Higgs Decaying to Lepton Jets

Nov. 2010

Tomer Volansky UCB

Based on:

A. Falkowski, J. Ruderman, TV, J. Zupan [arXiv:1002.2952]. A. Falkowski, J. Ruderman, TV, J. Zupan [arXiv:1007.3496].

Thursday, December 2, 2010

- The mass of the SM Higgs is constrained by LEP, $m_h \gtrsim 114.4$ GeV.
- Limits are in general model dependent.

- The mass of the SM Higgs is constrained by LEP, $m_h \gtrsim 114.4$ GeV.
- Limits are in general model dependent.
- In fact, there are good reasons to consider models where the Higgs is below this bound:
 - Experimental: Electroweak precision measurements.

- The mass of the SM Higgs is constrained by LEP, $m_h \gtrsim 114.4$ GeV.
- Limits are in general model dependent.
- In fact, there are good reasons to consider models where the Higgs is below this bound:
 - Experimental: Electroweak precision measurements.
 - Theoretical: Little hierarchy (in theories such as MSSM, $m_h \sim m_Z$).

$$\delta m_h^2 = \frac{3}{4\pi^2} y_t^2 m_t^2 \ln \frac{m_{\tilde{t}_1} m_{\tilde{t}_2}}{m_t^2} m_t^2$$

$$\delta m_{H_u}^2 = -\frac{3}{4\pi^2} y_t^2 m_{\tilde{t}}^2 \ln \frac{M}{m_{\tilde{t}}}$$

- The mass of the SM Higgs is constrained by LEP, $m_h \gtrsim 114.4$ GeV.
- Limits are in general model dependent.
- In fact, there are good reasons to consider models where the Higgs is below this bound:
 - Experimental: Electroweak precision measurements.
 - Theoretical: Little hierarchy (in theories such as MSSM, $m_h \sim m_Z$).
 - Interesting! New ideas and phenomenology that may show up regardless of the Higgs mass.

Is the Higgs hidden?

It is possible that the Higgs is lighter than 114 GeV?

• Option I: Higgs coupling to Z boson is suppressed so it was not produced at LEP.

Is the Higgs hidden?

It is possible that the Higgs is lighter than 114 GeV?

- Option I: Higgs coupling to Z boson is suppressed so it was not produced at LEP.
- Option II: The Higgs decays in a non-standard manner.

Hidden Higgs: It has been copiously produced at LEP and the Tevatron but has evaded detection due to non-standard decays.

Thursday, December 2, 2010

LEP Constraints

- LEP has many searches and many model-dependent constraints.
- There are three general results to keep in mind:
 - 1. OPAL model independent: $m_h > 82 \text{ GeV}$

LEP Constraints

- LEP has many searches and many model-dependent constraints.
- There are three general results to keep in mind:
 - 1. OPAL model independent: $m_h > 82 \text{ GeV}$
 - 2. SM Higgs $m_h \ge 114.4$ GeV. Can be interpreted as $BR(h \to b\bar{b}) \lesssim 20\%$ for $m_h = 100$ GeV.

LEP Constraints

- LEP has many searches and many model-dependent constraints.
- There are three general results to keep in mind:
 - 1. OPAL model independent: $m_h > 82 \text{ GeV}$
 - 2. SM Higgs $m_h \ge 114.4$ GeV. Can be interpreted as $BR(h \to b\bar{b}) \lesssim 20\%$ for $m_h = 100$ GeV.

What About Other Final States?

- 2-body final states are strongly constrained.
- Other final states and topologies have been searched for model-dependently.
- Even without dedicated searches, various topologies are constrained.

What About Other Final States?

- It is in many cases hard to know which model is excluded and to what extent.
- The inverse problem is tedious and hard.
- This problem will soon reappear with LHC data and should be addressed.

Thursday, December 2, 2010

Hidden Higgs Scenarios

• The most studied scenario is the NMSSM with light CP-odd Higgs, $h \rightarrow AA \rightarrow 4\tau$.

[Dermisek, Gunion 2004; Chang et al.,2006]

• Very recently ALEPH data was revisited. New limit: $m_h\gtrsim 107~{\rm GeV}$

[Cranmer et al. 2010]

Hidden Higgs Scenarios

• The most studied scenario is the NMSSM with light CP-odd Higgs, $h \rightarrow AA \rightarrow 4\tau$.

[Dermisek, Gunion 2004; Chang et al.,2006]

- Very recently ALEPH data was revisited. New limit: $m_h \gtrsim 107 \text{ GeV}$
- Other interesting proposals:
 - RPV MSSM: $h \rightarrow 6j$.
 - Buried Higgs: $h \rightarrow 4j$.

[Carpenter, Kaplan, Rhee, 2006]

[Bellazzini, Csaki, Falkowski, Weiler, 2009]

Hidden Higgs Scenarios

• The most studied scenario is the NMSSM with light CP-odd Higgs, $h \rightarrow AA \rightarrow 4\tau$.

[Dermisek, Gunion 2004; Chang et al.,2006]

- Very recently ALEPH data was revisited. New limit: $m_h\gtrsim 107~{\rm GeV}$
- Other interesting proposals:
 - RPV MSSM: $h \rightarrow 6j$.

- Buried Higgs: $h \rightarrow 4j$.

[Carpenter, Kaplan, Rhee, 2006]

[Bellazzini, Csaki, Falkowski, Weiler, 2009]

Today we study a new possibility: $h \rightarrow$ Lepton Jets

• We work in the supersymmetric framework: We consider the possibility of also hiding SUSY.

Outline

- Theory:
 - Framework: Low-Scale Hidden Sectors
 - Higgs Decay Channels
- Phenomenology:
 - Collider Signatures
 - Experimental Constraints
- Search Strategies
- Conclusions

Framework: Low Scale Hidden Sectors

A Hidden Sector

- A simple and plausible extension of the SM.
- Mixing can be naturally generated at high scale, $\epsilon \lesssim 10^{-3}$.
- Motivation:
 - String theory constructions.
 - New phenomenology (hidden valleys).

[Strassler, Zurek, 2006]

- Cosmic Ray anomalies.

A Hidden Sector

- We work in the supersymmetric framework.
- The simplest case: U(1)', is already rich enough!
- Easy to generalize to other portals or gauge groups.
- the Lagrangian:

$$\mathcal{L}_{mix} = \frac{1}{2} \epsilon \gamma_d^{\mu\nu} B^{\mu\nu} - i\epsilon \tilde{\gamma}_d^{\dagger} \bar{\sigma}^{\mu} \partial_{\mu} \tilde{B} + i\epsilon \tilde{B}^{\dagger} \bar{\sigma}^{\mu} \partial_{\mu} \tilde{\gamma}_d$$

Gauge Gaugino

Gauge Kinetic Mixing

• Mixing can be removed:

 $A_{\mu} \rightarrow A_{\mu} + \epsilon \cos \theta_W \gamma_{d\mu}$

$$A_{\mu}J^{\mu}_{\rm SM} \to A_{\mu}J^{\mu}_{\rm SM} + \epsilon \cos \theta_W \gamma_{d\mu}J^{\mu}_{\rm SM}$$

- Therefore the SM fields are millicharges under the new photon.
- Consequently the hidden photon can decay to kinematically available SM fermions.

Thursday, December 2, 2010

Gauge Kinetic Mixing

• Similar shift removes Gaugino mixing:

$$\tilde{\gamma_d} \to \tilde{\gamma}_d + \epsilon \, \tilde{B}$$

$$\tilde{\gamma_d}\tilde{J}_{\rm hid} \to \tilde{\gamma_d}\tilde{J}_{\rm hid} + \epsilon \tilde{B}\tilde{J}_{\rm hid} \qquad \tilde{J}_{\rm hid} = \sum q_i h_d^{i\dagger}\tilde{h}_d^i$$

Ì

• The lightest visible neutralino (LVSP) can therefore decay into the hidden sector!

- The lifetime of both the γ_d and \tilde{N}_1 is controlled by ϵ .
- Here we consider prompt decays ($\epsilon \sim 10^{-3-4}$). The case of displaced vertices is under study. [Graesser, Ruderman, Surujon, TV, in progress]

Hidden Particle Content

- There are (obviously) no constraints on the particle content in the hidden sector.
- Minimal content: in order to break the U(1)' we minimally need two Higgs chiral superfield, h_{\pm} .
- Minimal spectrum:
 - One massive photon, γ_d .
 - Three hidden neutralinos \tilde{n}_d^i (mixtures of the hidden gaugino and Higgsinos).
 - Three hidden scalars, h_d^i : h_d , H_d , A_d .
- All particles are assume to have masses of order 0.1 1 GeV.

The minimal model is already rich enough to hide the Higgs!

Higgs Decay Channels

Neutralino Channel

- In principle, there is no model-independent bound on the mass of the LVSP neutralino.
- Coupling to Higgs arises from $h \tilde{h} \tilde{B}/\tilde{W}$:

$$g_{h11}h\tilde{N}_1\tilde{N}_1 \qquad \Gamma(h \to \tilde{N}_1\tilde{N}_1) = \frac{g_{h11}^2 m_h}{4\pi} \left(1 - 4\frac{\tilde{m}_{N1}^2}{m_h^2}\right)^{3/2}$$

• \tilde{N}_1 must therefore be a mixture:

$$\tilde{N}_1$$
 \tilde{h}_d \tilde{B}

• There is therefore a possible tension with Chargino constraints.

Neutralino Channel

- Chargino bound can be satisfied.
- Implies Z can also decay to \tilde{N}_1 .

- Z-width constraint is satisfied
- Typical values to be used:

```
m_{\tilde{N}_1} \lesssim 10 {
m ~GeV}
```

Higgs decays...

Hidden cascade...

[Arkani-Hamed, Weiner; Cheung, et al.; , Baumgart, et al.]

Singlet Channel

• Distinct decay modes occur through coupling to singlets. For example:

 $W_{\text{singlet}} = S\left(y\,\chi\,\bar{\chi} + \lambda\,H_uH_d\right) + \kappa_1\,\bar{\chi}\,h_1^2 + \kappa_2\,\chi\,h_2^2\,.$

- This is a simple extension of the NMSSM.
- Couplings allow the Higgs to decay to χ with $\mathcal{O}(1)$ BR, independently of the NMSSM spectrum.
- χ subsequently cascades in the hidden sector.

Thursday, December 2, 2010

Constraining Collider Signatures

Thursday, December 2, 2010

- The complete "inverse problem" of mapping the viable region in observable space is hard.
- Here we study a region which is expected to be relatively unconstrained (with no dedicated searches): lepton jets.
- We identify the following observables relevant for LEP and Tevatron searches:
 - Visible Final States: Electrons vs. Muons
 - The mass of the hidden photon is the only parameter.
 - Branching fractions are controlled by m_{γ_d}

- The complete "inverse problem" of mapping the viable region in observable space is hard.
- Here we study a region which is expected to be relatively unconstrained (with no dedicated searches): lepton jets.
- We identify the following observables relevant for LEP and Tevatron searches:
 - Visible Final States: Electrons vs. Muons
 - Lepton Multiplicity
 - Extremely sensitive to he hidden spectrum.
 - Since $\tilde{B} \to \tilde{h}_i h_i$, the mass of the hidden higginos control length of the cascade.
 - Spectrum of hidden Higgses also matter.
 - Non-abelian gauge group and showering in hidden sector can increase multiplicity.
 - Multiplicity can range from $0 \mathcal{O}(100)$

- The complete "inverse problem" of mapping the viable region in observable space is hard.
- Here we study a region which is expected to be relatively unconstrained (with no dedicated searches): lepton jets.
- We identify the following observables relevant for LEP and Tevatron searches:
 - Visible Final States: Electrons vs. Muons
 - Lepton Multiplicity
 - Missing Energy
 - Very sensitive to hidden spectrum.
 - Can have many hidden collider-stable particles.

- The complete "inverse problem" of mapping the viable region in observable space is hard.
- Here we study a region which is expected to be relatively unconstrained (with no dedicated searches): lepton jets.
- We identify the following observables relevant for LEP and Tevatron searches:
 - Visible Final States: Electrons vs. Muons
 - Lepton Multiplicity
 - Missing Energy
 - Event Topology
 - Characterized by number of lepton jets.
 - Depends on the spectrum and first steps of the cascade.
Collider Signatures

- The complete "inverse problem" of mapping the viable region in observable space is hard.
- Here we study a region which is expected to be relatively unconstrained (with no dedicated searches): lepton jets.
- We identify the following observables relevant for LEP and Tevatron searches:
 - Visible Final States: Electrons vs. Muons
 - Lepton Multiplicity
 - Missing Energy
 - Event Topology
 - Lepton Isolation

Collider Signatures

- The complete "inverse problem" of mapping the viable region in observable space is hard.
- Here we study a region which is expected to be relatively unconstrained (with no dedicated searches): lepton jets.
- We identify the following observables relevant for LEP and Tevatron searches:
 - Visible Final States: Electrons vs. Muons
 - Lepton Multiplicity
 - Missing Energy
 - Event Topology
 - Lepton Isolation
 - Jet Shape

Collider Signatures

- The complete "inverse problem" of mapping the viable region in observable space is hard.
- Here we study a region which is expected to be relatively unconstrained (with no dedicated searches): lepton jets.
- We identify the following observables relevant for LEP and Tevatron searches:
 - Visible Final States: Electrons vs. Muons
 - Lepton Multiplicity
 - Missing Energy
 - Event Topology
 - Lepton Isolation
 - Jet Shape
 - Displaced Vertices

Methodology

- To study our signal $h \to$ Lepton Jets and identify the viable regions in signature space, we simulate benchmark models:
 - Higgs production and decay using Madgraph.
 - Hidden sector cascade using BRIDGE.
 - Event analysis using our own Mathematica package, Slowjet.
- No hidden sector showering is taken into account.
- No detector simulation.
- A more comprehensive study must be made with experimentalists using full detector simulation. Without it lepton id and nearby tracks reconstruction may be wrong.

LEP-1

- Roughly 2×10^7 Z bosons were produced at LEP-1. Thus as many as 10^4 neutralinos and lepton jets may have been produced.
- This is in contrast to the direct coupling of the Z to the hidden sector, which is suppressed by ϵ .
- LEP-1 is therefore a great place to look for a signal and to constrain the Lepton Jet scenario.

LEP-1

- Roughly 2×10^7 Z bosons were produced at LEP-1. Thus as many as 10^4 neutralinos and lepton jets may have been produced.
- This is in contrast to the direct coupling of the Z to the hidden sector, which is suppressed by ϵ .
- LEP-1 is therefore a great place to look for a signal and to constrain the Lepton Jet scenario.

LEP-2

- The Higgs is produced through Higgstrahlung.
- LEP-2 collected ~ 700 pb⁻¹ at $\sqrt{s} = 183 209$ GeV per experiment.

- For a 100 GeV Higgs, the production cross-sction is $\sim 0.3 0.4$ pb.
- Thus ~ 130 Higgs events would have been produced at LEP-2. This is enough to place stringent constraints on Higgs physics.

Thursday, December 2, 2010

LEP-1: Monojets and Acoplanar Jets

• LEP-1 searched for $e^+e^- \to (H \to \text{jets})(Z^* \to \nu \bar{\nu})$ by looking for Acoplanar jets and Monojets.

- As a consequence, $BR(Z \rightarrow \neq 2 \text{ jets}) \lesssim 10^{-6}$
- Therefore:
 - $-BR(\tilde{N}_1 \rightarrow \text{Invisible}) \lesssim 10^{-3}$
 - 2-jet topology is obtained with $m_{\tilde{N}_1} \ll m_Z/2$.

2-jet topology and large multiplicity is required

Thursday, December 2, 2010

LEP-2: Invisible Higgs

- OPAL search is most dangerous due to large Z window: 50 GeV $< M_{\rm vis} < 120$ GeV.
- Therefore events with 50 GeV $< m_h < 120$ GeV where $(h \rightarrow \text{visible})$ and $(Z \rightarrow \nu \bar{\nu})$ are caught.

LEP-2: Higgs to WW*

- ALEPH searched for $h \to WW^*$ in the context of fermiophobic Higgs models.
- W decays to leptons and missing energy makes this search relevant
- In fact, this search is dangerous to most models: includes many topologies.
- Most relevant topology, $ZWW^* \rightarrow l^+ l^- l\nu q\bar{q}$: 2 hard leptons + softer lepton + ≥ 2 tracks.
- Very low SM background.
- Sensitive to lepton jets + leptonic Z.

Class and topology	Targeted Channel	(BR)
1: Fully-Hadronic	No leptonic decay	(0.422)
1a: 6 jets	$q\bar{q}q\bar{q}q\bar{q}$	(0.328)
1b: 4 jets and E_{miss}	$ u \overline{ u} q \overline{q} q \overline{q}$	(0.094)
2: Two-Hard-Leptons	Z leptonic decays	(0.054)
2a: plus jets	$\ell^+\ell^-\mathrm{q}ar{\mathrm{q}}\mathrm{q}ar{\mathrm{q}}$	(0.032)
2t: plus jets and E_{miss}	$\ell^+\ell^- au u{ m q}ar{ m q}$	(0.003)
2b: plus jets and 1 soft lepton	$\ell^+\ell^-\mathrm{q}ar{\mathrm{q}}\ell u$	(0.010)
2c: plus jets and 1 hard lepton	$\ell^+\ell^-\ell u\mathrm{q}ar{\mathrm{q}}$	(0.007)
2d: plus 1 hard lepton and 1 track	$\ell^+\ell^-\ell u\ell u$	(0.003)
3: One-Hard-Lepton (and E_{miss})	W leptonic decays	(0.171)
3a: plus jets	$q\bar{q}\ell\nu q\bar{q}$	(0.101)
3b: plus jets and 1 soft lepton	$q\bar{q}\ell\nu\ell\nu$	(0.031)
3c: plus 1 track and $M_{\rm miss}$	νν ίν ίν	(0.029)
3d: plus jets and $M_{\rm miss}$	$ u \overline{\nu} \ell \nu q \overline{q} $	(0.008)
4: One-Soft-Lepton	W [*] leptonic decays	(0.130)
4a: plus jets	$q\bar{q}q\bar{q}\ell\nu$	(0.101)
4b: plus jets and $M_{\rm miss}$	$ u \overline{ u} q \overline{q} \ell u$	(0.029)

LEP-2: Higgs to WW*

- To reduce WW background they select events with at least 5 well separated objects.
- Using Durham, they take $y_{45} > 2 \times 10^{-5}$,

Signal must therefore be of 2-jet topology.

Tevatron

- The Tevatron experiments search for lepton jets in a noisier hadronic environment.
- Nonetheless, due to the large Higgs production cross-section (2 pb) and the high luminosity ($\sim 4 5 \text{ fb}^{-1}$), discovery may be within reach with possibly many light Higgs-to-lepton jets events already on tape.

Tevatron: Trileptons

- Trilepton searches require (relatively) hard and isolated leptons ($\Delta R < 0.4$).
- Large lepton multiplicity evades such searches.

Leptons must not be isolated (large multiplicities)

Tevatron: Dark Photon Search

- Very recently, D0 performed an inclusive search for two LJs + MET.
- Look for $\Delta R < 0.2$ clusters, containing an electron or muon of $p_T > 10$ GeV and at least one OS companion track of $p_T > 4$ GeV.
- Jets are required to be isolated in an annulus: $0.2 < \Delta R < 0.4$.
- D0 search sensitive to narrow LJs with low multiplicities.

Lepton jets must be relatively wide or soft (large multiplicities)

Collider Signatures: Summary

- Visible Final States: Electrons vs. Muons
- Lepton Multiplicity
- Missing Energy
- Event Topology
- Lepton Isolation
- Jet Shape
- Displaced Vertices

Both can be accommodated

Large $(\gtrsim 6)$

Some is required ($\mathcal{O}(50)$ GeV)

2-jet topology

No hard isolated leptons

Not too narrow (R > 0.2)

In progress..

Benchmark Models

Benchmark Models

- It is intriguing that (almost) minimal models are sufficient to reproduce the required allowed region.
- Singlet benchmark model has electron and muon final states. Neutralino benchmark model has only electron final states.

Benchmark Models

- To explore a wide range of LJ signatures, we use effective "simplified" models.
- We assume an N-step cascade.
- Tunable parameters:
 - Number of cascade steps (multiplitcity and p_T).
 - Hidden particle masses (number and width of LJs).
 - BR of last step into SM vs. hidden particle (amount of missing energy).

Discovering Lepton Jets

- There could be as many as 10^4 Higgs and lepton jet events at LEP-1 and the Tevatron. On the order of ~ 100 events at LEP-2 and more than 3.5×10^4 events at the 1 fb⁻¹ LHC data.
- With dedicated searches it should therefore be simple to find such a Higgs at any of these experiments.
- Goal: Differentiate between the lepton 2-jet topology from the SM QCD background.

Some possibly useful observables:

• Jet Shape $[m_{N_1} \ll m_h \text{ and weakly coupled hidden sector}]$

Some possibly useful observables:

• Jet Shape $[m_{N_1} \ll m_h \text{ and weakly coupled hidden sector}]$

• Lepton invariant mass [Depends on hidden sector spectrum]

Some possibly useful observables:

• Jet Shape $[m_{N_1} \ll m_h \text{ and weakly coupled hidden sector}]$

• Lepton invariant mass [Depends on hidden sector spectrum]

• Ecal/Hcal ratio [Assuming electronic jets]

Background rejection of few $\times 10^{-3}$ per jet.

Some possibly useful observables:

• Jet Shape $[m_{N_1} \ll m_h \text{ and weakly coupled hidden sector}]$

• Lepton invariant mass [Depends on hidden sector spectrum]

• Ecal/Hcal ratio [Assuming electronic jets]

Background rejection of few $\times 10^{-3}$ per jet.

QCD vs. Electron Jets

- Closely spaced leptons do not satisfy usual isolation criteria and will not reconstruct as leptons.
- We therefore use:
 - EM Fraction (EMF): $\frac{E_{\rm EM}}{E_{\rm Total}}$
 - Charge Ratio (CR): $\frac{\sum p_T}{E_{\rm EM,T}}$
- For LJs we expect: EMF \sim CR ~ 1
- Background consists mostly of π^{\pm} (EMF $\ll 1$) and photons from π^{0} (EMF ~ 1). Precise jet composition fluctuates highly.
- EMF distribution further broadens by fluctuations of EM and Hadronic cascade and detector smearing.
- High EMF tail of QCD is due to high photon content, so CR < 1.

Analysis

- Higgs production through gluon fusion is overwhelmed by dijet background.
- We concentrate on leptonic Z/W + 2 LJs.
- Main background: Z/W + jj
- Study: D0 and ATLAS.
- Divide search into
 - 1. Kinematic cuts that target Z/W+h
 - 2. EMF and CR that target LJs (not necessarily through Higgs production).

Methodology

- Background and signal simulated using usual MC chain:
 - Parton level: MadGraphv4 and BRIDGE.
 - Shower and hadronization: Pythia 6.4.21 (including multiple interactions and pileup).
 - Cross-sections normalized using to NLO with MCFM.
 - Detector simulation, PGS4, tuned for D0 and ATLAS.
- PGS is too simplistic for simulating EMF and CR.
- We use a fast calorimeter MC, taking into account parametrization for EM and hadronic showers tuned for D0 and ATLAS.
- Allow fluctuations of all parameter, taking into account non-compensating effects (e/h) and detector smearing.
- Simulation is tuned to D0 and ATLAS using dijet EMF data.

Fast Calorimeter Tuning

Analysis: Kinematic Cuts

• Exactly two jets:

$$p_T(j) > 15 \text{ GeV}$$
 $\Delta R_{j_1,j_2} > 0.7$
 $|\eta| < 1.1 \quad 1.5 < |\eta| < 2.5 \qquad |\eta| < 2$
(D0) (ATLAS)

- Z+h: 2 opposite sign same flavor isolated leptons $(l = e, \mu)$: $p_T(l) > 10 \text{ GeV}$ $|m(l^+l^-) - m_Z| < 10 \text{ GeV}$
- W+h: 1 lepton and missing p_T :

 $p_T(l) > 20 \text{ GeV}$ $p_{T,\text{miss}} > 20 \text{ GeV}$

• $N_{\text{trk}}^{j} > 4$ (to cut down photon conversions in tracker).

Analysis: EMF & CR

• EMF: different cuts due to detector efficiencies

0.95 < EMF < 1.05 0.99 < EMF < 1(D0) (ATLAS)

• CR cut different for Z/W due to smaller Z cross-section

0.9 < CR < 1.9 0.95 (Z+h)

0.95 < CR < 1.25 (W+h)

Search Efficiency

		W + h		Z + h	
$m_h = 120 { m GeV}$		Signal(Eff.)	Bckg.	Signal(Eff.)	Bckg.
Tevatron	Kinematic	87 (18%)	4.4×10^5	10.6 (18%)	2.8×10^4
(10 fb^{-1})	EMF+CR	14.4 (3%)	5.9	3.5 (6%)	1.4
LHC	Kinematic	35 (17%)	4.9×10^5	5.2 (25%)	3.6×10^4
(1 fb^{-1})	EMF+CR	4.9 (2%)	0.7	1.5 (7%)	0.7

TABLE I: The number of signal and background events for the W+h and Z+h channels, with $m_h = 120$ GeV, at the Tevatron and LHC. Event counts are shown after the cuts of Eqs. (1) - (3) and requiring at least 4 tracks per jet (Kinematic), and also after including the cuts on electromagnetic fraction and charge ratio (EMF+CR).

Discovery Reach

Higgs Mass Reconstruction

- MET is aligned with LJ direction.
- Two unknowns can be recovered from momentum conservation, so Higgs mass can be reconstructed in Z+h channel.
- Probably need more than 1 fb⁻¹ or light Higgs.

Conclusions

- Despite the many searches at LEP and the Tevatron, it is still possible that the Higgs was missed $(10^4 \text{ events}!!)$.
- Such a possibility is intriguing and is motivated both theoretically and experimentally.
- Phenomenology is interesting even if the Higgs is not hidden, in which case, similar studies are required for LHC physics.
- Search strategies have been demonstrated to be efficient with high mass reach.
- A systematic approach to constrain the signature space is require, especially at the LHC era.

Ongoing Experimental Effort..

- L3 search for $H \to LJs$ (Princeton).
- CMS search for $H \to \text{LJs}$ (Princeton).
- CMS search for prompt and displaced muonic LJs (Princeton).
- CMS search for hardronic LJ production (Rutgers)
- ATLAS search for hardronic LJ production (..).
- ATLAS triggering on displaced LJs (Seattle).
- CDF search for $H \to \text{LJs}$ (..).
- D0 search for $H \to \text{LJs}$ (Rutgers).

• ...

An Answer Soon??

Efficiencies

		LF	EP-1 sea	rches			
Search	Ref.	Obs.	Bckg.	Neutr.	Sneutr.	Singlet	Max.
Monojets	42	3	2.8	< 1	0	0	6.6
Acoplanar	41	0	0.2	< 1	0	0	3.8
LEP-2 searches							
Search	Ref.	Obs.	Bckg.	Neutr.	Sneutr.	Singlet	Max.
$H \to 4\tau$	12	2	5.09	1	15	1	5.0
$H\to {E \!\!\!\!/} E$	[36]	8	11	2	5	3	7.5
$H \to WW^*\mathrm{2c}$	52	0	0.3	2	< 1	2	3.8
$H \to WW^*\mathrm{2t}$	52	1	1.2	1	1	3	5.0
61	55	1	1.1	< 1	4	< 1	5.0
$2j + \not \!\!\! E (\text{OPAL})$	<u>56</u>	13	19.8	8	35	7	7.8
$2j + \not \!$	57	19	15.9	7	3	1	14.5
$2j+2l+\not\!\!\!E$	57	5	3	2	4	5	9.0
Tevatron searches							
Search	Ref.	Obs.	Bckg.	Neutr.	Sneutr.	Singlet	Max.
Dark photon	<u>59</u>	7	8	~ 1	< 1	< 1	7.9
$H \to 4 \mu$	60	2	2.2	0	0	2	5.8
Unified 31	44	1	1.47	< 1	< 1	< 1	3.7
Low p_T 31	45	1	0.4	< 1	< 1	< 1	5.4
Like-sign 2l	43	13	7.8	1	< 1	< 1	14.7

Table 1: A compilation of relevant searches for constraining the Higgs-to-lepton jet events.