A New Method for Resolving Combinatorial Ambiguities at Hadron Colliders

Felix Yu UC Irvine

Work supported by a 2010 LHC Theory Initiative Graduate Fellowship arXiv: 1009.2751 [hep-ph] with A. Rajaraman University of California, Davis November 15, 2010

The LHC Era is here!

- The current 7 TeV run will finish in 2011 with $\approx 1 \text{ fb}^{-1}$
- Potential for new physics (cf. Workshop on Topologies for Early LHC
- Searches, SLAC,
- Sept. 22-26, 2010)
- One hope is for the direct production of dark matter

- Collider signals of SUSY, UED
 - Cascade decay chains ending in LSP, LKP
 - $-Z_2$ symmetry ensures the LSP, LKP is stable
 - If neutral, is usually a good dark matter candidate
 - Z₂ symmetry ensures the kinematics of the event are not readily measurable
- Many kinematic methods have been developed to aid determination of the LSP, LKP mass

- Kinematic edges
 - Thresholds and maximums of invariant mass distributions provide algebraic expressions relating underlying cascade decay chain masses
- Polynomial method
 - Solve momentum conservation equations
 - Use non-linear constraints to solve for LSP, LKP momenta
- m_{T2}, m_{CT2} method
 - $-m_{T2}$ Kink
 - Sub-system m_{T2}
 - $-m_{T2}$ as a discovery variable

Baer, Chen, Paige, Tata, Hinchliffe Allanach, Lester, Parker, White Barr, Gripaios, Nojiri, Cheng, Gunion, Han, Marandella, McElrath, ...

- Need the LSP, LKP mass to determine the mass scale
 Differences in masses are easy
- Usual procedure to solve for LSP, LKP mass:
 - 1. Use cuts to isolate some collection of objects (*e.g.* 4 jets inclusive + 0 leptons + MET), eliminate background
 - 2. Hypothesize an underlying decay chain topology (*e.g.* pair-produced gluinos decaying to neutralinos via squarks)
 - 3. Assign objects to decay chains (ordered, if possible)
 - 4. Apply your favorite mass reconstruction technique

Method	Decay chain assignment? (Combinatorial ambiguity)	Ordering required? (Permutative ambiguity)
H _T , M _{eff}	No	No
Kinematic edges	Yes	Yes/No
Polynomial	Yes	Yes
m _{T2}	Yes	No
m _{CT2}	Yes	No
Subsystem m_{T2}	Yes	Yes

 Decay chain assignments must deal with combinatorial ambiguities

- For pair-produced gluinos decaying to LSPs via squarks, we have 4 quarks that can be grouped into 3 pair-pair combinations
 - Important note: this combinatorial ambiguity is present even if dealing with only signal events

- Other possibilities: in busy cascade decay chains, it is important to associate particles correctly
- Usually, there are additional tools to eliminate wrong combinations

Outline

- Motivation
- Our simple models
- Brief review of basic kinematics
- The well-studied hemisphere method
- The new $p_T v$. M method
- Comparison
- Conclusions

Models

 Consider gluino pair-production in a 7 TeV LHC or 14 TeV LHC, both decay identically via on-shell or offshell squarks to LSP neutralino

	Gluino Mass	Squark Mass	Neutralino Mass	Kinematic Edge
Model A	600 GeV	400 GeV	100 GeV	433 GeV
Model B	600 GeV	800 GeV	100 GeV	500 GeV

- Generate 100,000 events using MadGraph/MadEvent 4.4.26, decay using BRIDGE
 - No ISR/FSR, hadronization
 - Only consider parton level

Kinematic edge in invariant mass

- An oft-used feature of cascade decay chain kinematics is the invariant mass edge
- On-shell squark characteristic triangular shape

$$m_{qq}|_{\text{edge}} = \sqrt{\frac{(m_{\tilde{g}}^2 - m_{\tilde{q}}^2)(m_{\tilde{q}}^2 - m_{\tilde{\chi}_1^0}^2)}{m_{\tilde{q}}^2}}$$

Off-shell squark – small number of events near edge

$$m_{qq}|_{\text{edge}} = m_{\tilde{g}} - m_{\tilde{\chi}_1^0}$$

1

Kinematic edge in invariant mass **On-shell** squark scenario

Kinematic edge in invariant mass Off-shell squark scenario

- Basic idea: divide an event into hemispheres where each decay chain falls entirely into separate hemispheres
- Two steps
 - Step 1: Choose 2 seeds
 - These are the central axes for the hemisphere clusters

- Step 2: Cluster remaining objects with the given seeds

 Figure of merit is minimum pdR: roughly, a momentumweighted angular separation

pdR = ($|\Delta p| \Delta R$), where $\Delta R \equiv \sqrt{[(\Delta \phi)^2 + (\Delta \eta)^2]}$

- Our implementation
 - 1. Choose highest p_T object as seed 1

2. **PDR1**. Of the remaining objects, choose the maximum pdR object as seed 2

PDR2. Of the remaining objects, choose the maximum invariant mass object as seed 2

3. For each remaining objects, calculate pdR w.r.t seed 1 and w.r.t. seed 2. Cluster the object with whichever seed has the smaller pdR, *i.e.* the closer seed in momentum-weighted angle space.

- Our cuts
 - Cut 1. The highest p_T object must have $p_T \ge 200 \text{ GeV}$
 - PDR1 Cut 2. The minimum pdR between seed 1 and seed 2 must be 1800 GeV
 - PDR2 Cut 2. The invariant mass of seed 1 and seed 2 must be larger than the kinematic edge value
 - Cut 3. Discard all singlet-triplet events
 - Cut 4. The maximum seed-object invariant mass must be less than or equal to the kinematic edge value

 Our cuts do not include realistic detector cuts (ηacceptance, minimum p_T, isolation requirements)

PDR 1 Cut Performance	Cut 1	Cuts 1-2	Cuts 1-3	Cuts 1-4
Model A – 7 TeV	78.8%	25.2%	12.4%	12.2%
Model A – 14 TeV	81.7%	35.8%	18.5%	18.2%
Model B – 7 TeV	81.8%	27.1%	13.4%	13.3%
Model B – 14 TeV	83.9%	37.5%	19.2%	18.7%
PDR 2 Cut Performance	Cut 1	Cuts 1-2	Cuts 1-3	Cuts 1-4
Model A – 7 TeV	78.8%	51.4%	26.1%	25.7%
Model A – 14 TeV	81.7%	58.1%	30.5%	30.1%
Model B – 7 TeV	81.8%	38.5%	19.6%	19.6%

The New p_T v. M Method

- Plot $p_T v$. M for each qq pair of the event
 - Each event has 6 unique qq pairs; 2 pairs are correct, 4 pairs are wrong
 - The 6 qq pairs can be grouped into 3 unique pair-pair combinations, one of which is correct
 - We want to isolate the correct pair-pair combination
- Observe excesses at high invariant mass (wrong diquark pairs) and high p_T (correct diquark pairs)

The p_T v. M method – Model A 7 TeV – **Correct** Diquark Pairs Only

The p_T v. M method – Model A 7 TeV – Wrong Diquark Pairs Only

The p_T v. M Implementation

- Plot $p_T v$. M for each qq pair of the event
 - If possible, observe the invariant mass edge
 - For the (wrong) pairs with invariant masses larger than the edge value, gradually increase the p_T cut such that the survival rate of pairs drops below 5%
 - Extrapolate this cut to the upper left region with high $\ensuremath{p_{\text{T}}}$ and low invariant mass
 - This region will characteristically have high purity, *i.e.* be dominated by correct diquark pairs
 - Only use pair-pair combinations where both diquark pairs lie in the boxed region

Survival Probability

Cut on min p _T Survival %				
0	100.000%			
25	98.525%			
50	94.402%			
75	88.347%			
100	80.857%			
125	72.162%			
150	62.948%			
175	53.796%			
200	44.963%			
225	36.548%			
250	29.014%			
275	22.481%			
300	16.960%			
325	12.398%			
350	8.982%			
375	6.275%			
400	4.378%			
425	3.007%			
450	2.077%			
475	1.427%			
500	0.994%			

Comparison between the hemisphere method and the p_T v. M method

- Will use event efficiency v. event sample purity
 - Event efficiency is the percentage of events that pass cuts
 - Event purity is the percentage of remaining events that are fully correctly assigned
- Variable cut
 - Hemisphere method: Vary the object-seed pdR difference
 - Example: For a given object, its pdR w.r.t seed 1 is 500 GeV, and its pdR w.r.t seed 2 is 505 GeV. By the pdR measure, it could equally well be clustered with seed 1 or 2. By imposing an increasing pdR difference cut (a minimum difference in pdR between an object and the two seeds), we can gradually eliminate these ambiguous assignment scenarios.
 - $p_{\rm T}$ v. M method: Vary the survival probability in the (wrong) diquark pairs region at high invariant mass
 - Equivalently, require a higher p_T cut

Model A - 7 TeV and 14 TeV - Event Efficiency v. Event Purity

Model B - 7 TeV and 14 TeV - Event Efficiency v. Event Purity

— pTvM - 14 TeV — PDR 1 - 14 TeV — PDR 2 - 14 TeV ---- pTvM - 7 TeV ---- PDR 1 - 7 TeV ---- PDR 2 - 7 TeV

Discussion

- On-shell decay chains
 - $p_T v$. M is significantly better than the hemisphere method in retaining more event efficiency for a given event purity
- Off-shell decay chains
 - $p_{\rm T}$ v. M is marginally to moderately worse than the hemisphere method
 - Possibly because of the flexibility in choosing second hemisphere axis

Discussion

- $p_T v$. M is more flexible
 - No distinction between choosing seeds and clustering
 - If seed 1 and seed 2 are incorrect, the hemisphere method fails
 - Requires strict cuts to ensure seed 1 and seed 2 are from different decay chains
- p_T v. M and the hemisphere method are readily generalized
 - Multi-jets, leptons, complicated decay chains including
 W and Z bosons

Future Work

- Apply p_T v. M at reconstruction level

 SPS1a including ISR/FSR, detector simulation
- Perform shape analysis of $p_T v$. M

– Optimize the $p_T v$. M cut

- Reorganize $p_T v$. M to be an event-by-event variable
- Perform a detailed study of p_T v. M and the hemisphere method in off-shell cases
 - Should use both in parallel since it is not known a priori whether the decay chain is on-shell or off-shell

Conclusions

- Distinguishing combinatorial ambiguities is important for new physics searches at the LHC
- The $p_T v$. M method is better than the hemisphere method for on-shell decay chains in delivering high purity event samples
 - The hemisphere method is better suited for off-shell decay chains
- The p_{T} v. M method is easy to implement and flexible
 - A "robustness" study in a simulated collider environment is underway

Kinematic edge in invariant mass On-shell squark scenario

Kinematic edge in invariant mass Off-shell squark scenario

The Hemisphere Method – Cut 1

 p_{T} (of seed 1) \geq 200 GeV

The Hemisphere Method – PDR 1 Cut 2

pdR (of seed 1 and seed 2) \geq 1800 GeV

The Hemisphere Method – PDR 2 Cut 2

The Hemisphere Method – PDR 1 Cut 4

M (of seed and object) $\leq M_{edge}$

The Hemisphere Method – PDR 2 Cut 4

M (of seed and object) $\leq M_{edge}$

Alternative cut: maximum dR cut

Constraining dR differences does not work

