1} \sim \frac{1}{10}$

We need both y_{TC} and y_t strong at the flavor scale! Coincidence problem? Not if both reach fixed points! But $d(H_u) > 1 \Rightarrow$ We need strong color group! i.e. $SU(N)_{strong} \times SU(3)_{weak} \rightarrow SU(3)_C$

In SM, $N_c = 3$ and $N_f = 6 \Rightarrow$ No room for fields to do breaking

Two options: $N_c > 3$ or split the quark flavors!

★ E ► ★ E ► E

$$(SU(6)_{SC} imes SU(3)_A imes SU(3)_B imes SU(2)_L)_{U(1)_Y}$$

$$W \ni y_{ij}^{u}Q_{i}H_{u}U_{j}^{c} + y_{ij}^{d}Q_{i}H_{d}D_{j}^{c}$$

$$+ x_{ij}^{u}\tilde{q}_{i}H_{d}\tilde{u}_{j}^{c} + x_{ij}^{d}\tilde{q}_{i}H_{u}\tilde{d}_{j}^{c}$$

$$+ z_{ij}^{Q}Q_{i}\Delta^{c}\tilde{q}_{j} + z_{ij}^{u}U_{i}\Delta\tilde{u}_{j} + z_{ij}^{Q}D_{i}\Delta\tilde{d}_{j}$$

$$\begin{array}{rcl} \Phi & \sim & (6,\bar{3},1,1)_{0} \\ \Phi^{c} & \sim & (\bar{6},3,1,1)_{0} \\ \Delta & \sim & (6,1,\bar{3},1)_{0} \\ \Delta^{c} & \sim & (\bar{6},1,3,1)_{0} \\ Q_{i} & \sim & (\bar{6},1,1,2)_{1/6} \\ U_{i}^{c} & \sim & (\bar{6},1,1,1)_{-2/3} \\ D_{i}^{c} & \sim & (\bar{6},1,1,1)_{1/3} \\ \tilde{q}_{i} & \sim & (1,1,\bar{3},2)_{-1/6} \\ \tilde{u}_{i}^{c} & \sim & (1,1,3,1)_{2/3} \\ \tilde{d}_{i}^{c} & \sim & (1,1,3,1)_{-1/3} \end{array}$$

$$(SU(6)_{SC} \times SU(3)_A \times SU(3)_B \times SU(2)_L)_{U(1)_Y}$$
These fields get VEVs:

$$\langle \Phi \rangle = \langle \Phi^c \rangle \propto \begin{pmatrix} \mathbf{1}_3 \\ \mathbf{0}_3 \end{pmatrix}$$

$$\langle \Delta \rangle = \langle \Delta^c \rangle \propto \begin{pmatrix} \mathbf{0}_3 \\ \mathbf{1}_3 \end{pmatrix}$$

$$\langle \Delta \rangle = \langle \Delta^c \rangle \propto \begin{pmatrix} \mathbf{0}_3 \\ \mathbf{1}_3 \end{pmatrix}$$

$$D_i^c \sim (\bar{6}, 1, 1, 1)_{-2/3}$$

$$D_i^c \sim (\bar{6}, 1, 1, 1)_{-1/3}$$

$$\tilde{q}_i \sim (1, 1, \bar{3}, 2)_{-1/6}$$

$$\tilde{u}_i^c \sim (1, 1, 3, 1)_{-1/3}$$

$$\tilde{q}_i^c \sim (1, 1, 3, 1)_{-1/3}$$

$$(SU(6)_{SC} \times SU(3)_A \times SU(3)_B \times SU(2)_L)_{U(1)_Y}$$
These fields get VEVs:

$$\langle \Phi \rangle = \langle \Phi^c \rangle \propto \begin{pmatrix} \mathbf{1}_3 \\ \mathbf{0}_3 \end{pmatrix}$$

$$\langle \Delta \rangle = \langle \Delta^c \rangle \propto \begin{pmatrix} \mathbf{0}_3 \\ \mathbf{1}_3 \end{pmatrix}$$
These break:

$$SU(6)_{SC} \times SU(3)_A \times SU(3)_B$$

$$\rightarrow SU(3)_C \times SU(3)_{C'}$$

$$(SU(3)_B \times SU(3)_C)$$

$$(SU(3)_B \times SU(3)_C)$$

$$(SU(3)_C \times SU(3)_C)$$

$$SU(3)_C \times SU(3)_C$$

$$SU(3)_C \times SU(3)_C$$

$$(SU(3)_B \times SU(3)_C)$$

$$(SU(2)_L)_U(1)_Y$$

$$\Phi \sim (6, \overline{3}, 1, 1)_0$$

$$\Phi^c \sim (\overline{6}, 3, 1, 1)_0$$

$$\Delta \sim (6, 1, \overline{3}, 1)_0$$

$$(\overline{6}, - (\overline{6}, 1, 1, 1)_{-2/3})$$

2

 ${ ilde d}^c_i ~\sim~ (1,1,3,1)_{-1/3}$

・ロト ・ 四ト ・ ヨト ・ ヨト

$$(SU(6)_{SC} imes SU(3)_{A} imes SU(3)_{B} imes SU(2)_{L})_{U(1)_{Y}}$$

These fields contain the SM quarks

$$\begin{array}{rcl} \Phi & \sim & \left(6,\bar{3},1,1\right)_{0} \\ \Phi^{c} & \sim & \left(\bar{6},3,1,1\right)_{0} \\ \Delta & \sim & \left(6,1,\bar{3},1\right)_{0} \\ \Delta^{c} & \sim & \left(\bar{6},1,3,1\right)_{0} \\ Q_{i} & \sim & \left(\bar{6},1,1,2\right)_{1/6} \\ U_{i}^{c} & \sim & \left(\bar{6},1,1,1\right)_{-2/3} \\ D_{i}^{c} & \sim & \left(\bar{6},1,1,1\right)_{1/3} \\ \tilde{q}_{i} & \sim & \left(1,1,\bar{3},2\right)_{-1/6} \\ \tilde{u}_{i}^{c} & \sim & \left(1,1,3,1\right)_{2/3} \\ \tilde{d}_{i}^{c} & \sim & \left(1,1,3,1\right)_{-1/3} \end{array}$$

$$(SU(6)_{SC} imes SU(3)_A imes SU(3)_B imes SU(2)_L)_{U(1)_Y}$$

These fields contain the SM quarks

They will be separated into:
$$Q_i^{(1,...,6)}
ightarrow Q_i^{(1,2,3)} + Q_i^{(4,5,6)} \equiv q_i + q_i'$$

 q_i are the SM quarks

$$\begin{array}{rcl} \Phi & \sim & \left(6,\bar{3},1,1\right)_{0} \\ \Phi^{c} & \sim & \left(\bar{6},3,1,1\right)_{0} \\ \Delta & \sim & \left(6,1,\bar{3},1\right)_{0} \\ \Delta^{c} & \sim & \left(\bar{6},1,3,1\right)_{0} \\ Q_{i} & \sim & \left(\bar{6},1,1,2\right)_{1/6} \\ U_{i}^{c} & \sim & \left(\bar{6},1,1,1\right)_{-2/3} \\ D_{i}^{c} & \sim & \left(\bar{6},1,1,1\right)_{1/3} \\ \tilde{q}_{i} & \sim & \left(1,1,\bar{3},2\right)_{-1/6} \\ \tilde{u}_{i}^{c} & \sim & \left(1,1,3,1\right)_{2/3} \\ \tilde{d}_{i}^{c} & \sim & \left(1,1,3,1\right)_{-1/3} \end{array}$$

$$(SU(6)_{SC} imes SU(3)_A imes SU(3)_B imes SU(2)_L)_{U(1)_Y}$$

 q'_i partners with the \tilde{q}_i fields to create new quarks at a higher scale through interactions of the form:

 $W \ni z_{ij}^Q Q_i \Delta^c \tilde{q}_j$

$$\begin{array}{rcl} \Phi & \sim & \left(6,\bar{3},1,1\right)_{0} \\ \Phi^{c} & \sim & \left(\bar{6},3,1,1\right)_{0} \\ \Delta & \sim & \left(6,1,\bar{3},1\right)_{0} \\ \Delta^{c} & \sim & \left(\bar{6},1,3,1\right)_{0} \\ Q_{i} & \sim & \left(\bar{6},1,1,2\right)_{1/6} \\ U_{i}^{c} & \sim & \left(\bar{6},1,1,1\right)_{-2/3} \\ D_{i}^{c} & \sim & \left(\bar{6},1,1,1\right)_{1/3} \\ \tilde{q}_{i} & \sim & \left(1,1,\bar{3},2\right)_{-1/6} \\ \tilde{u}_{i}^{c} & \sim & \left(1,1,3,1\right)_{2/3} \\ \tilde{d}_{i}^{c} & \sim & \left(1,1,3,1\right)_{-1/3} \end{array}$$

$$(SU(6)_{SC} imes SU(3)_A imes SU(3)_B imes SU(2)_L)_{U(1)_Y}$$

 q'_i partners with the \tilde{q}_i fields to create new quarks at a higher scale through interactions of the form:

 $W \ni z_{ij}^Q Q_i \Delta^c \tilde{q}_j$

There are twelve new quarks under $SU(3)_{C'}$

$$\begin{array}{rcl} \Phi & \sim & \left(6,\bar{3},1,1\right)_{0} \\ \Phi^{c} & \sim & \left(\bar{6},3,1,1\right)_{0} \\ \Delta & \sim & \left(6,1,\bar{3},1\right)_{0} \\ \Delta^{c} & \sim & \left(\bar{6},1,3,1\right)_{0} \\ Q_{i} & \sim & \left(\bar{6},1,1,2\right)_{1/6} \\ U_{i}^{c} & \sim & \left(\bar{6},1,1,1\right)_{-2/3} \\ D_{i}^{c} & \sim & \left(\bar{6},1,1,1\right)_{1/3} \\ \tilde{q}_{i} & \sim & \left(1,1,\bar{3},2\right)_{-1/6} \\ \tilde{u}_{i}^{c} & \sim & \left(1,1,3,1\right)_{2/3} \\ \tilde{d}_{i}^{c} & \sim & \left(1,1,3,1\right)_{-1/3} \end{array}$$

$$(SU(6)_{SC} imes SU(3)_A imes SU(3)_B imes SU(2)_L)_{U(1)_Y}$$

$$W \ni y_{ij}^{u}Q_{i}H_{u}U_{j}^{c} + y_{ij}^{d}Q_{i}H_{d}D_{j}^{c}$$

$$+ x_{ij}^{u}\tilde{q}_{i}H_{d}\tilde{u}_{j}^{c} + x_{ij}^{a}\tilde{q}_{i}H_{u}\tilde{d}_{j}^{c}$$

$$+ z_{ij}^{Q}Q_{i}\Delta^{c}\tilde{q}_{j} + z_{ij}^{u}U_{i}\Delta\tilde{u}_{j} + z_{ij}^{Q}D_{i}\Delta\tilde{c}$$

These give mass to the SM fermions through H communicating with the technisector

$$\begin{array}{rcl} \Phi & \sim & \left(6,\bar{3},1,1\right)_{0} \\ \Phi^{c} & \sim & \left(\bar{6},3,1,1\right)_{0} \\ \Delta & \sim & \left(6,1,\bar{3},1\right)_{0} \\ \Delta^{c} & \sim & \left(\bar{6},1,3,1\right)_{0} \\ Q_{i} & \sim & \left(\bar{6},1,1,2\right)_{1/6} \\ U_{i}^{c} & \sim & \left(\bar{6},1,1,1\right)_{-2/3} \\ D_{i}^{c} & \sim & \left(\bar{6},1,1,1\right)_{1/3} \\ \tilde{q}_{i} & \sim & \left(1,1,\bar{3},2\right)_{-1/6} \\ \tilde{u}_{i}^{c} & \sim & \left(1,1,3,1\right)_{2/3} \\ \tilde{d}_{i}^{c} & \sim & \left(1,1,3,1\right)_{-1/3} \end{array}$$

$$W \ni (y_{ij}^{U}Q_{i}H_{u}U_{j}^{c} + y_{ij}^{d}Q_{i}H_{d}D_{j}^{c})$$

+ $x_{ij}^{U}\tilde{q}_{i}H_{d}\tilde{u}_{i}^{c} + x_{ij}^{a}\tilde{q}_{i}H_{u}\tilde{d}_{i}^{c}$
+ $z_{ij}^{Q}Q_{i}\Delta^{c}\tilde{q}_{j} + z_{ij}^{U}U_{i}\Delta\tilde{u}_{j} + z_{ij}^{Q}D_{i}\Delta\tilde{d}_{j}$

These give mass to the SM fermions through H communicating with the technisector

The give an $\mathcal{O}(M_{SUSY})$ mass to the 12 $SU(3)_{C'}$ quarks

$$\begin{array}{rcl} \Phi & \sim & (6,\bar{3},1,1)_{0} \\ \Phi^{c} & \sim & (\bar{6},3,1,1)_{0} \\ \Delta & \sim & (6,1,\bar{3},1)_{0} \\ \Delta^{c} & \sim & (\bar{6},1,3,1)_{0} \\ Q_{i} & \sim & (\bar{6},1,1,2)_{1/6} \\ U_{i}^{c} & \sim & (\bar{6},1,1,1)_{-2/3} \\ D_{i}^{c} & \sim & (\bar{6},1,1,1)_{1/3} \\ \tilde{q}_{i} & \sim & (1,1,\bar{3},2)_{-1/6} \\ \tilde{u}_{i}^{c} & \sim & (1,1,3,1)_{2/3} \\ \tilde{d}_{i}^{c} & \sim & (1,1,3,1)_{-1/3} \end{array}$$

 $(SU(6)_{SC} \times SU(3)_A \times SU(3)_B \times SU(2)_L)_{U(1)_V}$

Suppressing Flavor Violation

Flavor looks disastrous!

Suppressing Flavor Violation

Flavor looks disastrous!

A ►

Set $M_{ij}^X \equiv z_{ij}^X \langle \Delta \rangle$ and $\tilde{m}_{ij}^X \equiv x_{ij}^X v$

Suppressing Flavor Violation

Flavor looks disastrous!

Since $M \gg m$, \tilde{m} , to suppress FCNCs we need $M_{ii}^{\chi} = M^{\chi} \delta_{ij}$

Evans (UCD)

Set $M_{ij}^X \equiv z_{ij}^X \langle \Delta \rangle$ and $\tilde{m}_{ii}^X \equiv x_{ii}^X v$

The Audience: Okay, now you are just messing with us...

$$\begin{array}{rcl} \left(SU(3)_{tC} \times SU(3)_{\bar{C}} \times SU(2)_{L}\right)_{U(1)_{Y}} & & \Phi & \sim & (3,\bar{3},1)_{0} \\ \Phi^{c} & \sim & (\bar{3},3,1)_{0} \\ \Phi^{c} & \sim & (\bar{3},3,1)_{0} \\ \Phi^{c} & \sim & (\bar{3},3,1)_{0} \\ \eta_{3} & \sim & (3,1,2)_{1/6} \\ t^{c} & \sim & (\bar{3},1,1)_{-2/3} \\ b^{c} & \sim & (\bar{3},1,1)_{-2/3} \\ \theta^{c} & \sim & (\bar{3},1,1)_{-2/3} \\ \theta^{c} & \sim & (1,3,2)_{1/6} \\ \eta_{i} & \sim & (1,3,2)_{1/6} \\ \eta_{i} & \sim & (1,3,1)_{-2/3} \\ \theta^{c} & \sim & (1,\bar{3},1)_{-2/3} \\ \theta^{c} & \sim & (1,\bar{3},1)_{-2/3} \\ U^{c} & \sim & (1,\bar{3},1)_{-2/3} \\ U^{c} & \sim & (1,\bar{3},1)_{-2/3} \\ \theta^{c} & \sim & (1,\bar{3},1)_{-1/3} \\ \theta^{c} & \otimes & (1,\bar{3},1)_{-1/3} \\ \theta^{c} & \sim & (1,\bar{3},1)_{-1/3} \\ \theta^{c} & \otimes & (1,\bar{3},1)_{-1$$

The Audience: Okay, now you are just messing with us...

These fields get
$$V(\Gamma)/c \mathcal{O}(M)$$

 $(SU(3)_{tC} \times SU(3)_{\overline{C}} \times SU(2)_L)_{U(1)_{tC}}$

These fields get VEVs $\mathcal{O}(M_{SUSY})$:

$$\langle \Phi
angle = \langle \Phi^c
angle \propto \mathbf{1}_3$$

$$\begin{split} \Phi &\sim (3,\bar{3},1)_{0} \\ \Phi^{c} &\sim (\bar{3},3,1)_{0} \\ q_{3} &\sim (3,1,2)_{1/6} \\ t^{c} &\sim (\bar{3},1,1)_{-2/3} \\ b^{c} &\sim (\bar{3},1,1)_{1/3} \\ q_{i} &\sim (1,3,2)_{1/6} \\ u_{i}^{c} &\sim (1,\bar{3},1)_{-2/3} \\ d_{i}^{c} &\sim (1,\bar{3},1)_{-2/3} \\ d_{i}^{c} &\sim (1,\bar{3},1)_{2/3} \\ U^{c} &\sim (1,\bar{3},1)_{-2/3} \\ D &\sim (1,3,1)_{-1/3} \\ D &\sim (1,\bar{3},1)_{-1/3} \\ D^{c} &\sim (1,\bar{3},1)_{1/3} \\ Q^{c} &\sim (1,\bar{3},1)_{1/3} \\ Q^{c} &\sim (1,\bar{3},1)_{-1/3} \\ D^{c} &\sim (1,\bar{3},1)_{1/3} \\ Q^{c} &\sim (1,\bar{3},1)_{1/3} \\ Q^{c} &\sim (1,\bar{3},1)_{-1/3} \\ D^{c} &\sim (1,\bar{3},1)_{1/3} \\ Q^{c} &\sim (1,\bar{3},1)_{1/3} \\ Q^{c} &\sim (1,\bar{3},1)_{-1/3} \\ Q^{c} &\sim (1,\bar{3},1)_{1/3} \\ Q$$

The Audience: Okay, now you are just messing with us...

$$(SU(3)_{tC} \times SU(3)_{\overline{C}} \times SU(2)_L)_{U(1)_Y}$$

These fields get VEVs $\mathcal{O}(M_{SUSY})$:
 $\langle \Phi \rangle = \langle \Phi^c \rangle \propto \mathbf{1}_3$
Which break $SU(3)_{tC} \times SU(3)_{\overline{C}} \rightarrow SU(3)_C$

$$\begin{split} \Phi &\sim & (3,\bar{3},1)_{0} \\ \Phi^{c} &\sim & (\bar{3},3,1)_{0} \\ q_{3} &\sim & (\bar{3},3,1)_{0} \\ t^{c} &\sim & (\bar{3},1,2)_{1/6} \\ t^{c} &\sim & (\bar{3},1,1)_{-2/3} \\ b^{c} &\sim & (\bar{3},1,1)_{1/3} \\ q_{i} &\sim & (1,3,2)_{1/6} \\ u_{i}^{c} &\sim & (1,\bar{3},1)_{-2/3} \\ d_{i}^{c} &\sim & (1,\bar{3},1)_{-2/3} \\ U &\sim & (1,3,1)_{2/3} \\ U^{c} &\sim & (1,\bar{3},1)_{-2/3} \\ D &\sim & (1,3,1)_{-1/3} \\ D^{c} &\sim & (1,\bar{3},1)_{1/3} \\ Q (200ber 11, 2010) \end{split}$$

The Audience: Okay, now you are just messing with us...

 $(SU(3)_{tC} \times SU(3)_{\overline{C}} \times SU(2)_L)_{U(1)_Y}$ These are the third generation quarks charged under topcolor

$$\begin{array}{rcl} \Phi & \sim & \left(3,\bar{3},1\right)_{0} \\ \Phi^{c} & \sim & \left(\bar{3},3,1\right)_{0} \\ q_{3} & \sim & \left(3,1,2\right)_{1/6} \\ t^{c} & \sim & \left(\bar{3},1,1\right)_{-2/3} \\ b^{c} & \sim & \left(\bar{3},1,1\right)_{1/3} \\ q_{i} & \sim & \left(1,3,2\right)_{1/6} \\ u_{i}^{c} & \sim & \left(1,\bar{3},1\right)_{-2/3} \\ d_{i}^{c} & \sim & \left(1,\bar{3},1\right)_{2/3} \\ U & \sim & \left(1,3,1\right)_{2/3} \\ U^{c} & \sim & \left(1,\bar{3},1\right)_{-2/3} \\ D & \sim & \left(1,3,1\right)_{-1/3} \\ D & \sim & \left(1,\bar{3},1\right)_{-1/3} \\ D^{c} & \sim & \left(1,\bar{3},1\right)_{1/3-24} \end{array}$$

The Audience: Okay, now you are just messing with us...

The Audience: Okay, now you are just messing with us...

$$SU(3)_{tC} imes SU(3)_{ar{C}} imes SU(2)_L)_{U(1)_Y}$$

These are new high scale quarks

$$\begin{array}{rcl} \Phi & \sim & \left(3,\bar{3},1\right)_{0} \\ \Phi^{c} & \sim & \left(\bar{3},3,1\right)_{0} \\ q_{3} & \sim & \left(3,1,2\right)_{1/6} \\ t^{c} & \sim & \left(\bar{3},1,1\right)_{-2/3} \\ b^{c} & \sim & \left(\bar{3},1,1\right)_{1/3} \\ q_{i} & \sim & \left(1,3,2\right)_{1/6} \\ u_{i}^{c} & \sim & \left(1,\bar{3},1\right)_{-2/3} \\ d_{i}^{c} & \sim & \left(1,\bar{3},1\right)_{2/3} \\ U & \sim & \left(1,3,1\right)_{2/3} \\ U^{c} & \sim & \left(1,\bar{3},1\right)_{-2/3} \\ D & \sim & \left(1,3,1\right)_{-1/3} \\ D & \sim & \left(1,\bar{3},1\right)_{-1/3} \\ D_{c} & \sim & \left(1,\bar{3},1\right)_{1/3} \\ \end{array}$$

The Audience: Okay, now you are just messing with us...

OU(O)

$$SU(3)_{tC} \times SU(3)_{\overline{C}} \times SU(2)_L)_{U(1)_Y}$$

These are new high scale quarks

 $\alpha u (\alpha)$

They have dirac masses of $\mathcal{O}(M_{SUSY})$

$$\begin{array}{rcl} \Phi & \sim & \left(3,\bar{3},1\right)_{0} \\ \Phi^{c} & \sim & \left(\bar{3},3,1\right)_{0} \\ q_{3} & \sim & \left(3,1,2\right)_{1/6} \\ t^{c} & \sim & \left(\bar{3},1,1\right)_{-2/3} \\ b^{c} & \sim & \left(\bar{3},1,1\right)_{1/3} \\ q_{i} & \sim & \left(1,3,2\right)_{1/6} \\ u_{i}^{c} & \sim & \left(1,\bar{3},1\right)_{-2/3} \\ d_{i}^{c} & \sim & \left(1,\bar{3},1\right)_{2/3} \\ U^{c} & \sim & \left(1,\bar{3},1\right)_{-2/3} \\ D^{c} & \sim & \left(1,3,1\right)_{-1/3} \\ D^{c} & \sim & \left(1,\bar{3},1\right)_{-1/3} \\ D^{c} & \sim & \left(1,\bar{3},1\right)_{1/3} \\ \end{array}$$

MCTC: Flavor

The Audience: Okay, now you are just messing with us...

$\left({{SU}(3)_{tC} imes {SU}(3)_{ar{C}} imes {SU}(2)_L} ight)_{U(1)_Y}$	Φ	\sim	$\left(3,\mathbf{\bar{3}},1\right)_{0}$
(()) () () () () () () () ()	Φ^{c}	\sim	$(\bar{3}, 3, 1)_0$
	q_3	\sim	(3,1,2) _{1/6}
These are new high scale quarks	ť	\sim	$\left(\bar{3},1,1\right)_{-2/3}$
	b ^c	\sim	$(\bar{3}, 1, 1)_{1/3}$
They have dirac masses of $\mathcal{O}\left(\textit{M}_{SUSY} ight)$	\boldsymbol{q}_i	\sim	(1,3,2) _{1/6}
Through interactions with t^c and b^c , they	u_i^c	\sim	$(1, \bar{3}, 1)_{-2/3}$
communicate mixing between the 3rd and first two generations of quarks	d_i^c	\sim	$(1,\bar{3},1)_{1/3}$
	U		$(1,3,1)_{2/3}$
	U ^c	\sim	$\left(1, \bar{3}, 1\right)_{-2/3}$
	D	\sim	$(1,3,1)_{-1/3}$
	D ^c		$(1,\overline{3},1)_{1/3}$

_

The Audience: Okay, now you are just messing with us...

$$(SU(3)_{tC} imes SU(3)_{ar{C}} imes SU(2)_L)_{U(1)_Y}$$

$$W \ni y_t H_u q_3 t^c + y_b H_d q_3 b^c$$

+ $(y_u)_{ij} H_u q_i u_j^c + (y_d)_{ij} H_d q_i d_j^c$
+ $z_t \Phi t^c U + z_t \Phi b^c D$
+ $(z_i) = H_i U_i^c + (z_i) = H_i D_i^c$

+
$$(z_u)_i q_i H_u U^c + (z_d)_i q_i H_d D$$

+
$$\mu_u UU^c + \mu_d DD^c$$

$$\begin{array}{rcl} \Phi & \sim & \left(3,\bar{3},1\right)_{0} \\ \Phi^{c} & \sim & \left(\bar{3},3,1\right)_{0} \\ q_{3} & \sim & \left(3,1,2\right)_{1/6} \\ t^{c} & \sim & \left(\bar{3},1,1\right)_{-2/3} \\ b^{c} & \sim & \left(\bar{3},1,1\right)_{1/3} \\ q_{i} & \sim & \left(1,3,2\right)_{1/6} \\ u_{i}^{c} & \sim & \left(1,\bar{3},1\right)_{-2/3} \\ d_{i}^{c} & \sim & \left(1,\bar{3},1\right)_{1/3} \\ U & \sim & \left(1,3,1\right)_{2/3} \\ U^{c} & \sim & \left(1,\bar{3},1\right)_{-2/3} \\ D & \sim & \left(1,3,1\right)_{-1/3} \\ D & \sim & \left(1,\bar{3},1\right)_{-1/3} \\ \end{array}$$

The Audience: Okay, now you are just messing with us...

$$\left(\mathcal{SU}(3)_{tC} imes \mathcal{SU}(3)_{ar{C}} imes \mathcal{SU}(2)_L
ight)_{U(1)_Y}$$

$$W \ni y_t H_u q_3 t^c + y_b H_d q_3 b^c$$

+ $(y_u)_{ij} H_u q_i u_j^c + (y_d)_{ij} H_d q_i d_j^c$
+ $z_t \Phi t^c U + z_t \Phi b^c D$
+ $(z_u)_i q_i H_u U^c + (z_d)_i q_i H_d D^c$

+ $\mu_u UU^c + \mu_d DD^c$

after VEVs this reduces to:

$$\mathcal{L} \quad \ni \quad (m_u)_{ij} \, u_i u_j^c + m_t t t^c + (\delta_u)_i \, u_i U^c + \quad \Delta_u t^c U + \mu_u U U^c + \text{down-type terms}$$

$$\begin{array}{rcl} \Phi & \sim & \left(3,\bar{3},1\right)_{0} \\ \Phi^{c} & \sim & \left(\bar{3},3,1\right)_{0} \\ q_{3} & \sim & \left(3,1,2\right)_{1/6} \\ t^{c} & \sim & \left(\bar{3},1,1\right)_{-2/3} \\ b^{c} & \sim & \left(\bar{3},1,1\right)_{1/3} \\ q_{i} & \sim & \left(1,3,2\right)_{1/6} \\ u_{i}^{c} & \sim & \left(1,\bar{3},1\right)_{-2/3} \\ d_{i}^{c} & \sim & \left(1,\bar{3},1\right)_{1/3} \\ U & \sim & \left(1,3,1\right)_{2/3} \\ U^{c} & \sim & \left(1,\bar{3},1\right)_{-2/3} \\ D & \sim & \left(1,3,1\right)_{-1/3} \\ D & \sim & \left(1,\bar{3},1\right)_{-1/3} \\ D^{c} & \sim & \left(1,\bar{3},1\right)_{1/3} \\ \end{array}$$

We have then a mass matrix of:

$$M_{u} = \begin{pmatrix} u \\ t \\ U \end{pmatrix}^{T} \begin{pmatrix} m_{u} & 0 & \delta_{u} \\ 0 & m_{t} & 0 \\ 0 & \Delta_{u} & \mu_{u} \end{pmatrix} \begin{pmatrix} u^{c} \\ t^{c} \\ U^{c} \end{pmatrix}$$

< ロ > < 同 > < 回 > < 回 >

We have then a mass matrix of:

$$M_{u} = \begin{pmatrix} u \\ t \\ U \end{pmatrix}^{T} \begin{pmatrix} m_{u} & 0 & \delta_{u} \\ 0 & m_{t} & 0 \\ 0 & \Delta_{u} & \mu_{u} \end{pmatrix} \begin{pmatrix} u^{c} \\ t^{c} \\ U^{c} \end{pmatrix}$$

Diagonalization of $M_u^{\dagger}M_u$ and $M_d^{\dagger}M_d$ can give the correct CKM matrix elements for very reasonable parameter choices

We have then a mass matrix of:

$$M_{u} = \begin{pmatrix} u \\ t \\ U \end{pmatrix}^{T} \begin{pmatrix} m_{u} & 0 & \delta_{u} \\ 0 & m_{t} & 0 \\ 0 & \Delta_{u} & \mu_{u} \end{pmatrix} \begin{pmatrix} u^{c} \\ t^{c} \\ U^{c} \end{pmatrix}$$

Diagonalization of $M_u^{\dagger}M_u$ and $M_d^{\dagger}M_d$ can give the correct CKM matrix elements for very reasonable parameter choices

FCNCs suppressed since all terms mix through the very heavy U or D

We have then a mass matrix of:

$$M_{u} = \begin{pmatrix} u \\ t \\ U \end{pmatrix}^{T} \begin{pmatrix} m_{u} & 0 & \delta_{u} \\ 0 & m_{t} & 0 \\ 0 & \Delta_{u} & \mu_{u} \end{pmatrix} \begin{pmatrix} u^{c} \\ t^{c} \\ U^{c} \end{pmatrix}$$

Diagonalization of $M_u^{\dagger}M_u$ and $M_d^{\dagger}M_d$ can give the correct CKM matrix elements for very reasonable parameter choices

FCNCs suppressed since all terms mix through the very heavy *U* or *D* Still, the strongly interacting tC gluon exchange puts the SUSY scale bound into the 10s of TeV range

Detection of this model at the LHC is difficult, but not impossible!

Detection of this model at the LHC is difficult, but not impossible!

We will have light $SU(2)_{CTC}$ gauginos, our global symmetry structure is

 $SU(4) imes U(1)_{\lambda}
ightarrow Sp(4)$

 \Rightarrow 3 physical PNGBs – *h*, *a* and η

Detection of this model at the LHC is difficult, but not impossible!

We will have light $SU(2)_{CTC}$ gauginos, our global symmetry structure is

 $SU(4) imes U(1)_{\lambda}
ightarrow Sp(4)$

 \Rightarrow 3 physical PNGBs – *h*, *a* and η

h is a composite Higgs

- ► For good S-parameter, it needs to be light (120 GeV)
- Will look just like a SM Higgs (ILC may be able to distinguish)

Detection of this model at the LHC is difficult, but not impossible!

We will have light $SU(2)_{CTC}$ gauginos, our global symmetry structure is

 $SU(4) imes U(1)_{\lambda}
ightarrow Sp(4)$

 \Rightarrow 3 physical PNGBs – *h*, *a* and η

h is a composite Higgs

- ► For good S-parameter, it needs to be light (120 GeV)
- Will look just like a SM Higgs (ILC may be able to distinguish)
- a is a new state which is very weakly coupled to the SM
 - For a good S-parameter, it will be heavy $m_a \sim \frac{m_h}{\sin \theta}$
 - Decays through anomalies or into tops
 - ▶ Pair production possibly large enough if σ_{TC} is O (TeV)

Detection of this model at the LHC is difficult, but not impossible!

We will have light $SU(2)_{CTC}$ gauginos, our global symmetry structure is

 $SU(4) imes U(1)_{\lambda}
ightarrow Sp(4)$

 \Rightarrow 3 physical PNGBs – *h*, *a* and η

h is a composite Higgs

- ► For good S-parameter, it needs to be light (120 GeV)
- Will look just like a SM Higgs (ILC may be able to distinguish)
- a is a new state which is very weakly coupled to the SM
 - For a good S-parameter, it will be heavy $m_a \sim \frac{m_h}{\sin\theta}$
 - Decays through anomalies or into tops
 - ▶ Pair production possibly large enough if σ_{TC} is O (TeV)
- η is a new state which is also very weakly coupled to the SM
 - Similar story to a, but much lighter ...

э

Detection of this model at the LHC is difficult, but not impossible!

We will have light $SU(2)_{CTC}$ gauginos, our global symmetry structure is

 $SU(4) imes U(1)_{\lambda}
ightarrow Sp(4)$

 \Rightarrow 3 physical PNGBs – *h*, *a* and η

h is a composite Higgs

- ► For good S-parameter, it needs to be light (120 GeV)
- Will look just like a SM Higgs (ILC may be able to distinguish)
- a is a new state which is very weakly coupled to the SM
 - For a good S-parameter, it will be heavy $m_a \sim \frac{m_h}{\sin\theta}$
 - Decays through anomalies or into tops
 - ▶ Pair production possibly large enough if σ_{TC} is O (TeV)
- η is a new state which is also very weakly coupled to the SM
 - Similar story to *a*, but much lighter ... but unfortunately

This is most likely physics for the 14 TeV LHC

We have seen two realistic models of flavor in strong EWSB

크

- We have seen two realistic models of flavor in strong EWSB
- Both are natural, UV-complete models for conformal technicolor

- We have seen two realistic models of flavor in strong EWSB
- ► Both are natural, UV-complete models for conformal technicolor
- These models are partially intended as "existence proofs"

- We have seen two realistic models of flavor in strong EWSB
- Both are natural, UV-complete models for conformal technicolor
- These models are partially intended as "existence proofs"
- Recent developments from both theory and lattice support CTC, the superconformal symmetry is essential to the model

- We have seen two realistic models of flavor in strong EWSB
- Both are natural, UV-complete models for conformal technicolor
- These models are partially intended as "existence proofs"
- Recent developments from both theory and lattice support CTC, the superconformal symmetry is essential to the model
- This is a relatively young idea with much need for model building

- We have seen two realistic models of flavor in strong EWSB
- Both are natural, UV-complete models for conformal technicolor
- These models are partially intended as "existence proofs"
- Recent developments from both theory and lattice support CTC, the superconformal symmetry is essential to the model
- This is a relatively young idea with much need for model building
- The phenomenology needs to be developed more thoroughly, but there is definitely interesting new physics there
- Much more work is in progress

Thank you!

2

イロト イヨト イヨト