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The LHC Era is herel

* The current 7 TeV run will finish in 2011 with =1 fb!
* Potential for new
physics (cf. Workshop on
Topologies for Early LHC
Searches, SLAC,

Sept. 22-26, 2010)

* One hope is for the

matter




Motivation

e Collider signals of SUSY, UED

— Cascade decay chains ending in LSP, LKP

— Z, symmetry ensures the LSP, LKP is stable
* If neutral, is usually a good dark matter candidate

— Z, symmetry ensures the kinematics of the event are not
readily measurable
* Many kinematic methods have been developed to
aid determination of the LSP, LKP mass



Motivation

* Kinematic edges

— Thresholds and maximums of invariant mass
distributions provide algebraic expressions relating
underlying cascade decay chain masses

* Polynomial method
— Solve momentum conservation equations
— Use non-linear constraints to solve for LSP, LKP momenta
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— M+, as a discovery variable



Motivation

* Need the LSP, LKP mass to determine the mass scale

— Differences in masses are easy

e Usual procedure to solve for LSP, LKP mass:

1. Use cuts to isolate some collection of objects (e.g. 4 jets
inclusive + O leptons + MET), eliminate background

2. Hypothesize an underlying decay chain topology (e.g.
pair-produced gluinos decaying to neutralinos via
squarks)

3. Assign objects to decay chains (ordered, if possible)
4. Apply your favorite mass reconstruction technique



Decay chain assignment? Ordering required?
(Combinatorial ambiguity) | (Permutative ambiguity)

HT' Iv'eff

Kinematic edges Yes Yes/No
Polynomial Yes Yes
M+, Yes No
Mery Yes No

Subsystem m, Yes Yes



Motivation

* Decay chain assignments must deal with
combinatorial ambiguities

0Qe 0Q¢

* For pair-produced gluinos decaying to LSPs via
squarks, we have 4 quarks that can be grouped into
3 pair-pair combinations
— Important note: this combinatorial ambiguity is present
even if dealing with only signal events



Motivation

* Other possibilities: in busy cascade decay chains, it is important to
associate particles correctly

* Usually, there are additional tools to eliminate wrong combinations
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Models

* Consider gluino pair-production in a 7 TeV LHC or 14
TeV LHC, both decay identically via on-shell or off-
shell squarks to LSP neutralino

Model A 600 GeV 400 GeV 100 GeV 433 GeV

Model B 600 GeV 800 GeV 100 GeV 500 GeV

* Generate 100,000 events using
MadGraph/MadEvent 4.4.26, decay using BRIDGE

— No ISR/FSR, hadronization
— Only consider parton level



Kinematic edge in invariant mass

* An oft-used feature of cascade decay chain
kinematics is the invariant mass edge

* On-shell squark — characteristic triangular shape

(mg —mz)(mg — még)

1
Myq| 1. = :

e Off-shell squark —small number of events near edge

m = Mg — My

edge



| Invariant mass |

Correct quark-quark pairings in blue

Wrong quark-quark pairings in red
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The Hemisphere Method

e Basic idea: divide an event into hemispheres where
each decay chain falls entirely into separate
hemispheres

* Two steps
— Step 1: Choose 2 seeds

* These are the central axes for the hemisphere clusters
— Step 2: Cluster remaining objects with the given seeds

* Figure of merit is minimum pdR: roughly, a momentum-
weighted angular separation
pdR = (|Ap| AR), where AR = V[(Ad)? + (An)?]



The Hemisphere Method

 Our implementation
1. Choose highest p; object as seed 1

2. PDR1. Of the remaining objects, choose the
maximum pdR object as seed 2

PDR2. Of the remaining objects, choose the
maximum invariant mass object as seed 2

3. For each remaining objects, calculate pdR w.r.t
seed 1 and w.r.t. seed 2. Cluster the object with
whichever seed has the smaller pdR, i.e. the closer
seed in momentum-weighted angle space.



The Hemisphere Method

* QOur cuts
Cut 1. The highest p; object must have p; =2 200 GeV

PDR1 Cut 2. The minimum pdR between seed 1 and seed 2
must be 1800 GeV

PDR2 Cut 2. The invariant mass of seed 1 and seed 2 must
be larger than the kinematic edge value

Cut 3. Discard all singlet-triplet events

Cut 4. The maximum seed-object invariant mass must be
less than or equal to the kinematic edge value



PDR 1 Cut Cutl Cuts 1-2 Cuts 1-3 Cuts 1-4
Performance

Model A—7TeV  78.8%
Model A-14TeV 81.7%
ModelB—-7TeV  81.8%
Model B—14 TeV 83.9%

25.2%
35.8%
27.1%
37.5%

12.4%
18.5%
13.4%
19.2%

12.2%
18.2%
13.3%
18.7%

PDR 2 Cut Cutl Cuts 1-2 Cuts 1-3 Cuts 1-4
Performance

Model A—7TeV  78.8%
Model A—14TeV 81.7%
ModelB—7TeV  81.8%
Model B—14 TeV 83.9%

51.4%
58.1%
38.5%
46.1%

26.1%
30.5%
19.6%
24.4%

25.7%
30.1%
19.6%
24.4%



The New p; v. M Method

* Plot p; v. M for each qq pair of the event

— Each event has 6 unique qq pairs; 2 pairs are correct, 4
pairs are wrong

— The 6 gq pairs can be grouped into 3 unique pair-pair
combinations, one of which is correct

— We want to isolate the correct pair-pair combination

* Observe excesses at high invariant mass (wrong
diquark pairs) and high p; (correct diquark pairs)



e
The p; v. M method — Model A 7 TeV
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The p; v. M Implementation

* Plot p; v. M for each qq pair of the event
— If possible, observe the invariant mass edge

— For the (wrong) pairs with invariant masses larger than
the edge value, gradually increase the p; cut such that
the survival rate of pairs drops below 5%

— Extrapolate this cut to the upper left region with high p;
and low invariant mass

* This region will characteristically have high purity, i.e. be
dominated by correct diquark pairs

* Only use pair-pair combinations where both diquark pairs lie in
the boxed region
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The p; v. M method — Model A 7 TeV

1200

N Shading reflects the

- T fraction of diquark pairs

1000 — - . s :
SRR at each (mgq, Pr(qq) POINt
that are correct

S 800
3
<

=~
2600
<
&
A

400

200

—o0.1
0' : ‘ e ka3 | | | | | 1 | | | | | | | | | | | | | | _O
0 200 400 600 800 1000 1200 1400 1600

Diquark invariant mass (GeV)



Cut on min p; Survival %
0 100.000%

25 98.525%
50 94.402%
75 88.347%
80.857%

72.162%

62.948%

53.796%

44.963%

36.548%

29.014%

22.481%

300 16.960%
325 12.398%
350 8.982%
375 6.275%
400 4.378%
425 3.007%
450 2.077%
475 1.427%

500 0.994%
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The p; v. M method — Model A 14 TeV |
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The Pr V- M method — Model B 7 TeV
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v. M method — Model B 14 TeV

1000

0.
S
-

T

Diquark p_(GeV)
N
e
o

400

200

Shading reflects the
fraction of diquark pairs
at each (mgq, Pr(qq) POINt
that are correct

| | | | | l I l l

600 800 1000 1200 1400 1600

Diquark invariant mass (GeV)

0.9

0.8

0.7

0.6

0.5

0.3

0.2

0.1



Comparison between the hemisphere

method and the p; v. M method
* Will use event efficiency v. event sample purity
— Event efficiency is the percentage of events that pass cuts

— Event purity is the percentage of remaining events that are
fully correctly assigned

e Variable cut

— Hemisphere method: Vary the object-seed pdR difference

 Example: For a given object, its pdR w.r.t seed 1 is 500 GeV, and its
pdR w.r.t seed 2 is 505 GeV. By the pdR measure, it could equally
well be clustered with seed 1 or 2. By imposing an increasing pdR
difference cut (a minimum difference in pdR between an object and
the two seeds), we can gradually eliminate these ambiguous
assignment scenarios.

— p; V. M method: Vary the survival probability in the (wrong)
diquark pairs region at high invariant mass

* Equivalently, require a higher p; cut



Model A - 7 TeV and 14 TeV - Event Efficiency v. Event Purity
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Model B - 7 TeV and 14 TeV - Event Efficiency v. Event Purity
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Discussion

* On-shell decay chains

— p; V. M is significantly better than the hemisphere
method in retaining more event efficiency for a given
event purity

e Off-shell decay chains
— p; V. M is marginally to moderately worse than the
hemisphere method

* Possibly because of the flexibility in choosing second
hemisphere axis



Discussion

* p; V. M is more flexible
— No distinction between choosing seeds and clustering

— If seed 1 and seed 2 are incorrect, the hemisphere
method fails

» Requires strict cuts to ensure seed 1 and seed 2 are from
different decay chains

* p;Vv. M and the hemisphere method are readily
generalized

— Multi-jets, leptons, complicated decay chains including
W and Z bosons



Future Work

* Apply p; v. M at reconstruction level
— SPS1a including ISR/FSR, detector simulation

* Perform shape analysis of p; v. M
— Optimize the p; v. M cut

* Reorganize p; v. M to be an event-by-event variable
* Perform a detailed study of p; v. M and the

nemisphere method in off-shell cases

— Should use both in parallel since it is not known a priori
whether the decay chain is on-shell or off-shell




Conclusions

* Distinguishing combinatorial ambiguities is
important for new physics searches at the LHC
* The p; v. M method is better than the hemisphere
method for on-shell decay chains in delivering high
purity event samples
— The hemisphere method is better suited for off-shell
decay chains

* The p; v. M method is easy to implement and
flexible

— A “robustness” study in a simulated collider environment
IS underway
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Number of diquark combinations
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Number of events
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Seed 1 and seed 2 on opposite decay chains
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Seed 1 and seed 2 on opposite decay chains
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Seed and object on the same decay chain

Seed and object on opposite decay

chains
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Seed and object on the same decay chain
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