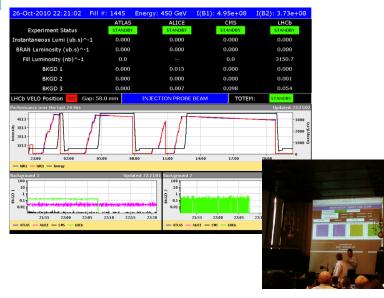


INSTITUTE FOR THEORETICAL PHYSICS, HEIDELBERG UNIVERSITY

BSM searches using weak boson pair production

Christoph Englert | 26.10.2010

HIGH ENERGY SEMINAR, UC DAVIS

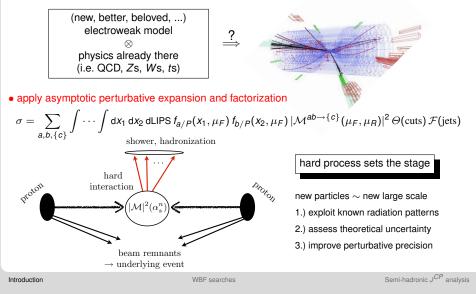


Outline

Weak boson pair (+jets) production processes at the LHC

- unitarizing resonances in weak boson fusion
- indirect effects in QCD W_γ(+jet) and WZ(+jet) production
- ② Unravelling resonance J^{CP} properties from semi-hadronic ZZ decays
 - (sub)jet methods
 - strategy-adapted observables

Expecting data



Introduction

WBF searches

LHC Phenomenology

• need to reliably simulate and interpret (B)SM LHC physics...

What do we currently know?

no viable test of the Fermi-scale and beyond! But we may expect ...

$$\mathcal{L} = \mathcal{L}_{\text{SM w/o Higgs}} + \underbrace{\mathcal{L}_{[SU(2) \times U(1)/U(1)]}}_{\text{new resonances?}} + \underbrace{\frac{1}{\Lambda_{UV}^2} \mathcal{L}^{(6)} + \dots}_{\text{non-SM interactions?}}$$

What can we guess from theory

Require new propagating degrees of freedom

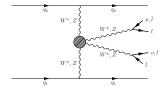
[Cornwall, Levin, Tiktopoulos '73]

 \propto (energy)²

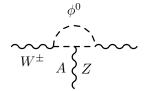
Higgs mass in the SM is a very relevant operator

 $\mathcal{L}_{\text{SM}} \supset \Lambda^2_{\text{UV}} H^{\dagger} H$ EWSB & $M_{\text{Planck}}, M_{\text{GUT}}, \ldots \rightarrow \text{Hierarchy Problem}$

Ameliorate with approx. global symmetries or non-canonical scaling


[SUSY ...] [Agashe, Contino, Pomarol '04] [Luty, Okui '04]

 Framework for fully-computable strong interactions motivated from AdS/CFT [Witten '98] [Arkani-Hamed, Porrati, Randall '01] [Rattazzi, Zaffaroni '01] [Csaki, Grojean, Pilo, Terning '04]


Introduction

Phenomenological aspects of strongly interacting sectors

$$\langle J_{A}^{\mu}(\rho)J_{A}^{\nu}(-\rho)\rangle = (\rho^{2}g^{\mu\nu} - \rho^{\mu}\rho^{\nu})\left(\frac{F_{\pi}^{2}}{\rho^{2}} + \sum_{n}\frac{F_{n}^{2}}{\rho^{2} - m_{n}^{2}}\right)$$

production of longitudinally polarized gauge bosons in experimentally clean channels [Bagger et al. '95] [CE, Jager, Worek, Zeppenfeld '08]

precise predictions of processes involving trilinear gauge boson couplings

[Baur, Han, Ohnemus '93] [LEPWG '06]

[Campanario, CE, Spannowsky, Zeppenfeld '09 '10]

Introduction

WBF searches

Semi-hadronic JCP analysis

^{[&#}x27;t Hooft '74] [Witten '79]

non-standard trilinear couplings

Integrating out new high-mass degrees of freedom:

non-SM operators at low scales

• Extend SM Lagrangian by the most general $\mathcal{CP}\text{-}conserving dim} \leq 6$ operators modifying the trilinear gauge vertices

$$\mathcal{L}_{WW\gamma} = -ie[W^{\dagger}_{\mu\nu}W^{\mu}A^{\nu} - W^{\dagger}_{\mu}A_{\nu}W^{\mu\nu} + \frac{\lambda\gamma}{m_{W}^{2}}W^{\dagger}_{\lambda\mu}W^{\mu}_{\nu}F^{\nu\lambda}]$$

$$+ \kappa_{\gamma}W^{\dagger}_{\mu}W_{\nu}F^{\mu\nu} + \frac{\lambda\gamma}{m_{W}^{2}}W^{\dagger}_{\lambda\mu}W^{\mu}_{\nu}F^{\nu\lambda}]$$

$$+ \kappa_{Z}W^{\dagger}_{\mu}W_{\nu}Z^{\mu\nu} + \frac{\lambda_{Z}}{m_{W}^{2}}W^{\dagger}_{\lambda\mu}W^{\mu}_{\nu}Z^{\nu\lambda}]$$

$$\gamma_{\rho}(k_{3}), Z_{\rho}(k_{3})$$

• Analysis with $q\bar{q} \rightarrow W\gamma$, WZ kinematically favored, but jet emission unsuppressed at the LHC: [Baur, Han, Ohnemus '93] [Baur, Han, Ohnemus '95]

$$\sigma(W\gamma + \text{jet})/\sigma(W\gamma) \sim 3$$

 \rightarrow necessary to precisely know anomalous couplings impact on $W\gamma+{\rm jet}$ NLO QCD precision mandatory

Semi-hadronic JCP analysis

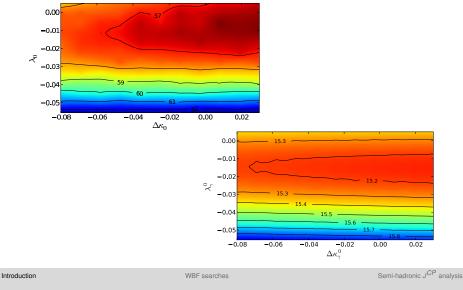
Introduction

non-standard trilinear couplings

high-scale unitarity: anomalous parameters should be understood as form factors, e.g.

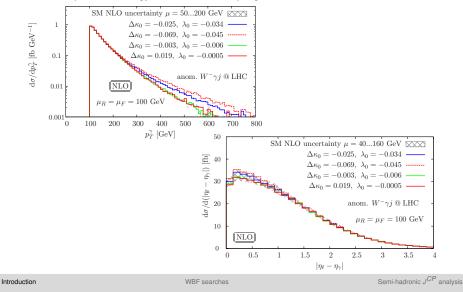
- We have performed a detailed investigation of the jet-inclusive signal processes, also including anomalous couplings [Campanario, CE, Spannowsky, Zeppenfeld '09, '10]
 [Campanario, CE, Kallweit , Spannowsky, Zeppenfeld '10]
- Full inclusive analysis underway

Introduction

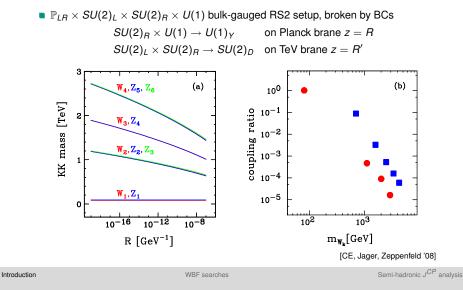

WBF searches

Semi-hadronic JCP analysis

 $\mathcal{J} W_{*}^{+}(k_{2})$

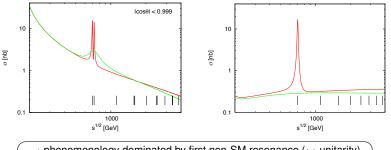

non-standard trilinear couplings

Precision phenomenology of anomalous couplings, full $\mathcal{O}(\alpha_s^2 \alpha^3)$ matrix elements


non-standard trilinear couplings

Precision phenomenology of anomalous couplings

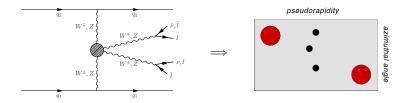
Direct searches: a Technicolor paradigm (minimal) Higgsless Phenomenology


[Csaki, Grojean, Pilo, Terning '04]

Direct searches: a Technicolor paradigm (minimal) Higgsless Phenomenology

strong sector "naturally" encodes unitarity conservation à la Sturm-Liouville

$$g_{WWZZ} = \sum_{k \ge 1} g_{W_k WZ}^2 \qquad \mathcal{O}(s)$$
$$2(m_Z^2 + m_W^2)g_{WWZZ} = \sum_{k \ge 1} g_{W_k WZ}^2 \left(3m_{W_k}^2 - \frac{(m_Z^2 - m_W^2)^2}{m_{W_k}^2}\right) \qquad \mathcal{O}(\sqrt{s})$$


→ phenomenology dominated by first non-SM resonance (↔ unitarity) "robust" against model-specific modifications (fermion sector)

Introduction

WBF searches

Semi-hadronic JCP analysis

Longitudinal gauge boson scattering @ LHC

VBF signatures in general

[Bagger et al. '94] [Rainwater, Zeppenfeld '99]

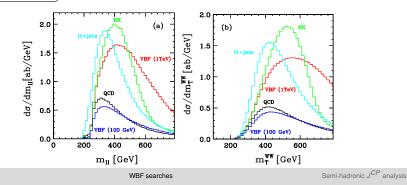
- color singlet t-channel exchange (s-channel interference negligible)
- large Feynman-x to produce heavy resonance on-shell
- Altarelli-Parisi splitting: $p_T^{jet} \sim m_W$

two energetic back-to-back jets to "tag" event electroweak decay products hard and central

color correlations and kinematics are significantly different from QCD backgrounds

Introduction

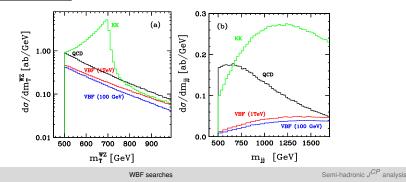
WBF searches


Semi-hadronic JCP analysis

LHC pheno

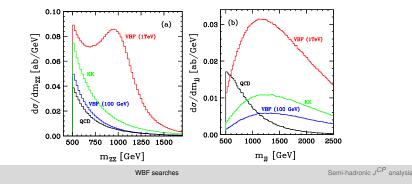
- Full signal and background analysis for all WBF VV' jj channels at the LHC all finite width and off-shell effects included beyond any approximation for signal and backgrounds [VBFNLO group '08] [CE, Jager, Worek, Zeppenfeld '08]
- Two minimal scenarios: heavy and broad techni-π-like (isoscalar) resonance ~ 1 TeV, and narrow AdS/CFT – inspired techni-ρ (isovectorial)
- Take into account NLO QCD effects through efficient scale choices

 $\left(pp
ightarrow e^{-} \mu^{+} \not\!\!\! E_{T} j j
ight)$


[Bozzi et al. '07] [CE, Jager, Zeppenfeld '08]

LHC pheno

- Full signal and background analysis for all WBF VV' jj channels at the LHC all finite width and off-shell effects included beyond any approximation for signal and backgrounds [VBFNLO group '08] [CE, Jager, Worek, Zeppenfeld '08]
- Two minimal scenarios: heavy and broad techni-π-like (isoscalar) resonance ~ 1 TeV, and narrow AdS/CFT – inspired techni-ρ (isovectorial)
- Take into account NLO QCD effects through efficient scale choices


[Bozzi et al. '07] [CE, Jager, Zeppenfeld '08]

LHC pheno

- Full signal and background analysis for all WBF VVjj channels at the LHC all finite width and off-shell effects included beyond any approximation for signal and backgrounds [VBFNLO group '08] [CE, Jager, Worek, Zeppenfeld '08]
- Two minimal scenarios: heavy and broad techni-π-like (isoscalar) resonance ~ 1 TeV, and narrow AdS/CFT – inspired techni-ρ (isovectorial)
- Take into account NLO QCD effects through efficient scale choices

 $\left({\it pp}
ightarrow {\it e^-} {\it e^+} \mu^+ \mu^- {\it jj}
ight)$

[Bozzi et al. '07] [CE, Jager, Zeppenfeld '08]

High $\mathcal{L}=300~{\rm fb^{-1}}$ discovery reach

	Process	σ_S	σ_B	S/B	S/\sqrt{B}	$S/\sqrt{S+B}$	$N_{\rm signal}^{SM}$	N _{bkgd} .	
	$W^{\pm}Zjj$ $W^{+}W^{-}jj$	0.68 0.40	0.39 0.78	1.7 0.5	18.9 7.9	11.4 6.4	204 120	117 234	isovectorial
	$\begin{array}{c} ZZjj \rightarrow 4\ell jj \\ ZZjj \rightarrow 2\ell 2\nu jj \end{array}$	0.009 0.05	0.021 0.10	0.4 0.5	1.1 2.7	0.9 2.2	3 15	6 30	
_	Process	σ_S	σ_B	S/B	S/\sqrt{B}	$S/\sqrt{S+B}$	$N^{SM}_{\rm signal}$	$N_{\rm bkgd.}$	
_	$\begin{array}{c} ZZjj \rightarrow 4\elljj \\ ZZjj \rightarrow 2l2\nujj \\ W^+W^-jj \end{array}$	0.048 0.27 0.51	0.021 0.10 0.78	2.2 2.7 0.6	5.7 14.8 10.0	3.1 7.7 7.8	14 81 153	6 30 234	isoscalar
_	$W^{\pm}Zjj$	0.031	0.386	0.1	0.9	0.8	9	116	_

combined LHC analysis at high rates is highly sensitive to the realization of EWSB

Introduction

Penalty of purity...

• WBF cross sections are small: robust against QCD corrections,

 $BR(Z \rightarrow \ell \ell) = 0.0336$

• tiny leptonic branching ratios limits non-WBF searches, e.g. $gg \rightarrow H \rightarrow ZZ \rightarrow 4\mu$

throw away \approx 99.9% of the signal!

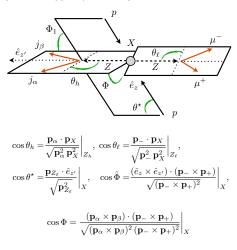
 use subjet techniques to ameliorate BR-suppression via a hadronically-decaying Z while sufficiently reducing the backgrounds

[Butterworth, Davison, Rubin, Salam '08] [Soper, Spannowsky '10] [Hackstein, Spannowsky '10]

works to reconstruct SM-like produced Higgs resonance $m_H \gtrsim 350 \text{ GeV}$

 $S/B \sim 0.5$, $5\sigma @ 10 \text{ fb}^{-1}$

• $H \rightarrow ZZ \rightarrow 4\mu$ standard candle for spin and CP determination for $m_H \gtrsim 300$ GeV [Buszello *et al.* '02] [Gao *et al.* '10] [DeRujula *et al.* '10] [Cabibbo, Maksymowicz '65] [Dell'Aquila, Nelson '85]


Can we supplement additional information from $X \rightarrow 2j + \ell^+ \ell^-$, where X is a "Higgs-look-a-like"?

Introduction

WBF searches

General *J^{CP}* production and decay

[Cabibbo, Maksymowicz '65] [Dell'Aquila, Nelson '85] [Gao et al. '10] [DeRujula et al. '10]

- Impose rapidity ordering $y_{\alpha} < y_{\beta}$
- Assume minimal effective interactions to analyze angular correlations

$$\mathcal{L}^{q\bar{q}X} = \bar{\Psi}_{q}\gamma^{\mu} \left(g_{L}^{v}\mathbb{P}_{L} + g_{R}^{v}\mathbb{P}_{R}\right)\Psi_{q}$$
$$\mathcal{L}^{ggX} = -\frac{1}{4}\left(g_{1}^{s}G^{2}X + g_{2}^{s}G\widetilde{G}X\right)$$

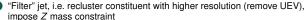
$$\begin{split} \mathcal{L}_{\mu\nu}^{ZZX} &= c_1^s \, g_{\mu\nu} + \frac{c_2^s}{m_Z^2} \epsilon_{\mu\nu\rho\delta} \, p_1^\rho \, p_2^\delta \, . \\ \mathcal{L}_{\mu\nu\rho}^{ZZ\chi} &= c_1^v \left(g_{\mu\rho} \, p_{1,\nu} + g_{\nu\rho} p_{2,\mu} \right) \\ &\quad - c_2^v \, \epsilon_{\mu\nu\rho\delta} \left(p_1^\delta - p_2^\delta \right) \\ &\quad \text{[Keung, Low, Shu '08]} \\ \mathcal{L}_{\mu\nu\rho\delta}^{ZZX} &= c_1^t \left(p_{1,\nu} \, p_{2,\rho} \, g_{\mu\delta} + p_{1,\rho} \, p_{2,\mu} \, g_{\nu\delta} \right) \end{split}$$

$$+ p_{1,
ho} p_{2,\delta} g_{\mu
u} - rac{1}{2} m_X^2 g_{\mu
ho} g_{\mu\delta})$$

$J^{\mathcal{CP}}(X)$	production	decay			
0+	$g_1^s eq 0, \ g_2^s = 0$	$c_1^s \neq 0, \ c_2^s = 0$			
0-	$g_1^{\overline{s}} = 0, \ g_2^{\overline{s}} \neq 0$	$c_1^{\overline{s}}=0, \ c_2^{\overline{s}}\neq 0$			
1+	$g_1^v=0,\ g_2^v eq 0$	$c_1^v=0,\ c_2^v\neq 0$			
1-	$g_1^{\scriptscriptstyle V} eq 0,\ g_2^{\scriptscriptstyle V}=0$	$c_1^{\nu}\neq 0,\ c_2^{\nu}=0$			
2+	$g_1^t \neq 0$	$c_1^t \neq 0$			

Semi-hadronic JCP analysis

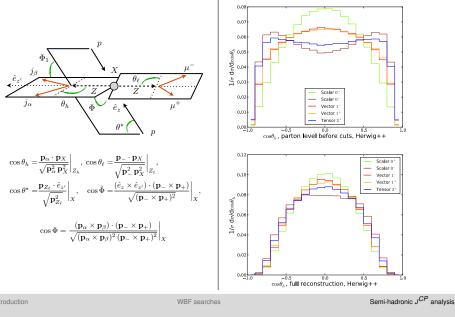
Introduction

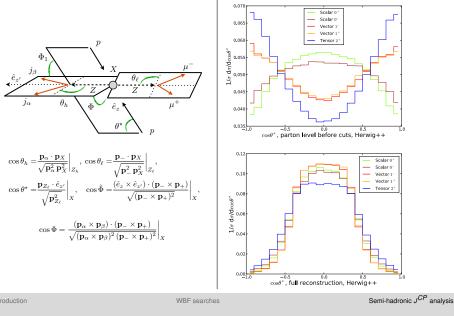

WBF searches

C. Englert - BSM searches using weak boson pair production

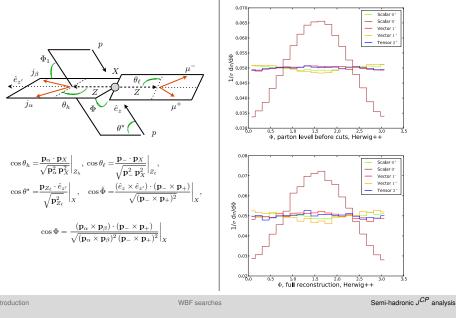
Details on the analysis

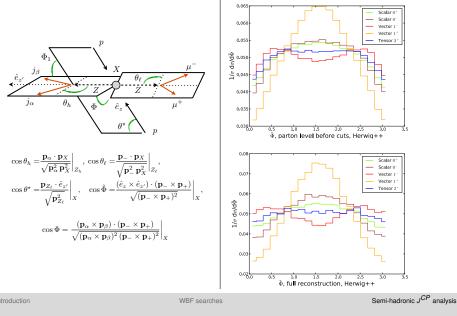
- Include full off-shell effects in production and decay for the signal and the backgrounds (Z+jets, tt, WZ, ZZ)
- Perform boosted fatjet/subjet analysis to reconstruct hadronic Z
 - [Butterworth, Davison, Rubin, Salam '08]
 - Full event simulation with MadEvent + Pythia/Herwig++ [Sjostrand et al. '06] [Bahr et al. '08]
 - Normalize to NLO results, include HCAL granularity [MCFM, HIGLU, VBFNLO, Cacciari '08]
 - 3 ask for a "fat" jet with large $p_T > 150$ GeV, C/A R = 1.2, and 2 isolated muons $p_T > 15$ GeV
 - Undo last clustering, require "mass drop"

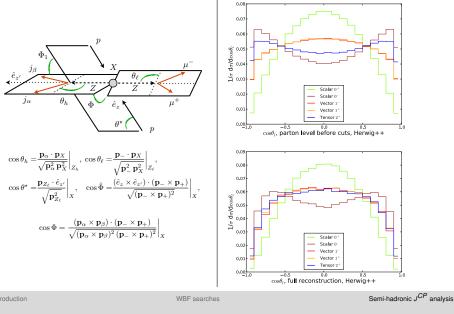

$$m_{j_1} < 0.67 m_j (\text{fat jet}), \ \Delta R_{j_1 j_2}^2 \min(p_{T, j_1}^2, p_{T, j_2}^2) > 0.09 m_j (\text{fat jet})^2$$

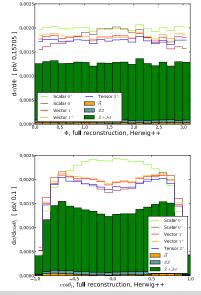

- Reconstruct X mass peak and center of mass system (crucial!)
- S/B improvement via "pruning" and "trimming" [Ellis et al. '09, '10] [Krohn et al. '10]

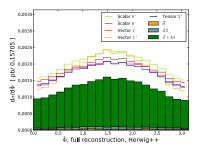
Introduction


Tracing sensitivity...


Tracing sensitivity...

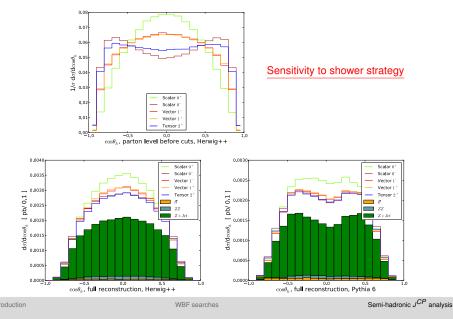

Tracing sensitivity...


Tracing sensitivity...



Tracing sensitivity...

Include backgrounds



- Bulk of sensitivity is lost due to hard central requirements and degeneracies
- Z+jets fakes $\tilde{\Phi}$ (systematics ~ 30%)
- residual discriminative power for 0[±]

Introduction

WBF searches

Side benefit...

Summary & Conclusions

 Measuring diboson + jet production processes at the LHC will contribute to understand the mechanism of EWSB (better)

- WBF is perturbatively under control and exhibits experimentally clean signatures
- theoretical (inclusive) diboson production has reached the perturbative precision to measure deviations in various phase space regions.

New strategies in jet physics (theoretically) suggest (re)introduce new processes

- supplement information on *J^{CP}* of a singly-produced resonance
- important if LHC is not reaching its design-center of mass energy
- we provide an observable which is sensitive to parton showering