A Definitive Signal of Multiple SUSY breaking

JHEP 1007:035,2010 [arXiv:1004.4637] Cliff Cheung, JM, Yasunori Nomura and Jesse Thaler

Jeremy Mardon – UC Berkeley A Definitive Signal of Multiple SUSY breaking

< □ > < 同 > < 回 > < 回 >

A Definitive Signal of Multiple SUSY breaking

JHEP 1007:035,2010 [arXiv:1004.4637] Cliff Cheung, JM, Yasunori Nomura and Jesse Thaler

Following on from

Goldstini (1002.1967) - C.Cheung, Y.Nomura and J.Thaler

Outline

- Motivation
- Review of the Goldstini framework
- An simple setup
- A smoking-gun collider signature
- Cosmology with goldstini
- Cosmology and Colliders collide
- Conclusions

A B > < B</p>

Motivation

An old philosophy: simplicity

- Believe new physics should be as simple as possible to explain data
- \Rightarrow expect SM sector + (e.g.) SUSY sector + desert ?

・ロト ・聞 ト ・ ヨト ・ ヨト

Motivation

An old philosophy: simplicity

- Believe new physics should be as simple as possible to explain data
- \Rightarrow expect SM sector + (e.g.) SUSY sector + desert ?

(Of course, Standard Model doesn't look especially simple...)

Motivation

Another philosophy: many many sectors

Complexity of string compactifications

 \rightarrow many sequestered hidden sectors?

(e.g. Giddings et.al. hep-th/0105097 Dimopoulos et.al. hep-th/0104239

...)

- Is it testable?
- Fantastical astrophysical/collider consequences
 - "axiverse"

Arvanitaki et.al. 0905.4720

• "photini"

Arvanitaki et.al. 0909.5440

Motivation

Another philosophy: many many sectors

Complexity of string compactifications

 \rightarrow many sequestered hidden sectors?

(e.g. Giddings et.al. hep-th/0105097 Dimopoulos et.al. hep-th/0104239

...)

• Is it testable?

Fantastical astrophysical/collider consequences

 "axiverse"

Arvanitaki et.al. 0905.4720

• "photini"

Arvanitaki et.al. 0909.5440

Motivation

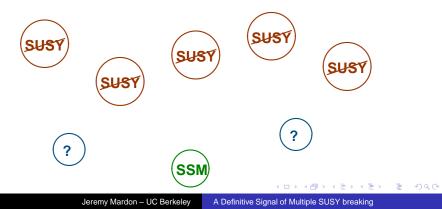
Another philosophy: many many sectors

Complexity of string compactifications

 \rightarrow many sequestered hidden sectors?

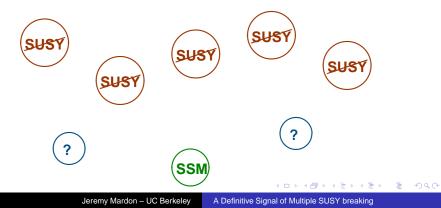
(e.g. Giddings et.al. hep-th/0105097 Dimopoulos et.al. hep-th/0104239 ...)

- Is it testable?
- Fantastical astrophysical/collider consequences
 - axiverse"


Arvanitaki et.al. 0905.4720

"photini"

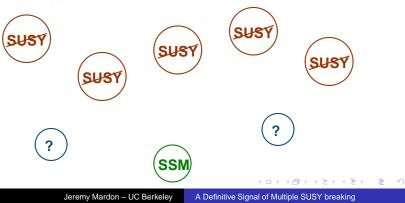
Arvanitaki et.al. 0909.5440

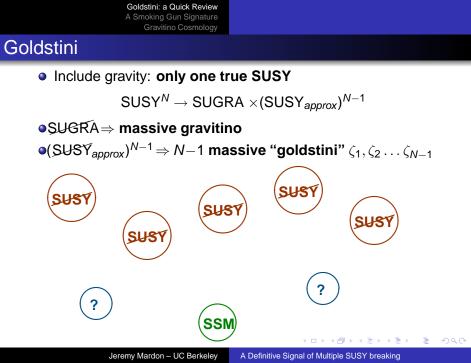

Goldstini

- N sequestered SUSY sectors
- \Rightarrow *N* copies of global SUSY
- ⇒ N massless goldstini-fermions ??

Goldstini

- N sequestered SUSY sectors
- \Rightarrow *N* copies of global SUSY
- \Rightarrow N massless goldstini-fermions ??




Goldstini

Include gravity: only one true SUSY

 $\text{SUSY}^N \rightarrow \text{SUGRA} \times (\text{SUSY}_{\textit{approx}})^{N-1}$

•SUGRA \Rightarrow massive gravitino •(SUST_{approx})^{N-1} \Rightarrow N-1 massive "goldstini" $\zeta_1, \zeta_2 \dots \zeta_{N-1}$

Goldstini

Gravitino has:

Standard mass and couplings set by SUGRA

Goldstini have:

• mass = 2*m*_{3/2}

(universal!)*

< □ > < 同 > < 回 > < 回 > < 回 >

- interactions with SM sector similar to gravitino's*
- ...but with coupling *strength* a **free parameter**

*conditions apply

The Factor of Two a quick treatment

Consider the field X_i that breaks SUSY in sector *i*:

$$\mathcal{L} = \int d^4 \theta \left(X_i^{\dagger} X_i + \ldots \right) + \int d^2 \theta \, \mu_i^2 X_i + \text{h.c.}$$

A non linear parametrization is appropriate:

$$X_i = e^{Q\eta_i/\sqrt{2}F_i}(x_i + \theta^2 F_i) = x_i + \frac{\eta_i^2}{2}F_i + \sqrt{2}\theta\eta_i + \theta^2 F_i$$

Low-energy effects of supergravity found by reinstating the conformal compensator:

$$\mathcal{L} = \int d^4 \theta \ C^{\dagger} C(X_i^{\dagger} X_i + \ldots) + \int d^2 \theta \ C^3 \mu_i^2 X_i + \mathrm{h.c.}$$

with: $C = 1 + \theta^2 m_{3/2}$

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

э

Rescale $CX_i \rightarrow X_i$ to canonically normalize:

The Factor of Two a quick treatment

Consider the field X_i that breaks SUSY in sector *i*:

$$\mathcal{L} = \int d^4 \theta \left(X_i^{\dagger} X_i + \ldots \right) + \int d^2 \theta \, \mu_i^2 X_i + \text{h.c.}$$

A non linear parametrization is appropriate:

$$X_i = e^{Q\eta_i/\sqrt{2}F_i}(x_i + \theta^2 F_i) = x_i + \frac{\eta_i^2}{2F_i} + \sqrt{2}\theta\eta_i + \theta^2 F_i$$

Low-energy effects of supergravity found by reinstating the conformal compensator:

$$\mathcal{L} = \int d^4 \theta \ C^{\dagger} C(X_i^{\dagger} X_i + \ldots) + \int d^2 \theta \ C^3 \mu_i^2 X_i + \mathrm{h.c.}$$

with: $C = 1 + \theta^2 m_{3/2}$

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

3

Rescale $CX_i \rightarrow X_i$ to canonically normalize:

The Factor of Two a quick treatment

Consider the field X_i that breaks SUSY in sector *i*:

$$\mathcal{L} = \int d^4 \theta \left(X_i^{\dagger} X_i + \ldots \right) + \int d^2 \theta \, \mu_i^2 X_i + \text{h.c.}$$

A non linear parametrization is appropriate:

$$X_i = e^{Q\eta_i/\sqrt{2}F_i}(x_i + \theta^2 F_i) = x_i + \frac{\eta_i^2}{2F_i} + \sqrt{2}\theta\eta_i + \theta^2 F_i$$

Low-energy effects of supergravity found by reinstating the conformal compensator:

$$\mathcal{L} = \int d^4\theta \ C^{\dagger} C(X_i^{\dagger} X_i + \ldots) + \int d^2\theta \ C^3 \mu_i^2 X_i + \text{h.c.}$$

with: $C = 1 + \theta^2 m_{3/2}$

Rescale $CX_i \rightarrow X_i$ to canonically normalize:

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

э

The Factor of Two a quick treatment

Consider the field X_i that breaks SUSY in sector *i*:

$$\mathcal{L} = \int d^4 \theta \left(X_i^{\dagger} X_i + \ldots \right) + \int d^2 \theta \, \mu_i^2 X_i + \mathrm{h.c.}$$

A non linear parametrization is appropriate:

$$X_i = e^{Q\eta_i/\sqrt{2}F_i}(x_i + \theta^2 F_i) = x_i + \frac{\eta_i^2}{2F_i} + \sqrt{2}\theta\eta_i + \theta^2 F_i$$

Low-energy effects of supergravity found by reinstating the conformal compensator:

$$\mathcal{L} = \int d^4\theta \ C^{\dagger} C(X_i^{\dagger} X_i + \ldots) + \int d^2\theta \ C^3 \mu_i^2 X_i + \text{h.c.}$$

with: $\mathbf{C} = \mathbf{1} + \theta^2 \mathbf{m}_{3/2}$

Rescale $CX_i \rightarrow X_i$ to canonically normalize:

 $\mathcal{L} \supset \int d^2 \theta \ C^2 \mu_i^2 X_i$

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

The Factor of Two a quick treatment

Consider the field X_i that breaks SUSY in sector *i*:

$$\mathcal{L} = \int d^4 \theta \left(X_i^{\dagger} X_i + \ldots \right) + \int d^2 \theta \, \mu_i^2 X_i + \mathrm{h.c.}$$

A non linear parametrization is appropriate:

$$X_i = e^{Q\eta_i/\sqrt{2}F_i}(x_i + \theta^2 F_i) = x_i + \frac{\eta_i^2}{2F_i} + \sqrt{2}\theta\eta_i + \theta^2 F_i$$

Low-energy effects of supergravity found by reinstating the conformal compensator:

$$\mathcal{L} = \int d^4\theta \ C^{\dagger} C(X_i^{\dagger} X_i + \ldots) + \int d^2\theta \ C^3 \mu_i^2 X_i + \text{h.c.}$$

with: $\mathbf{C} = \mathbf{1} + \theta^2 m_{3/2}$

Rescale $CX_i \rightarrow X_i$ to canonically normalize:

$$\mathcal{L} \supset \int d^2 \theta \ C^2 \mu_i^2 X_i \supset (2m_{3/2}) \mu_i^2 (\eta_i^2/2F_i)$$

The Factor of Two a quick treatment

Consider the field X_i that breaks SUSY in sector *i*:

$$\mathcal{L} = \int d^4 \theta \left(X_i^{\dagger} X_i + \ldots \right) + \int d^2 \theta \, \mu_i^2 X_i + \mathrm{h.c.}$$

A non linear parametrization is appropriate:

$$X_i = e^{Q\eta_i/\sqrt{2}F_i}(x_i + \theta^2 F_i) = x_i + \frac{\eta_i^2}{2F_i} + \sqrt{2}\theta\eta_i + \theta^2 F_i$$

Low-energy effects of supergravity found by reinstating the conformal compensator:

$$\mathcal{L} = \int d^4\theta \ C^{\dagger} C(X_i^{\dagger} X_i + \ldots) + \int d^2\theta \ C^3 \mu_i^2 X_i + \text{h.c.}$$

with: $\mathbf{C} = \mathbf{1} + \theta^2 m_{3/2}$

Rescale $CX_i \rightarrow X_i$ to canonically normalize:

$$\mathcal{L} \supset \int d^2\theta \ C^2 \mu_i^2 X_i \supset (2m_{3/2}) \mu_i^2 (\eta_i^2/2F_i) = -\frac{1}{2} (2m_{3/2}) \eta_i^2$$

The Factor of Two a quick treatment

goldstini get a mass $2m_{3/2}$

• The gravitino eats one linear combination:

$$\tilde{G} \supset \eta_{\mathrm{long}} = (F_1\eta_1 + F_2\eta_2 + \dots)/\sqrt{F_1^2 + F_2^2 + \dots}$$

... and gets standard mass $m_{3/2} = \frac{F}{\sqrt{3}}$

other linear combinations are physical goldstini ζ_a,

with mass $m_{\zeta} = 2m_{3/2}$

< ロ > < 同 > < 回 > < 回 >

The Factor of Two a quick treatment

goldstini get a mass $2m_{3/2}$

• The gravitino eats one linear combination:

$$ilde{G} \supset \eta_{\mathrm{long}} = (F_1\eta_1 + F_2\eta_2 + \dots)/\sqrt{F_1^2 + F_2^2 + \dots}$$

... and gets standard mass $m_{3/2} = \frac{F_{tot}}{\sqrt{3}M_{T}}$

other linear combinations are physical goldstini ζ_a,

with mass $m_{\zeta} = 2m_{3/2}$

э

The Factor of Two a quick treatment

goldstini get a mass $2m_{3/2}$

• The gravitino eats one linear combination:

$$ilde{G} \supset \eta_{\mathrm{long}} = (F_1\eta_1 + F_2\eta_2 + \dots)/\sqrt{F_1^2 + F_2^2 + \dots}$$

... and gets standard mass $m_{3/2} = \frac{F_{tot}}{\sqrt{3}M_{TL}}$

• other linear combinations are physical goldstini ζ_a ,

with mass $m_{\zeta} = 2m_{3/2}$

< ロ > < 同 > < 回 > < 回 > .

Aside: How exact is the 2

- Assumes F-term breaking (for simplicity)
- Valid at tree level for sequestered sectors
 - Anomaly mediation $\rightarrow \delta m_{\zeta} \sim (\text{loop suppression}) \times m_{3/2}$
 - Multiple sectors mediating SUSY to SM sector $\rightarrow \delta m_{\zeta} \sim (\text{loop suppression}) \times \tilde{m}$

Goldstini and Gravitino Couplings

• standard goldstone-fermion couplings:

$$\mathcal{L} \supset rac{ ilde{m}_{[i]}^2}{F_i} \eta_i \ell ilde{\ell}^\dagger - rac{i}{\sqrt{2}} rac{M_{[i]}}{F_i} \eta_i \sigma^{\mu
u} ilde{g} G_{\mu
u}$$

 $(\tilde{m}_{[i]}^2$ and $M_{[i]}$ are the contributions to soft masses from sector i)

- \rightarrow gravitino has couplings $\sim \frac{\tilde{m}^2}{F_{tot}}, \frac{M_{1/2}}{F_{tot}}$
- $\bullet \ \rightarrow$ goldstini can have much larger/smaller couplings

Goldstini and Gravitino Couplings

standard goldstone-fermion couplings:

$$\mathcal{L} \supset rac{ ilde{m}_{[l]}^2}{F_i} \eta_i \ell ilde{\ell}^\dagger - rac{i}{\sqrt{2}} rac{M_{[l]}}{F_i} \eta_i \sigma^{\mu
u} ilde{g} G_{\mu
u}$$

 $(\tilde{m}_{[i]}^2$ and $M_{[i]}$ are the contributions to soft masses from sector i)

- \rightarrow gravitino has couplings $\sim \frac{\tilde{m}^2}{F_{tot}}, \frac{M_{1/2}}{F_{tot}}$
- $\bullet \ \rightarrow$ goldstini can have much larger/smaller couplings

(日)

Goldstini

Gravitino has:

Standard mass and couplings set by SUGRA

$$m_{3/2} = rac{F_{tot}}{\sqrt{3}M_{Pl}};$$
 coupling $\sim rac{m_{soft}^2 \circ r M_{1/2}}{F_{tot}}$

Goldstini have:

mass = 2m_{3/2}

(universal!)*

< ロ > < 同 > < 回 > < 回 > .

- interactions with SM sector similar to gravitino's*
- ...but with coupling strength $\sim \tilde{m}_{[i]}^2/F_i$ (free parameter)

*conditions apply

A New BSM Playground

Interesting Possibilities:

- Colliders?
- Cosmology?

But could we ever see unambiguous evidence for a Goldstini setup?

A New BSM Playground

Interesting Possibilities:

- Colliders?
- Cosmology?

. . .

But could we ever see unambiguous evidence for a Goldstini setup?

< ロ > < 同 > < 回 > < 回 > .

э

An Simple Setup Part 1: SUSY-breaking

- Just 2 SUSY sectors \rightarrow gravitino \tilde{G} + goldstino ζ
- SUSY is dominantly broken in sector 1

 $F_1 \gg F_2$

- The 2 sectors mediate similar SUSY masses to SM sector ⇒ goldstino couples much more strongly than gravitino
- LOSP heavier than goldstino or gravitino

An Simple Setup Part 1: SUSY-breaking

• Just 2 SUSY sectors \rightarrow gravitino \tilde{G} + goldstino ζ

• SUSY is dominantly broken in sector 1 $F_1 \gg F_2$

- The 2 sectors mediate similar SUSY masses to SM sector
 ⇒ goldstino couples much more strongly than gravitino
- LOSP heavier than goldstino or gravitino

An Simple Setup Part 1: SUSY-breaking

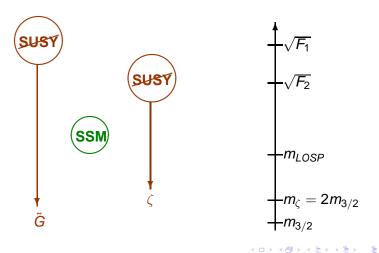
- Just 2 SUSY sectors \rightarrow gravitino \tilde{G} + goldstino ζ
- SUSY is dominantly broken in sector 1 $F_1 \gg F_2$
- The 2 sectors mediate similar SUSY masses to SM sector ⇒ goldstino couples much more strongly than gravitino
- LOSP heavier than goldstino or gravitino

An Simple Setup Part 1: SUSY-breaking

- Just 2 SUSY sectors \rightarrow gravitino \tilde{G} + goldstino ζ
- SUSY is dominantly broken in sector 1

 $F_1 \gg F_2$

- The 2 sectors mediate similar SUSY masses to SM sector
 ⇒ goldstino couples much more strongly than gravitino
- LOSP heavier than goldstino or gravitino


An Simple Setup Part 1: SUSY-breaking

- Just 2 SUSY sectors \rightarrow gravitino \tilde{G} + goldstino ζ
- SUSY is dominantly broken in sector 1

 $F_1 \gg F_2$

- The 2 sectors mediate similar SUSY masses to SM sector
 ⇒ goldstino couples much more strongly than gravitino
- LOSP heavier than goldstino or gravitino

An Simple Setup Part 1: SUSY-breaking

An Simple Setup Part 2: Observable Sector

Imagine LOSP is a charged slepton

• LOSP can decay to ζ or \tilde{G}

- coupling to ζ : ~ 1/ F_2

$$\tilde{\ell} \longrightarrow \tilde{G}$$

F₁ controls

- masses: $m_{3/2} \approx \frac{1}{2} m_{\zeta} \approx \frac{F_1}{\sqrt{3}M_{Pl}}$ - coupling to $\tilde{G}: \sim 1/F_1$

$$au_\ell \sim 20 {
m s} imes \left(rac{300\,{
m GeV}}{m_\ell}
ight)^5 \left(rac{\sqrt{{
m F_2}}}{10^9\,{
m GeV}}
ight)^4$$

$$\operatorname{Br}_{\ell \to \tilde{G}} \sim \left(\frac{F_2}{F_1}\right)^2$$

A Smoking Gun Signature

long-lived charged sleptons at LHC

 Fraction stopped in detector or in stopper → decays studies

Expect decay to gravitino

 \rightarrow measurement of mass and decay rate allows reconstruction of M_{Pl} (Buchmuller et al '04)

(日)

A Smoking Gun Signature

long-lived charged sleptons at LHC

Fraction stopped in detector or in stopper
 → decays studies

• Expect decay to gravitino \rightarrow measurement of mass and decay rate allows reconstruction of M_{Pl} (Buchmuller et al '04)

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A Smoking Gun Signature

long-lived charged sleptons at LHC

- Fraction stopped in detector or in stopper
 - \rightarrow decays studies
- Expect decay to gravitino
 - \rightarrow measurement of mass and decay rate allows reconstruction of M_{Pl} (Buchmuller et al '04)

→ Ξ →

A Smoking Gun Signature

But decay is primarily to goldstino

- \rightarrow mismeasurement of M_{PI}
- \rightarrow alarm bells
- \rightarrow search for rare decays to $\tilde{\textit{G}}$
- \rightarrow predict both $m_{3/2}$ and Br(LOSP $\rightarrow \tilde{G}$)

• Observing rare decays to gravitinos confirms the setup.

< □ > < 同 > < 回 > < 回 > < 回 >

Is this generic?

- $m_{3/2,\zeta}$ reconstructed from $m_{\tilde{\ell}}$ and E_{ℓ} (from $\tilde{\ell}$ decay)
 - ightarrow limited by $m_{ ilde{\ell}}$ and E_ℓ resolution
 - ightarrow better for larger $m_{3/2,\zeta}$
 - ightarrow need $m_{3/2} \gtrsim (0.05 0.2) m_\ell$ for mass measurement

(Corollary: don't worry about deviations from factor 2)

Need to see some gravitinos

 \rightarrow need Br($\tilde{\ell} \rightarrow \tilde{G}$) $\gtrsim 10^{-4} - 10^{-3}$ (assuming 100-1000 fb⁻¹ and $m_{\tilde{\ell}} \sim 150$ GeV)

(Hamaguchi et.al. hep-ph/0612060)

i.e. We need to be in the right part of parameter space.

But what we learn:

- Discovery of gravitino and goldstino
- Demonstration of SUGRA
- Existence of sequestered sectors with SUSY

Is this generic?

- $m_{3/2,\zeta}$ reconstructed from $m_{\tilde{\ell}}$ and E_{ℓ} (from $\tilde{\ell}$ decay)
 - ightarrow limited by $m_{ ilde{\ell}}$ and E_ℓ resolution
 - ightarrow better for larger $m_{3/2,\zeta}$
 - ightarrow need $m_{3/2} \gtrsim (0.05 0.2) m_\ell$ for mass measurement

(Corollary: don't worry about deviations from factor 2)

• Need to see *some* gravitinos \rightarrow need Br($\tilde{\ell} \rightarrow \tilde{G}$) $\gtrsim 10^{-4} - 10^{-3}$

(assuming 100-1000 fb⁻¹ and $m_{\tilde{\ell}} \sim 150$ GeV)

(Hamaguchi et.al. hep-ph/0612060)

i.e. We need to be in the right part of parameter space.

But what we learn:

- Discovery of gravitino and goldstino
- Demonstration of SUGRA
- Existence of sequestered sectors with SUSY

Goldstino Cosmology 1: Overabundance problem

Abundance

- Gravitinos with ~GeV mass very weakly coupled → never in thermal equilibrium
- Rare scattering and decay processes produce small abundance
- Solve Boltzmann equations to find yield Y

< □ > < 同 > < 回 > < 回 >

Goldstino Cosmology 1: Overabundance problem

Abundance

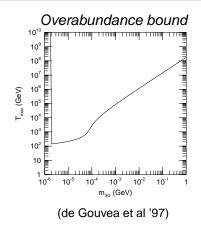
- Gravitinos with ~GeV mass very weakly coupled → never in thermal equilibrium
- Rare scattering and decay processes produce small abundance
- Solve Boltzmann equations to find yield Y

Coupling to scalar–fermion is dim. 4

$$\rightarrow \frac{dY}{d\ln T} \sim M_{Pl} \left(T\sigma v + \Gamma/T^2 \right) \sim \frac{M_{Pl}m_{f}^2}{F^2 T} + \frac{M_{Pl}m_{f}^2}{F^2 T^3}$$

 \rightarrow **dominated by low-T** (cuts off around $m_{\tilde{f}}$)

Goldstino Cosmology 1: Overabundance problem


Abundance

- Gravitinos with ~GeV mass very weakly coupled → never in thermal equilibrium
- Rare scattering and decay processes produce small abundance
- Solve Boltzmann equations to find yield Y

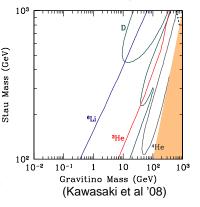
Coupling to gaugino–gauge-boson is dim. 5 $\rightarrow \frac{dY}{d\ln T} \sim M_{Pl}T \sigma v \sim \frac{M_{Pl}M_{1/2}^2T}{F^2}$

 \rightarrow high-T dominated \rightarrow sets a bound on T_{Reheat}

Gravitino Cosmology 1: Overabundance problem

э

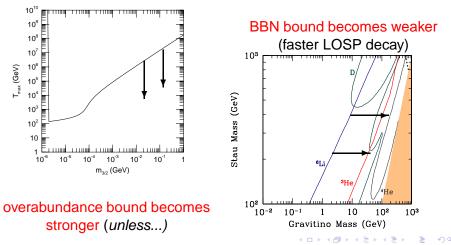
Gravitino Cosmology 1: BBN problem


- Slepton LOSP freezes out and then decays later
- decay products can change primordial element abundances
- ullet \rightarrow bound on LOSP lifetime

< 回 > < 回 > < 回 >

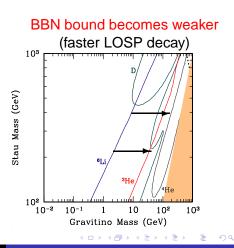
Gravitino Cosmology 1: BBN problem

- Slepton LOSP freezes out and then decays later
- decay products can change primordial element abundances
- \rightarrow bound on LOSP lifetime

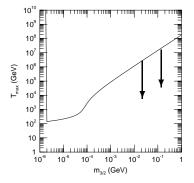

Late LOSP decay ruins BBN

G heavy enough for LHC mass measurement ⇔ BBN problem

Goldstino Cosmology: Alleviating the gravitino problem


Goldstino is like a gravitino with extra large coupling to SSM

Goldstino Cosmology: Alleviating the gravitino problem

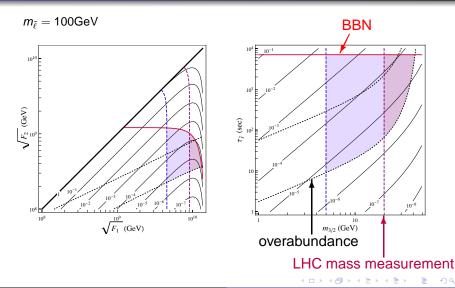

Goldstino is like a gravitino with extra large coupling to SSM

- bound set by F₂ not F_{tot}
- *m*_{3/2} bound weakened by factor *F*₂/*F*₁

Goldstino Cosmology: Alleviating the gravitino problem

Goldstino is like a gravitino with extra large coupling to SSM

overabundance bound becomes stronger (unless...) high T production:


 T_R bound lower by factor $(F_2/F_1)^2$

Iow T production:

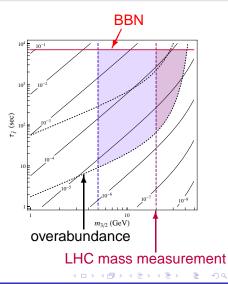
 $m_{\zeta}/ au_{LOSP} \sim F_1/F_2^2$ bounded from below

ъ

Smoking gun signature + Cosmology = Success

Smoking gun signature + Cosmology = Success

 $m_{\tilde{\ell}} = 100 {
m GeV}$


Results:

- Smoking-gun signature possible, consistent with cosmological bounds.
- Saturating *T_R* bound → goldstino DM

Need $T_R \lesssim 10^5 \cdot 10^7$ GeV?

(big improvement on standard gravitino

...but no thermal leptogenesis?)

Smoking gun signature + Cosmology = Success

 $m_{\tilde{\ell}} = 100 {
m GeV}$

Results:

- Smoking-gun signature possible, consistent with cosmological bounds.
- Saturating *T_R* bound → goldstino DM

Need $T_R \lesssim 10^5 \cdot 10^7$ GeV?

(big improvement on standard gravitino

...but no thermal leptogenesis?)

R symmetry in 2nd SUSY sector?

- Goldstino does not couple to gauginos
- Only gravitinos produced at high T_R
- Allow T_R up to $\sim 10^{10}$ GeV \rightarrow Thermal leptogenesis + gravitino DM

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

э

Smoking gun signature + Cosmology = Success

 $m_{\tilde{\ell}} = 100 {
m GeV}$

Results:

- Smoking-gun signature possible, consistent with cosmological bounds.
- Saturating *T_R* bound → goldstino DM

Need $T_R \lesssim 10^5 \cdot 10^7$ GeV?

(big improvement on standard gravitino

....but no thermal leptogenesis?)

R symmetry in 2nd SUSY sector?

- Goldstino does not couple to gauginos
- Only gravitinos produced at high T_R
- Allow T_R up to $\sim 10^{10}$ GeV \rightarrow Thermal leptogenesis + gravitino DM

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

э

Conclusions

- A striking signature of the Goldstini framework exists
- May be seen at the LHC consistently with cosmology
- Would provide evidence for:
 - SUGRA
 - SUSY at scales $\sim 10^8 10^{10} \text{GeV}$
 - Multiple sequestered sectors

< ロ > < 同 > < 回 > < 回 >

Conclusions

- A striking signature of the Goldstini framework exists
- May be seen at the LHC consistently with cosmology
- Would provide evidence for:
 - SUGRA
 - SUSY at scales $\sim 10^8-10^{10}GeV$
 - Multiple sequestered sectors

★ □ ► ★ □ ►