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L = −1
2
(∂φ)2 + λφ6

[φ] = 1 =⇒ [λ] = −2

Coupling constant has negative mass dimension

Propagator scales as 1
k2

Theory is non-renormalisable.
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Space and time scale anisotropically

−1
2
(∂φ)2 → 1

2
φ̇2 − 1

2
φ(−∆)zφ

[t] = −z, [x] = −1

For z=3, theory is now renormalisable

For large enough z coupling constant has non-negative scaling dimension

[φ] =
3− z

2
=⇒ [λ] = 4z − 6
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Restoring Lorentz invariance

Add a relevant operator of the form

Lrel = +
1
2
c2φ∆φ

Good UV physics unaffected. Lorentz invariance restored in IR, 
with an emergent speed of light c

But...Lorentz invariance is well tested at low energies
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Horava gravity Horava (0901.3775)

Works in just the same way

Abandon Lorentz invariance -- choose a preferred time, t and make an ADM split

ds2 = −N2c2dt2 + gij(dxi + N idt)(dxj + N jdt)

Full diffeomorphism invariance broken. Replaced by “foliation preserving” diffeos

xi → x̃i = x̃i(x, t), t→ t̃ = t̃(t)

∇iN

N

Action constructed from the following covariant objects

gij Kij =
1

2N
(ġij − 2∇(iNj))

Could also include                    -- the “ugly”
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[gij ] = 0 [Ni] = z − 1 [N ] = 0

z=3 theory is “power counting” renormalisable

1
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For z=3, gravitational coupling constant is dimensionless!
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Restoring GR at low energies

Add a relevant operator of the form

Lrel =
c2

κ

√
gNR

λ

Compare with GR

Assume     flows to 1 in the IR -- would appear as if we recover GR with an 
emergent speed of light c!

LGR =
1

16πGnc

√
gN(KijK

ij −K2 + c2R)

Full z=3 theory is given by

L =
1
κ

√
gN(KijK

ij − λK2 + c2R) + κ
√

gN∇kRij∇kRij + . . .
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Broken diffeomorphism invariance Charmoussis et al (0905.2579)

For scalar break BACKGROUND lorentz invariance --not so bad

For gravity break diffeomorphism invariance => break dynamical symmetry of 
theory => new dynamical degrees of freedom

Horava gravity MUST contain additional dynamical degrees of freedom -- what 
happens to them as GR is “recovered”?

Theorem (Lovelock): GR is the unique pure gravity theory in 4D with two 
propagating degrees of freedom.

1. They decouple.  2. They become strongly coupled.
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L = −1
4
F 2

µν − JµAµMassless U(1) gauge theory

Aµ → Aµ + ∂µφPhoton has just two degrees of 
freedom due to gauge invariance

L = −1
4
F 2

µν −
1
2
m2A2

µ + JµAµGive photon a mass

Gauge invariance lost -- photon picks up an extra degree of freedom
What happens as m->0?
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Stuckelberg trick

Artificially restore gauge invariance by the field redefinition

Ãµ → Ãµ + ∂µχ, φ→ φ− χ

New action manifestly invariant under

Stuckelberg scalar reveals additional degree of freedom.

L = −1
4
F̃ 2
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1
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1
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Canonically normalise the Stuckelberg field

φ→ 1
m

φ̂

Stuckelberg field becomes strongly coupled in 
massless limit!

Current-scalar interaction diverges as m->0

L = −1
4
F̃ 2

µν −
1
2
m2Ã2

µ −
1
2
(∂φ̂)2 −m∂µφ̂Ãµ + Jµ

(
Ãµ +

1
m

∂µφ̂

)



Back to Horava gravity

Horava action takes the form S = SGR + SUV + Sm

terms higher order 
in spatial derivatives

SGR =
1
κ

∫
dtd3x

√
gN(KijK

ij −K2 + c2R)

SUV =
1− λ

κ

∫
dtd3x

√
gNK2+

Sm = matter action

Note: matter action need only be invariant under reduced diffeos, so usual energy-
momentum not necessarily conserved.  
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µhβ

ν∇(αnβ)

Rijkl → Rλµνρ = Rαβγδ(γ)hα
λhβ

µhγ
νhδ

ρ + 2Kµ[νKρ]λ

Really a scalar-
tensor theory of 

gravity

Not quite. Unit normal to spacelike surface               constant is given byφ(x, t) =

nµ =
∂µφ√
−(∂φ)2

Theory is fully diffeomorphism invariant but contains vector field  in 
addition to metric -- vector-tensor theory of gravity?

N, Ni
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Just Stuckelberg

Blas et al (0906.3046)
Kimpton & AP (1003.5666)

Restoring diffeo invariance by letting slices go from 

t = constant→ φ(x, t) = constant

Perturbative analysis on Minkowski background suggests that Stuckelberg 
field becomes strong coupled at a scale

Λnaive =

√
c3|1− λ|

κ
= Mpl

√
|1− λ| Charmoussis et al (0905.2579)

Strongly coupled at nearly all scales close to “GR” limit!



It gets worse...

On a general background,  Stuckelberg action is 

φ = φ̄ + χ

R̄ij ∼
1
L2

K̄ij ∼
1
L

where ,       is a unit vector,

and L measures the characteristic scale of the background

δSχ = Λ2
naive

∫
dtd3x

1
L2

χ̇#v · #∇χ + (#∇2χ)2 + χ̇(#∇2χ)2

!v
Blas et al (0906.3046)
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“GR” limit (λ→ 1)    STRONGLY COUPLED ON ALL SCALES!!!!
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Why is strong coupling so bad...for renormalisability?

It might not be, in principle. 

QED becomes strongly coupled in UV due to Landau pole, but still renormalisable

But...

Renomalisability of Horava gravity is based on dubious power counting argument. 
Relies on a wrongly inferred schematic form for the perturbative degrees of 

freedom

ie schematically                      in Horava actionRij ! !∇2hij

***Completely ignores Stuckelberg field*** 

The Stuckelberg action looks nothing like a power counting renormalisable action 
(ie no z=3 scaling in UV)
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Why is strong coupling so bad...for phenomenology?

Its might not be, in principle. 

In DGP gravity, strong coupling helps to screen scalar graviton in the solar system

But...

Strong coupling  => break down of perturbation theory
Horava gravity strongly coupled on all scales => perturbation theory never applies

***Effective degrees of freedom of GR not applicable***

True d.o.fs are bound states of graviton and stuckelberg fields

Loss of predictive power, but is it really ruled out?
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Coupling to matter

Matter action Sm = Sm[Ψn; gij , N, Ni]
Stuckelberg−−−−−−−→ Sm[Ψn; γµν , φ]

This should be invariant under “foliation preserving” diffeos

Or in Stuckelberg language, invariant under

xµ → x̃µ = xµ + ξµ(x), φ(x)→ φ̃(x̃) = φ(x̃)− ξµ∂µφ

xi → x̃i = xi + ξi("x, t), t→ t̃ = t + f(t)

It follows that

hαν∇µTµν = 0,
1√
−γ

δSm

δφ
= − nν∇µTµν

√
−(∇φ)2

nµ =
∂µφ√
−(∂φ)2

hµν = γµν + nµnνUnit normal Spatial metric
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Violations of Equivalence Principle

Non-conserved sources can carry Stuckelberg “charge”

Γ ∼ ∇Tµν

Tµν
< H0

Tµν = M exp(−Γt)δ3("x)diag(1, 0, 0, 0)eg slowly varying point mass

M,Γ

graviton region

Stuckelberg region

M̃, Γ̃

req =
λ− 1√

ΓΓ̃

EP violations can be large in 
Stuckelberg region

∼ Γ1 − Γ2

Γ1 + Γ2
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req =
λ− 1√

ΓΓ̃

Violations of Equivalence Principle

To avoid EP problems want large 

 

λ! 1 Problems with tests of Lorentz violation

small Γ’s Requires high scale of Lorentz violation -- problems for 
“healthy” extension
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Just assume all sources are conserved, ie classical matter action

Sm = Sm[Ψn; γµν ]

But....

Quantum corrections will spoil this

Sm = Scl
m[Ψn; γµν ] + ∆Sm[Ψn; γµν , φ]

Expect typical    to be suppressed by some power of the Lorentz symmetry 
breaking scale 

Γ
MUV

small Γ’s

=⇒ Γcl = 0



THE UGLY



Horava gravity Horava (0901.3775)

Works in just the same way

Abandon Lorentz invariance -- choose a preferred time, t and make an ADM split

ds2 = −N2c2dt2 + gij(dxi + N idt)(dxj + N jdt)

Full diffeomorphism invariance broken. Replaced by “foliation preserving” diffeos

xi → x̃i = x̃i(x, t), t→ t̃ = t̃(t)

∇iN

N

Action constructed from the following covariant objects

gij Kij =
1

2N
(ġij − 2∇(iNj))

Could also include                    -- the “ugly”



Why is strong coupling so bad...for renormalisability?

It might not be, in principle. 

QED becomes strongly coupled in UV due to Landau pole, but still renormalisable

But...

Renomalisability of Horava gravity is based on dubious power counting argument. 
Relies on a wrongly inferred schematic form for the perturbative degrees of 

freedom

ie schematically                      in Horava actionRij ! !∇2hij

***Completely ignores Stuckelberg field*** 

The Stuckelberg action looks nothing like a power counting renormalisable action 
(ie no z=3 scaling in UV)



“Healthy” Horava gravity Blas et al 0909.3525 [hep-th]

Extend the original Horava action

where ai =
∇iN

N

Alters UV scaling of Stuckelberg mode 

L =
1
κ

√
gN(KijK

ij − λK2 + c2R) + κ
√

gN∇kRij∇kRij + . . .

+
1
κ

√
gN

[
αaia

i + κ(A1ai∇2ai + A2aiajR
ij + . . .)

+κ2(B1ai∇4ai + B2aia
iajakRjk + . . .)

]
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“Healthy” Horava gravity

Dispersion relation for scalar/Stuckelberg mode

w2 = c2
sk

2 +
k4

M2
A

+
k6

M4
B

Low energy speed of sound c2
s =

λ− 1
α

MA ∼
( α

A

)1/2
Mpl, MB ∼

( α

B

)1/4
Mpl

Higher order Lorentz violation scales

*** z=3 anisotropic scaling in UV ***

w2 ∝ k6

Power counting renormalisability in Stuckelberg sector?
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Only if Lorentz violation scale is very low
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[
(λ− 1)3

α

]1/4
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before strong coupling
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MB !
√

αMpl

=⇒ B " α−1

Tests of Lorentz violation require                 soα ! 10−7 B ! 107
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Just assume all sources are conserved, ie classical matter action

Sm = Sm[Ψn; γµν ]

But....

Quantum corrections will spoil this

Sm = Scl
m[Ψn; γµν ] + ∆Sm[Ψn; γµν , φ]

Expect typical    to be suppressed by some power of the Lorentz symmetry 
breaking scale 

Γ
MUV

small Γ’s

=⇒ Γcl = 0
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Low scale of Lorentz violation => large Stuckelberg charges

Worse than ugly?

req =
λ− 1√

ΓΓ̃
But to avoid EP problems want large 

For larger charges, need larger  λ

But                               from tests of Lorentz violation  λ− 1 ∼ α ! 10−7

“Healthy” model challenged by EP tests  
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Summary
The good: 
• Horava breaks Lorentz invariance, and introduces higher spatial derivatives to 

improve UV properties of propagator. 
• Get a “power counting” renormalisable theory of gravity?

The bad:
• Reduced diffeos introduces extra d.o.f. What happens in “GR” limit?
• Restore full diffeos by Stuckelberg trick.
• Extra d.o.f (Stuckelberg field) becomes strongly coupled on all scales in “GR” 

limit
• Do not expect that Horava gravity is a UV complete theory.
• Theory ruled out phenomenologically by binary pulsar experiments
• Stuckelberg charges lead to violations of EP

The ugly: 
• “Heathly” extension has correct UV scaling for Stuckelberg mode
•  To avoid strong coupling need to introduce an adhoc hierarchy
• Low scale of Lorentz violation might cause problems with EP tests.



Thanks!
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is an integral over space
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d3xH = 0
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Projectable Horava Gravity

Assume N=N(t) from the beginning =>
δS

δN
is an integral over space

Hamiltonian constraint is NON-LOCAL
∫

d3xH = 0

(compare with GR where          ) H = 0

Initially, harder to rule out phenomenologically! 
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Issues

More solutions than GR => Dark matter as an integration constant (Mukohyama 
0905.3563)

Formation of caustics (Blas et al  0906.3046, Mukohyama 0906.5069)

Strong coupling as sound speed -> 0 (Blas et al  0906.3046, Koyama & Arroja 
0910.1998)

 Scalar ghosts or negative sound speed (Blas et al  0906.3046, Sotiriou et al 
0905.2798)

Strong coupling at a millimetre (Blas et al  0906.3046)


