A New Method for Resolving Combinatorial Ambiguities at Hadron Colliders

Felix Yu
UC Irvine

Work supported by a 2010 LHC Theory Initiative Graduate Fellowship arXiv: 1009.2751 [hep-ph] with A. Rajaraman

University of California, Davis
November 15, 2010

The LHC Era is here!

- The current 7 TeV run will finish in 2011 with $\approx 1 \mathrm{fb}^{-1}$
- Potential for new physics (cf. Workshop on Topologies for Early LHC Searches, SLAC, Sept. 22-26, 2010)
- One hope is for the direct production of dark matter

Motivation

- Collider signals of SUSY, UED
- Cascade decay chains ending in LSP, LKP
$-Z_{2}$ symmetry ensures the LSP, LKP is stable
- If neutral, is usually a good dark matter candidate
$-Z_{2}$ symmetry ensures the kinematics of the event are not readily measurable
- Many kinematic methods have been developed to aid determination of the LSP, LKP mass

Motivation

- Kinematic edges
- Thresholds and maximums of invariant mass distributions provide algebraic expressions relating underlying cascade decay chain masses
- Polynomial method
- Solve momentum conservation equations
- Use non-linear constraints to solve for LSP, LKP momenta
- $\mathrm{m}_{\mathrm{T} 2}, \mathrm{~m}_{\mathrm{CT} 2}$ method
$-\mathrm{m}_{\mathrm{T} 2}$ Kink
- Sub-system $\mathrm{m}_{\mathrm{T} 2}$

Baer, Chen, Paige, Tata, Hinchliffe Allanach, Lester, Parker, White
Barr, Gripaios, Nojiri, Cheng, Gunion, Han, Marandella, McElrath, ...
$-m_{\mathrm{T} 2}$ as a discovery variable

Motivation

- Need the LSP, LKP mass to determine the mass scale
- Differences in masses are easy
- Usual procedure to solve for LSP, LKP mass:

1. Use cuts to isolate some collection of objects (e.g. 4 jets inclusive +0 leptons + MET), eliminate background
2. Hypothesize an underlying decay chain topology (e.g. pair-produced gluinos decaying to neutralinos via squarks)
3. Assign objects to decay chains (ordered, if possible)
4. Apply your favorite mass reconstruction technique

Motivation

Method	Decay chain assignment? (Combinatorial ambiguity)	Ordering required? (Permutative ambiguity)
$\mathrm{H}_{\mathrm{T}}, M_{\text {eff }}$	No	No
Kinematic edges	Yes	Yes/No
Polynomial	Yes	Yes
$m_{T 2}$	Yes	No
$m_{C T 2}$	Yes	No
Subsystem $m_{T 2}$	Yes	Yes

Motivation

- Decay chain assignments must deal with combinatorial ambiguities

- For pair-produced gluinos decaying to LSPs via squarks, we have 4 quarks that can be grouped into 3 pair-pair combinations
- Important note: this combinatorial ambiguity is present even if dealing with only signal events

Motivation

- Other possibilities: in busy cascade decay chains, it is important to associate particles correctly
- Usually, there are additional tools to eliminate wrong combinations

Outline

- Motivation
- Our simple models
- Brief review of basic kinematics
- The well-studied hemisphere method
- The new p_{T} v. M method
- Comparison
- Conclusions

Models

- Consider gluino pair-production in a 7 TeV LHC or 14 TeV LHC, both decay identically via on-shell or offshell squarks to LSP neutralino

	Gluino Mass	Squark Mass	Neutralino Mass	Kinematic Edge
Model A	600 GeV	400 GeV	100 GeV	433 GeV
Model B	600 GeV	800 GeV	100 GeV	500 GeV

- Generate 100,000 events using

MadGraph/MadEvent 4.4.26, decay using BRIDGE

- No ISR/FSR, hadronization
- Only consider parton level

Kinematic edge in invariant mass

- An oft-used feature of cascade decay chain kinematics is the invariant mass edge
- On-shell squark - characteristic triangular shape

$$
\left.m_{q q}\right|_{\mathrm{edge}}=\sqrt{\frac{\left(m_{\tilde{g}}^{2}-m_{\tilde{q}}^{2}\right)\left(m_{\tilde{q}}^{2}-m_{\hat{\chi}_{1}^{0}}^{2}\right)}{m_{\tilde{q}}^{2}}}
$$

- Off-shell squark - small number of events near edge

$$
\left.m_{q q}\right|_{\text {edge }}=m_{\tilde{g}}-m_{\tilde{\chi}_{1}^{0}}
$$

Kinematic edge in invariant mass

On-shell squark scenario

Kinematic edge in invariant mass

 Off-shell squark scenario

The Hemisphere Method

- Basic idea: divide an event into hemispheres where each decay chain falls entirely into separate hemispheres
- Two steps
- Step 1: Choose 2 seeds
- These are the central axes for the hemisphere clusters
- Step 2: Cluster remaining objects with the given seeds
- Figure of merit is minimum pdR: roughly, a momentumweighted angular separation

$$
\mathrm{pdR} \equiv(|\Delta \mathrm{p}| \Delta R) \text {, where } \Delta R \equiv \mathrm{~V}\left[(\Delta \phi)^{2}+(\Delta \eta)^{2}\right]
$$

The Hemisphere Method

- Our implementation

1. Choose highest p_{T} object as seed 1
2. PDR1. Of the remaining objects, choose the maximum pdR object as seed 2

PDR2. Of the remaining objects, choose the maximum invariant mass object as seed 2
3. For each remaining objects, calculate pdR w.r.t seed 1 and w.r.t. seed 2 . Cluster the object with whichever seed has the smaller pdR, i.e. the closer seed in momentum-weighted angle space.

The Hemisphere Method

- Our cuts

Cut 1. The highest p_{T} object must have $p_{T} \geq 200 \mathrm{GeV}$
PDR1 Cut 2. The minimum pdR between seed 1 and seed 2 must be 1800 GeV

PDR2 Cut 2. The invariant mass of seed 1 and seed 2 must be larger than the kinematic edge value
Cut 3. Discard all singlet-triplet events
Cut 4. The maximum seed-object invariant mass must be less than or equal to the kinematic edge value

The Hemisphere Method

- Our cuts do not include realistic detector cuts (η acceptance, minimum p_{T}, isolation requirements)

PDR 1 Cut Performance	Cut 1	Cuts 1-2	Cuts 1-3	Cuts 1-4
Model A - 7 TeV	78.8%	25.2%	12.4%	12.2%
Model A - 14 TeV	81.7%	35.8%	18.5%	18.2%
Model B-7 TeV	81.8%	27.1%	13.4%	13.3%
Model B-14 TeV	83.9%	37.5%	19.2%	18.7%
PDR 2 Cut	Cut 1	Cuts 1-2	Cuts 1-3	Cuts 1-4
Performance		51.4%	26.1%	25.7%
Model A - 7 TeV	78.8%	58.1%	30.5%	30.1%
Model A -14 TeV	81.7%	38.5%	19.6%	19.6%
Model B-7 TeV	81.8%	46.1%	24.4%	24.4%
Model B-14 TeV	83.9%			

The New p_{T} v. M Method

- Plot $p_{T} \mathrm{v} . \mathrm{M}$ for each qq pair of the event
- Each event has 6 unique qq pairs; 2 pairs are correct, 4 pairs are wrong
- The 6 qq pairs can be grouped into 3 unique pair-pair combinations, one of which is correct
- We want to isolate the correct pair-pair combination
- Observe excesses at high invariant mass (wrong diquark pairs) and high p_{T} (correct diquark pairs)

The $p_{T} v$. M method - Model A 7 TeV

The $\mathrm{p}_{\mathrm{T}} \mathrm{v}$. M method - Model A 7 TeV -
 The $p_{T} v . M$ method - Mod Correct Diquark Pairs Only

The $\mathrm{p}_{\mathrm{T}} \mathrm{v}$. M method - Model A 7 TeV -
 The p_{T} v. M method - Moc Wrong Diquark Pairs Only

The $p_{\mathrm{T}} v$. M Implementation

- Plot $p_{T} \mathrm{v} . \mathrm{M}$ for each qq pair of the event
- If possible, observe the invariant mass edge
- For the (wrong) pairs with invariant masses larger than the edge value, gradually increase the p_{T} cut such that the survival rate of pairs drops below 5%
- Extrapolate this cut to the upper left region with high p_{T} and low invariant mass
- This region will characteristically have high purity, i.e. be dominated by correct diquark pairs
- Only use pair-pair combinations where both diquark pairs lie in the boxed region

The $p_{T} v$. M method - Model A 7 TeV

Survival Probability

| Cut on min $p_{\mathbf{T}}$ Survival $\%$ | |
| ---: | ---: | ---: |
| 0 | 100.000% |
| 25 | 98.525% |
| 50 | 94.402% |
| 75 | 88.347% |
| 100 | 80.857% |
| 125 | 72.162% |
| 150 | 62.948% |
| 175 | 53.796% |
| 200 | 44.963% |
| 225 | 36.548% |
| 250 | 29.014% |
| 275 | 22.481% |
| 300 | 16.960% |
| 325 | 12.398% |
| 350 | 8.982% |
| 375 | 6.275% |
| 400 | 4.378% |
| 425 | 3.007% |
| 450 | 2.077% |
| 475 | 1.427% |
| 500 | 0.994% |

The $p_{T} v$. M method - Model B 7 TeV

 Shading reflects the fraction of diquark pairs at each ($\left.\mathrm{m}_{\mathrm{qq}}, \mathrm{p}_{\mathrm{T}(\mathrm{qq})}\right)$ point that are correct

The p_{T} v. M method - Model B 14 TeV

Comparison between the hemisphere

 method and the $p_{T} v . M$ method- Will use event efficiency v. event sample purity
- Event efficiency is the percentage of events that pass cuts
- Event purity is the percentage of remaining events that are fully correctly assigned
- Variable cut
- Hemisphere method: Vary the object-seed pdR difference
- Example: For a given object, its pdR w.r.t seed 1 is 500 GeV , and its pdR w.r.t seed 2 is 505 GeV . By the pdR measure, it could equally well be clustered with seed 1 or 2 . By imposing an increasing pdR difference cut (a minimum difference in pdR between an object and the two seeds), we can gradually eliminate these ambiguous assignment scenarios.
$-p_{T} v . M$ method: Vary the survival probability in the (wrong) diquark pairs region at high invariant mass
- Equivalently, require a higher p_{T} cut

Model A-7 TeV and 14 TeV - Event Efficiency v. Event Purity

Model B-7 TeV and 14 TeV - Event Efficiency v. Event Purity

Discussion

- On-shell decay chains
$-p_{T} v . M$ is significantly better than the hemisphere method in retaining more event efficiency for a given event purity
- Off-shell decay chains
$-p_{T} v . M$ is marginally to moderately worse than the hemisphere method
- Possibly because of the flexibility in choosing second hemisphere axis

Discussion

- $p_{\mathrm{T}} \mathrm{v}$. M is more flexible
- No distinction between choosing seeds and clustering
- If seed 1 and seed 2 are incorrect, the hemisphere method fails
- Requires strict cuts to ensure seed 1 and seed 2 are from different decay chains
- $p_{\mathrm{T}} \mathrm{v} . \mathrm{M}$ and the hemisphere method are readily generalized
- Multi-jets, leptons, complicated decay chains including W and Z bosons

Future Work

- Apply $p_{T} v . M$ at reconstruction level
- SPS1a including ISR/FSR, detector simulation
- Perform shape analysis of $p_{T} v . M$
- Optimize the $\mathrm{p}_{\mathrm{T}} \mathrm{v}$. M cut
- Reorganize $p_{T} v . M$ to be an event-by-event variable
- Perform a detailed study of $p_{\mathrm{T}} \mathrm{v} . \mathrm{M}$ and the hemisphere method in off-shell cases
- Should use both in parallel since it is not known a priori whether the decay chain is on-shell or off-shell

Conclusions

- Distinguishing combinatorial ambiguities is important for new physics searches at the LHC
- The $p_{\mathrm{T}} \mathrm{v}$. M method is better than the hemisphere method for on-shell decay chains in delivering high purity event samples
- The hemisphere method is better suited for off-shell decay chains
- The $p_{T} v . M$ method is easy to implement and flexible
- A "robustness" study in a simulated collider environment is underway

Kinematic edge in invariant mass On-shell squark scenario

Kinematic edge in invariant mass Off-shell squark scenario

The Hemisphere Method - Cut 1

$\mathrm{p}_{\mathrm{T}}($ of seed 1$) \geq 200 \mathrm{GeV}$

The Hemisphere Method - PDR 1 Cut 2

pdR (of seed 1 and seed 2) $\geq 1800 \mathrm{GeV}$

Seed 1 and seed 2 on opposite decay chains

The Hemisphere Method - PDR 2 Cut 2

M (of seed 1 and seed 2) $>\mathrm{M}_{\text {edge }}$

The Hemisphere Method - PDR 1 Cut 4

M (of seed and object) $\leq M_{\text {edge }}$

Seed and object on the same decay chain

The Hemisphere Method - PDR 2 Cut 4

M (of seed and object) $\leq \mathrm{M}_{\text {edge }}$

Seed and object on the same decay chain

Alternative cut: maximum dR cut

- Constraining dR differences does not work

