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Where is the Higgs?

e The mass of the SM Higgs is constrained by LEP, m;, = 114.4 GeV.

e Limits are in general model dependent.
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Where is the Higgs?

e The mass of the SM Higgs is constrained by LEP, mj; = 114.4 GeV.

e Limits are in general model dependent.

e In fact, there are good reasons to consider models where the Higgs is below
this bound:

— Experimental: Electroweak precision measurements.
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Where is the Higgs?

e The mass of the SM Higgs is constrained by LEP, m; = 114.4 GeV.

e Limits are in general model dependent.

e In fact, there are good reasons to consider models where the Higgs is below
this bound:

— Experimental: Electroweak precision measurements.

— Theoretical: Little hierarchy (in theories such as MSSM, my ~ myz).
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Where is the Higgs?

e The mass of the SM Higgs is constrained by LEP, m; = 114.4 GeV.

e Limits are in general model dependent.

e In fact, there are good reasons to consider models where the Higgs is below
this bound:
— Experimental: Electroweak precision measurements.
— Theoretical: Little hierarchy (in theories such as MSSM, my ~ myz).

— Interesting! New ideas and phenomenology that may show up re-
gardless of the Higgs mass.
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Is the Higgs hidden?

It is possible that the Higgs is lighter than 114 GeV?

e Option I: Higgs coupling to Z boson is suppressed so it was not produced
at LEP.
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Is the Higgs hidden?

It is possible that the Higgs is lighter than 114 GeV?

e Option I: Higgs coupling to Z boson is suppressed so it was not produced
at LEP.

e Option II: The Higgs decays in a non-standard manner.

SM Higgs Decay Channels
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Hidden Higgs: 1t has been copiously produced at LEP and the Tevatron but
has evaded detection due to non-standard decays.
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LLEP Constraints

e LEP has many searches and many model-dependent constraints.
e There are three general results to keep in mind:

1. OPAL model independent: mj > 82 GeV
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LLEP Constraints

e LEP has many searches and many model-dependent constraints.

e There are three general results to keep in mind:

1. OPAL model independent: m; > 82 GeV

2. SM Higgs mj; > 114.4 GeV. )
Can be interpreted as BR(h — bb) < 20% for my, = 100 GeV.
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LLEP Constraints

e LEP has many searches and many model-dependent constraints.

e There are three general results to keep in mind:

1. OPAL model independent: mj > 82 GeV

2. SM Higgs my > 114.4 GeV. )
Can be interpreted as BR(h — bb) < 20% for my = 100 GeV.

3. Invisible Higgs: mj; > 115 GeV.
Can be interpreted as BR(h — F') < 15%.
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What About Other ]

e 2-body final states are strongly constrained.
e Other final states and topologies have been searched for model-dependently.

e Even without dedicated searches, various topologies are constrained.
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What About Other F

e It is in many cases hard to know which model is excluded and to what
extent.

e The inverse problem is tedious and hard.

e This problem will soon reappear with LHC data and should be addressed.

A[Arkani—Hamed et. al. 2007; Cranmer,Yavin 2010]
MSSM. LEP & TeV

27

Model Space

There are still allowed regions ~ Collider Signature Space
in signature space!
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Hidden Higgs Scenarios

e The most studied scenario is the NMSSM with light CP-odd Higgs, h — AA — 4r.

[Dermisek, Gunion 2004; Chang et al.,2006]

e Very recently ALEPH data was revisited. New limit: m;, = 107 GeV
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[Cranmer et al. 2010]
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Hidden Higgs Scenarios

e The most studied scenario is the NMSSM with light CP-odd Higgs, h — AA — A4r.

[Dermisek, Gunion 2004; Chang et al.,2006]

e Very recently ALEPH data was revisited. New limit: m; = 107 GeV

e Other interesting proposals:

— RPV MSSM h — 6] [Carpenter, Kaplan, Rhee, 20006]

— Buried Higgs: h — 4. [Bellazzini, Csaki, Falkowski, Weiler, 2009]
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Hidden Higgs Scenarios

e The most studied scenario is the NMSSM with light CP-odd Higgs, h — AA — 4r.

[Dermisek, Gunion 2004; Chang et al.,2006]

e Very recently ALEPH data was revisited. New limit: m;, = 107 GeV

e Other interesting proposals:

— RPV MSSM h — 6] [Carpenter, Kaplan, Rhee, 20006]

— Buried Higgs: h — 47. [Bellazzini, Csaki, Falkowski, Weiler, 2009]

Today we study a new possibility: A — Lepton Jets

e We work in the supersymmetric framework: We consider the possibility
of also hiding SUSY.
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Outline

e Theory:
* Framework: Low-Scale Hidden Sectors
e Higgs Decay Channels
 Phenomenology:
o Collider Signatures
e Experimental Constraints
* Search Strategies

e Conclusions
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Framework:
[.ow Scale Hidden Sectors




A Hidden Sector

£
£
E
=

e A simple and plausible extension of the SM.
e Mixing can be naturally generated at high scale, e < 1073,
e Motivation:

— String theory constructions.
— New phenomenology (hidden valleys). [Strassler, Zurek, 2006]

— Cosmic Ray anomalies.
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A Hidden Sector

“Vector Portal”

14
€Y q

We work in the supersymmetric framework.
The simplest case: U(1)’, is already rich enough!
Easy to generalize to other portals or gauge groups.

the Lagrangian:

1 : :
Loic = 5675”1%'/ — ieq) 618, B + ie BT 6"0,74
L | | |

Gauge Gaugino
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Gauge Kinetic Mixing

e Mixing can be removed:
A, — A, + ecosOwa,

e Therefore the SM fields are millicharges under the new photon.

e Consequently the hidden photon can decay to kinematically available SM

fermions.
vq Branching Ratio
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(Gauge Kinetic Mixing

e Similar shift removes Gaugino mixing:

~ ~

Vi — Ya+€B

VaJhid = YaInid + €BJnid Jhia = Y _ ashif b

e The lightest visible neutralino (LVSP) can therefore decay into the hidden

sector!
% %
M \t—/ M l_{
~
s ~
~hy Vd

e The lifetime of both the v, and ]\71 is controlled by e.

e Here we consider prompt decays (e ~ 107°7%). The case of displaced
vertices 1s under Stlldy. [Graesser, Ruderman, Surujon, TV, in progress]
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Hidden Particle Content

e There are (obviously) no constraints on the particle content in the hidden
sector.

e Minimal content: in order to break the U(1)" we minimally need two Higgs
chiral superfield, /.

e Minimal spectrum:

— One massive photon, v,.

— Three hidden neutralinos 7, (mixtures of the hidden gaugino and
Higgsinos).

— Three hidden scalars, h';: hy, H,, Ay

e All particles are assume to have masses of order 0.1 — 1 GeV.

The minimal model is already rich enough to hide the Higgs!
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Higgs Decay Channels




Neutralino Channel

|G e i

e In principle, there is no model-independent bound on the mass of the
LVSP neutralino.

e Coupling to Higgs arises from h — h — B/W:

~  ~ L 2 2 3/2
h

e N; must therefore be a mixture:

~

Ny B

e There is therefore a possible tension with Chargino constraints.
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Neutralino Chan
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[Carpenter, Kaplan, Rhee, 2007]

e Chargino bound can be satisfied.

e Implies Z can also decay to Nj.

Neutralino Higgs Decays
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e /-width constraint is satisfied

e Typical values to be used:

my. 5 10 GeV
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Higgs decays...
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Into the Hidden Sector...
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Hidden cascade...
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Back to the SM...
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Example: Lepton Jet

Back to the SM... [~ [T

The final states are high-multiplicity clusters of boosted and collimated leptons:

Lepton Jets

[Arkani-Hamed, Weiner; Cheung, et al.; , Baumgart, et al.]
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Singlet Channel

e Distinct decay modes occur through coupling to singlets. For example:

Weinglet = S (Y x X + AHy Hy) + 51 X hT + k2 x h3 .

e This is a simple extension of the NMSSM.

e Couplings allow the Higgs to decay to x with O(1) BR, independently of
the NMSSM spectrum.

e \ subsequently cascades in the hidden sector.

e Final states of Higgs decays are leptons + Hrp.

Singlet Higgs Decays
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Constraining Collider Signatures




Collider Signatures

e The complete ”inverse problem” of mapping the viable region in observable
space is hard.

e Here we study a region which is expected to be relatively unconstrained
(with no dedicated searches): lepton jets.

e We identify the following observables relevant for LEP and Tevatron searches:
— Visible Final States: Electrons vs. Muons

e The mass of the hidden photon is the only parameter.

e Branching fractions are controlled by m.,

vq Branching Ratio
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Collider Signatures

e The complete ”inverse problem” of mapping the viable region in observable
space is hard.

e Here we study a region which is expected to be relatively unconstrained
(with no dedicated searches): lepton jets.

e We identify the following observables relevant for LEP and Tevatron searches:

— Visible Final States: Electrons vs. Muons

— Lepton Multiplicity

Extremely sensitive to he hidden spectrum.

Since B — h;h;, the mass of the hidden higginos control length of the
cascade.

Spectrum of hidden Higgses also matter.

Non-abelian gauge group and showering in hidden sector can increase mul-
tiplicity:.

Multiplicity can range from 0 — O(100)
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Collider Signatures

e The complete ”inverse problem” of mapping the viable region in observable
space is hard.

e Here we study a region which is expected to be relatively unconstrained
(with no dedicated searches): lepton jets.

e We identify the following observables relevant for LEP and Tevatron searches:

— Visible Final States: Electrons vs. Muons
— Lepton Multiplicity
— Missing Energy

e Very sensitive to hidden spectrum.

e Can have many hidden collider-stable particles.
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Collider Signatures

e The complete ”inverse problem” of mapping the viable region in observable
space is hard.

e Here we study a region which is expected to be relatively unconstrained
(with no dedicated searches): lepton jets.

e We identify the following observables relevant for LEP and Tevatron searches:

— Visible Final States: Electrons vs. Muons
— Lepton Multiplicity

— Missing Energy

— Event Topology

e Characterized by number of lepton jets.

e Depends on the spectrum and first steps of the cascade.
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Collider Signatures

e The complete ”inverse problem” of mapping the viable region in observable
space is hard.

e Here we study a region which is expected to be relatively unconstrained
(with no dedicated searches): lepton jets.

e We identify the following observables relevant for LEP and Tevatron searches:

— Visible Final States: Electrons vs. Muons
— Lepton Multiplicity

— Missing Energy

— Event Topology

— Lepton Isolation
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Collider Signatures

e The complete "inverse problem” of mapping the viable region in observable
space is hard.

e Here we study a region which is expected to be relatively unconstrained
(with no dedicated searches): lepton jets.

e We identify the following observables relevant for LEP and Tevatron searches:

— Visible Final States: Electrons vs. Muons
— Lepton Multiplicity

— Missing Energy

— Event Topology

— Lepton Isolation

— Jet Shape
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Collider Signatures

e The complete "inverse problem” of mapping the viable region in observable
space is hard.

e Here we study a region which is expected to be relatively unconstrained
(with no dedicated searches): lepton jets.

e We identify the following observables relevant for LEP and Tevatron searches:

— Visible Final States: Electrons vs. Muons
— Lepton Multiplicity

— Missing Energy

— Event Topology

— Lepton Isolation

— Jet Shape

— Displaced Vertices
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Methodology

e To study our signal » — Lepton Jets and identity the viable regions in
signature space, we simulate benchmark models:

— Higgs production and decay using Madgraph.
— Hidden sector cascade using BRIDGE.

— Event analysis using our own Mathematica package, Slowjet.
e No hidden sector showering is taken into account.
e No detector simulation.

e A more comprehensive study must be made with experimentalists using
full detector simulation. Without it lepton id and nearby tracks recon-
struction may be wrong.
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LEP

LEP-1

e Roughly 2 x 107 Z bosons were produced at LEP-1. Thus as many as 10*
neutralinos and lepton jets may have been produced.

e This is in contrast to the direct coupling of the Z to the hidden sector,
which is suppressed by e.

e LEP-1 is therefore a great place to look for a signal and to constrain the
Lepton Jet scenario.
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LEP

LEP-1

e Roughly 2 x 107 Z bosons were produced at LEP-1. Thus as many as 10*
neutralinos and lepton jets may have been produced.

e This is in contrast to the direct coupling of the Z to the hidden sector,
which is suppressed by e.

e LEP-1 is therefore a great place to look for a signal and to constrain the
Lepton Jet scenario.

LEP-2

e The Higgs is produced through Higgstrahlung.

o LEP-2 collected ~ 700 pb™" at /s = 183 — 209 GeV
per experiment.

e For a 100 GeV Higgs, the production cross-sction is ~ 0.3 — 0.4 pb.

e Thus ~ 130 Higgs events would have been produced at LEP-2. This is
enough to place stringent constraints on Higgs physics.
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LEP-1: Monojets and Ac

e LEP-1 searched for eTe™ — (H — jets)(Z* — vv) by looking for Acopla-
nar jets and Monojets.

Acoplanar Jets MonoJet
Oaco = 139°

T = max Zi‘pi.m

n Zz pi|

Thrust

9

MN1 = 30 GeV MNI =30 GeV

Jet2 Jet ¥

e As a consequence, BR(Z —+# 2 jets) < 107°
e Therefore:

— BR(N; — Invisible) < 1073
— 2-jet topology is obtained with mg << mz/2.

2-jet topology and large multiplicity is required
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LEP-2: Invisible Higg

e Searches for Zh with h — F have been performed by all collaborations.

e OPAL search is most dangerous due to large Z window: 50 GeV < M5 <
120 GeV.

e Therefore events with 50 GeV < mj, < 120 GeV where (h — visible) and
(Z — vv) are caught.

| 'QP'AL' Ipyisiblg Higgs Se?f?h | Tevatron Missing Energy
15} i i Tevatron 5.0 fb™!
| i , Hadronic 7 103 Neutralino -
L It %
= 10} : ! £ 0
S | i ! § Singlet
] i ] 102 :-l
Z <l Invisible Z! | S
| _,_I_I_,_Ll— ! i
| | i 107
obL— . . . . A R

0 50 100 150 200 0 50 100 150 20
MET [GeV]

Visible Mass

Higgs must decay to some but not too much ¥
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LEP-2: Higgs to WW*

e ALEPH searched for h — WW™ in the context of fermiophobic Higgs
models.

e W decays to leptons and missing energy makes this search relevant
e In fact, this search is dangerous to most models: includes many topologies.

e Most relevant topology, ZWW* — [Tl lvqq: 2 hard leptons + softer
lepton + > 2 tracks.

Class and topology Targeted Channel (BR)

1: Fully-Hadroni No leptonic d 0.422

e Very low SM background. S  No leptonic decay _ (0.422)
la: 6 jets ' qqqgqq (0.328)

1b: 4 jets and F, i v qd qq (0.094)

e Sensitive to 2: Two-Hard-Leptons Z leptonic decays (0.054)
lepton jets + leptonic Z. 2a: plus jets 74" qqqq (0.032)

b J ™ b 2t: plus jets and Fiss 6 Traq (0.003)

2b: plus jets and 1 soft lepton T qqéy (0.010)

2¢: plus jets and 1 hard lepton e dvqq (0.007)

2d: plus 1 hard lepton and 1 track | £74~ fv bv (0.003)

3: One-Hard-Lepton (and E,;;) | W leptonic decays (0.171)

3a: plus jets ' qqfraqq (0.101)
3b: plus jets and 1 soft lepton aqfv by (0.031)
3c: plus 1 track and Myiss vir bu by (0.029)
3d: plus jets and M. v fv qq (0.008)
4: One-Soft-Lepton | W* leptonic decays (0.130)
4a: plus jets qqqq £v (0.101)
4b: plus jets and Mpyse v qq fv (0.029)
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LEP-2: Higgs to WW*

e Toreduce WW background they select events with at least 5 well separated

objects.

e Using Durham, they take 145 > 2 x 1072,

Durham yy;
25 T
20F Myj=5GeV|
: 9 9 42 i MN1: 30 GeV
2min(FE7, E7)(1 — cosb;,;) 5 1.5) : —
- 1) J ZJ Ui i ] _I
Jij E\ins Z. 1.0} —

0.55— I I

0.0—F—1_ - ] ‘
1077 107° 1072 107 1073 1072

Signal must therefore be of 2-jet topology.
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SM Higgs production

gg,qq — tth

TeV4LHC Higgs working group
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Tevatron: Trileptons

e Trilepton searches require (relatively) hard and isolated leptons (AR <
0.4).

e Large lepton multiplicity evades such searches.

Lepton pr

10%¢

Tevatron 5.0 fb‘lé

[E—
-
oY)
|
>
—
.
O
o
H
@)
=)
N

N Leptons
2,
I

i Isolated Leptons

[
<
I

Leptons must not be isolated (large multiplicities)

Thursday, December 2, 2010



Tevatron: Dark Photon Se

e Very recently, DO performed an inclusive search for two LJs + MET.

e Look for AR < 0.2 clusters, containing an electron or muon of pr > 10
GeV and at least one OS companion track of pr > 4 GeV.

e Jets are required to be isolated in an annulus: 0.2 < AR < 0.4.

e DO search sensitive to narrow LJs with low multiplicities.

O

a5

Lepton jets must be relatively wide or soft (large multipliciites)
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Collider Signatures: Sum

e Visible Final States: Electrons vs. Muons Both can be accommodated

e Lepton Multiplicity Large (2 6)

e Missing Energy Some is required (O(50) GeV)
e Lvent Topology 2-jet topology

e Lepton Isolation No hard isolated leptons

e Jet Shape Not too narrow (R > 0.2)

e Displaced Vertices In progress..
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Benchmark Models




Neutralino Benchmark Singlet Benchmark

MSSM hidden hidden hidden
ino higgs photon higgs 1no photons
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Benchmark Models

e To explore a wide range of LJ signatures, we use effective ”simplified”
models.

e We assume an N-step cascade.
e Tunable parameters:

— Number of cascade steps (multiplitcity and pr).
— Hidden particle masses (number and width of LJs).

— BR of last step into SM vs. hidden particle (amount of missing
energy).
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Discovering Lepton Jets




Can We Find the Hidden

e There could be as many as 10* Higgs and lepton jet events at LEP-1 and
the Tevatron. On the order of ~ 100 events at LEP-2 and more than
events at the 1 fb—* data.

e With dedicated searches it should therefore be simple to find such a Higgs
at any of these experiments.

e Goal: Differentiate between the lepton 2-jet topology from the SM QCD
background.
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Can We Find the Hidd

Some possibly useful observables:

e Jet Shape [my, < my and weakly coupled hidden sector]

Jet Shape

F — Lepton Jets
i QCD Jets

R=0.7 _
37 GeV < Jet pr <45 GeV

0.6 0.8 1.0

p—
=]

)
o0

pr (@ / pr (R)

.o
ko

<
QO
(@)
(e}
o
(@)
~

Jet Radius (r / R)
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Can We Find the Hidde

Jet Shape

h — Lepton Jets
QCD Jets
R=07

37 GeV < Jet pr < 45 GeV |

Some possibly useful observables:

(=]

(=}
o0

pr @)/ pr R)

<
)

e Jet Shape |my, < my and weakly coupled hidden sector]

o
==

0 02 04 06 08 1.0

Jet Radius (r / R)

e Lepton invariant mass [Depends on hidden sector spectrum]

1(p0——"m—m———
I ARﬁ - <0.1 _ ]
30} Singlet ]
= 20} —
< L
10} Neutralino
()T_J::j:::;::_i]j_j ........... __ﬂ__j__ﬁ“*
0.00 0.05 0.10 0.15 0.20 0.25 0.30
my+ - (GCV)
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Can We Find the Hidden 1

Some possibly useful observables: oSt
g OSF Lepton Jets
5:0.6 QCD Jets
e Jet Shape |my, < my and weakly coupled hidden sector| | e T
002 0z 06 08 10

Jet Radius (r / R)

e Lepton invariant mass [Depends on hidden sector spectrum] | = [ st |
_r:_l_‘ — Tt
00005 010 015 020 025 030

my+ - (GeV)

e Ecal/Hcal ratio [Assuming electronic jets]

Background rejection of few x107° per jet.
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Can We Find the Hidden 1

Some possibly useful observables: oSt
g OSF Lepton Jets
5:0.6 QCD Jets
e Jet Shape |my, < my and weakly coupled hidden sector| | e T
002 0z 06 08 10

Jet Radius (r / R)

e Lepton invariant mass [Depends on hidden sector spectrum] | = [ st |
_r:_l_‘ — Tt
00005 010 015 020 025 030

my+ - (GeV)

e Ecal/Hcal ratio [Assuming electronic jets]

Background rejection of few x107° per jet.
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QCD vs. Electron Jets

e Closely spaced leptons do not satisty usual isolation criteria and will not
reconstruct as leptons.

e We therefore use:

— EM Fraction (EMF): %
— ] . > DpT
Charge Ratio (CR): FEL

e For LJs we expect: EMF ~ CR ~ 1

e Background consists mostly of #* (EMF < 1) and photons from 7"
(EMF ~ 1). Precise jet composition fluctuates highly.

e EMF distribution further broadens by fluctuations of EM and Hadronic
cascade and detector smearing.

e High EMEF tail of QCD is due to high photon content, so CR < 1.
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Analysis

e Higgs production through gluon fusion is overwhelmed by dijet back-
ground.

e We concentrate on leptonic Z/W + 2 LJs.
e Main background: Z/W + jj

e Study: DO and ATLAS.

e Divide search into

1. Kinematic cuts that target Z/W-+h

2. EMF and CR that target LJs (not necessarily through Higgs produc-
tion).
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Methodology

e Background and signal simulated using usual MC chain:

— Parton level: MadGraphv4 and BRIDGE.

— Shower and hadronization: Pythia 6.4.21 (including multiple in-
teractions and pileup).

— (Cross-sections normalized using to NLO with MCFM.

— Detector simulation, PGS4, tuned for DO and ATLAS.
e PGS is too simplistic for simulating EMF and CR.

e We use a fast calorimeter MC, taking into account parametrization for
EM and hadronic showers tuned for DO and ATLAS.

e Allow fluctuations of all parameter, taking into account non-compensating
effects (e/h) and detector smearing.

e Simulation is tuned to DO and ATLAS using dijet EMF data.
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DO Dijet Data
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Analysis: Kinematic Cuts

e Lixactly two jets:

pT(j) > 15 GeV Ale,jQ > 0.7
n| < 1.1 15<|n <25 | < 2
(DO) (ATLAS)

e 7Z+h: 2 opposite sign same flavor isolated leptons (I = e, u):

pr(l) > 10 GeV im(T17) —mgz| < 10 GeV

e W-+h: 1 lepton and missing pr:

pT(Z) > 20 GeV PT miss > 20 GeV

o Ngrk > 4 (to cut down photon conversions in tracker).
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Analysis: EMF & CR

e EMF: different cuts due to detector efficiencies
0.99 < EMF < 1

0.95 < EMF < 1.05
(DO) (ATLAS)

e CR cut different for Z/W due to smaller Z cross-section

09 < CR<1.9 0.95 < CR < 1.25
(Z+h) (W+h)

Tevatron Jet Discrimination
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mn =120 GeV | Signal(Eff.)  Bckg. | Signal(Eff)  Bckg.

Tevatron |Kinematic| 87 (18%) 4.4 x 10°| 10.6 (18%) 2.8 x 10*

10 b~ 1) |EMF+CR| 14.4 (3% 5.9 3.5 (6% 1.4

LHC |Kinematic| 35 (17%) 4.9 x 10°| 5.2 (25%) 3.6 x 10*
(1fb~') [EMF4+CR| 4.9 (2%) 0.7 1.5 (7%) 0.7

TABLE I: The number of signal and background events for the W+h and Z+h channels, with m; = 120 GeV, at
the Tevatron and LHC. Event counts are shown after the cuts of Egs. - @ and requiring at least 4 tracks per jet
(Kinematic), and also after including the cuts on electromagnetic fraction and charge ratio (EMF+CR).
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Tevatron hW Reach LHC hW Reach

Estimated Estimated
LEP Limit LEP Limit
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Higes Mass Recons

e MET is aligned with LJ direction.

e Two unknowns can be recovered from momentum conservation, so Higgs
mass can be reconstructed in Z-+h channel.

e Probably need more than 1 fb~! or light Higgs.
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Conclusions

e Despite the many searches at LEP and the Tevatron, it is still possible
that the Higgs was missed (10* events!!).

e Such a possibility is intriguing and is motivated both theoretically and
experimentally.

e Phenomenology is interesting even if the Higgs is not hidden, in which
case, similar studies are required for LHC physics.

e Search strategies have been demonstrated to be efficient with high mass
reach.

e A systematic approach to constrain the signature space is require, espe-
cially at the LHC era.
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Ongoing Experimental Eff(}

e L3 search for H — LJs (Princeton).

e CMS search for H — LJs (Princeton).

e CMS search for prompt and displaced muonic LJs (Princeton).
e CMS search for hardronic LJ production (Rutgers)

e ATLAS search for hardronic L.J production (..).

e ATLAS triggering on displaced LJs (Seattle).

e CDF search for H — LJs (..).

e DO search for H — LJs (Rutgers).

Thursday, December 2, 2010



An Answer Soon??
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LEP-1 searches

Search

Obs. Beckg. Neutr.

Sneutr.

Singlet Max.

Monojets

3 2.8 <1

0

0 6.6

Acoplanar

=ElEE

0 0.2
LEP-2 searches

<1

0

0 3.8

Search

Obs. Bekg. Neutr.

Sneutr.

Singlet Max.

H — 4r

2 5.09 1

15

1 5.0

H—F

11

5

3 7.5

H— WW 2

<1

2 3.8

H— WW+2t

1.2

3 5.0

61

8 2
0 0.3 2
1 1
1

1.1

<1 5.0

27+ F(OPAL)

13 198

7 7.8

2j + F (ALEPH)

19 159

1 14.5

2j +2+F

BE8E B RBEERE

5 3
Tevatron searches

5 9.0

Search

5

Obs. Bckg. Neutr.

Sneutr.

Singlet Max.

Dark photon

7 8 ~ 1

<1

<1 7.9

H —4u

2 2.2 0

0

2 5.8

Unified 31

1 1.47 <1

<1

<1 3.7

Low pr 31

EHSIENERE

1 0.4 <1

<1

<1 5.4

Like-sign 21

Table 1: A compilation of relevant searches for constraining the Higgs-to-lepton jet events.
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