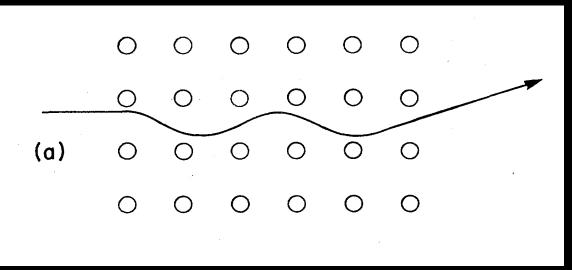
Channeling in Direct Dark Matter Detection

Paolo Gondolo University of Utah

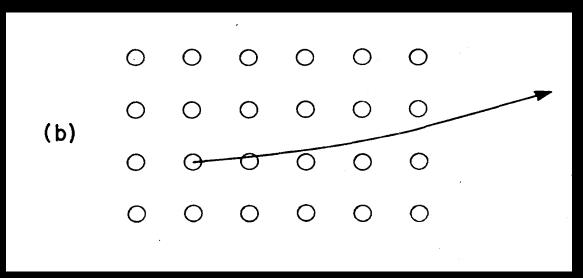
Based on work in progress with Graciela Gelmini and Nassim Bozorgnia



Outline

- Channeling and blocking in crystals
- Channeling in direct dark matter detection
- Basic idea for daily modulation
- Channeling fractions for
 - incoming particles
 - recoiling nuclei
- Preliminary conclusions and future prospects

Channeling and blocking in crystals


Channeling. If an ion incident onto the crystal moves in the direction of a symmetry axis or plane of the crystal, it has a series of small-angle scatterings which maintains it in the open channel. The ion penetrates much further into the crystal than in other directions.

From Gemmel 1974, Rev. Mod. Phys. 46, 129

Channeling and blocking in crystals

Blocking. If an ion originating at a crystal lattice site moves in the direction of a symmetry axis or plane of the crystal, there is a reduction in the flux of the ion when it exit the crystal, creating a "blocking dip".

From Gemmel 1974, Rev. Mod. Phys. 46, 129

Channeling and blocking in crystals

- Channeling and blocking in crystals is used in
 - crystallography
 - studies of lattice disorder
 - ion implantation
 - finding the location of dopant and impurity atoms
 - studies of surfaces and interfaces
 - measurement of short nuclear lifetimes
 - production of polarized beams
 - etc.

Observation of channeling in Nal(TI)

PHYSICAL REVIEW B

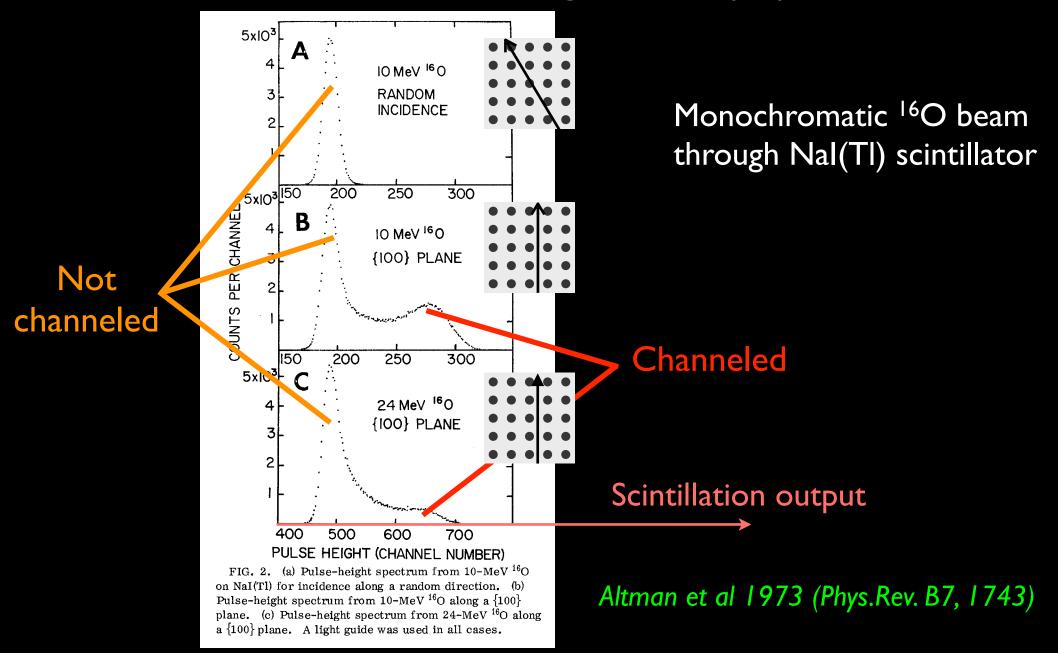
VOLUME 7, NUMBER 5

1 MARCH 1973

Scintillation Response of NaI(Tl) and KI(Tl) to Channeled Ions*

M. R. Altman, H. B. Dietrich, [†] and R. B. Murray Physics Department, University of Delaware, Newark, Delaware 19711

T. J. Rock


Ballistic Research Laboratory Radiation Division, Aberdeen Proving Ground, Maryland 21010 (Received 29 September 1972)

The scintillation pulse-height response of NaI(Tl) and KI(Tl) to ⁴He and ¹⁶O ions in the 2–60– MeV range has been studied with the ion beam aligned along low-index planes and axes and also aligned along a random direction. The scintillation efficiency increases by as much as 50% when the ion beam is channeled along a major symmetry direction. The effect of channeling has been observed by recording the pulse-height spectra for monoenergetic ions oriented along {100}, {110}, and {111} planes, and along $\langle 100 \rangle$, $\langle 110 \rangle$, and $\langle 111 \rangle$ axes. The increase in pulse-height response is in semiquantitative agreement with recent model calculations. Observation of this effect permits study of channeling phenomena in thick crystals that are scintillators. In particular, this paper reports a measurement of the critical angle for channeling of 15-MeV ¹⁶O along a {100} plane.

Altman et al 1973 (Phys.Rev. B7, 1743)

Saturday, May 1, 2010

Observation of channeling in Nal(TI)

Observation of channeling in Nal(TI)

• Channeled ions produce more scintillation light

(because they loose most of their energy via electronic stopping rather than nuclear stopping)

 Channeled recoils have a quenching factor close to I

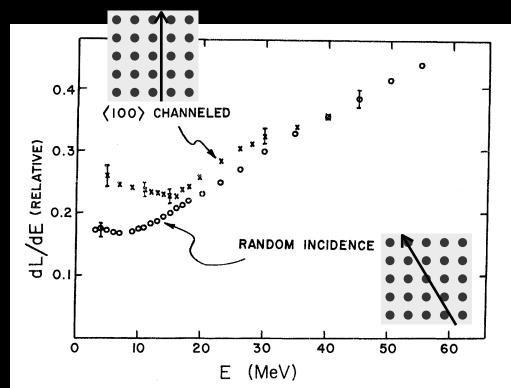
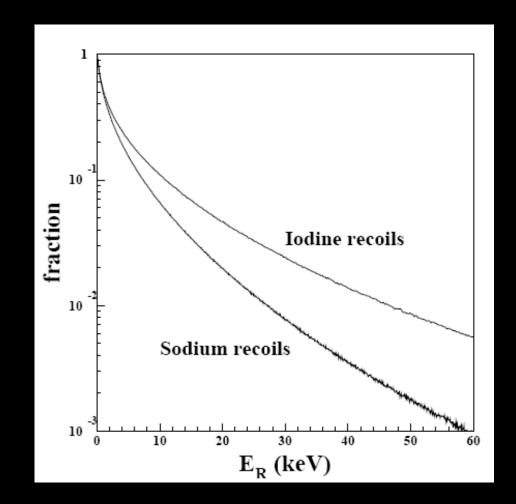
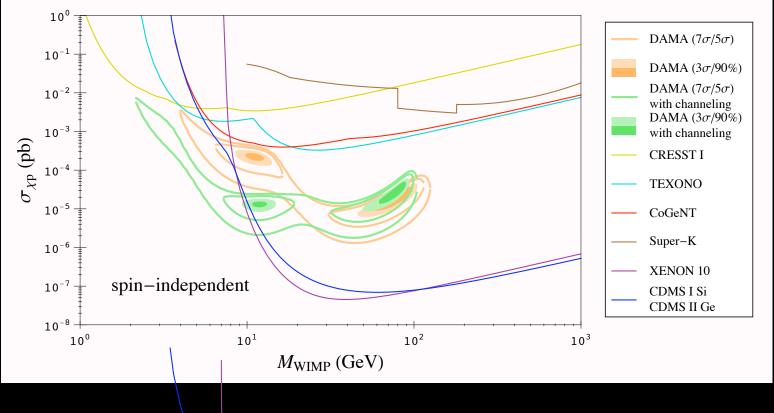



FIG. 11. Scintillation efficiency dL/dE as a function of incident-ion energy for ¹⁶O ions on NaI(Tl), for both random incidence and for channeling along a $\langle 100 \rangle$ axis.

Altman et al 1973 (Phys.Rev. B7, 1743)

Channeling in direct dark matter detection

• The DAMA collaboration found that the fraction of channeled recoils is large at low recoil energies

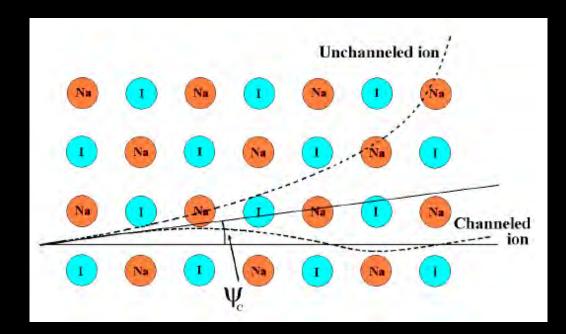


Bernabei et al. 2008, Eur. Phys. J. C53, 205

Saturday, May 1, 2010

Channeling in direct dark matter detection

• Channeling changes the position of the interesting regions in the dark matter mass-cross section plane


Savage. Gelmini, Gondolo, Freese 2008

Channeling in direct dark matter detection

• Quenching factor Q: not all of the recoil energy is detected

 $E_{\text{measured}} = Q E_{\text{recoil}}$

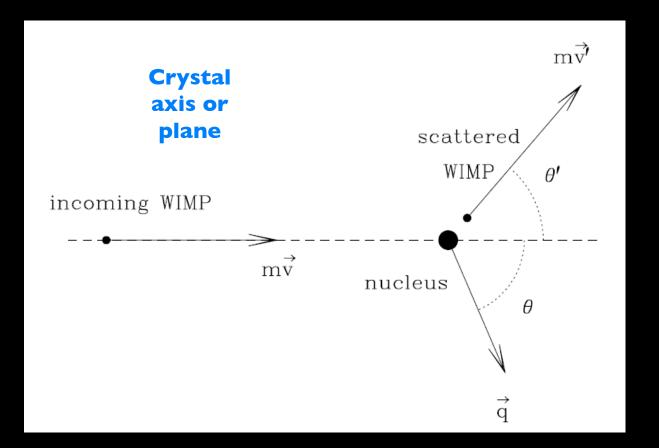
• When Na or I recoils move along a channel, their quenching factor is Q=I instead of Q_{Na}=0.3 and Q_I=0.09, since they give their energy to electrons.

Bernabei et al. 2008, Eur. Phys. J. C53, 205

Basic idea for daily modulation

- The WIMP wind comes preferentially from one direction, due to the motion of the Earth with respect to the Galaxy.
- When that direction is aligned with a channel, the scintillation or ionization output is larger (Q=1 instead of Q<1).
- Earth's daily rotation makes the WIMP wind direction change with respect to the crystal.
- This produces a daily modulation in the "measured" recoil energy (as if the quenching factor were modulated).

Basic idea for daily modulation


- If this daily modulation is measured, it would have no background, thus it would be ideal for dark matter searches
- Avignone et al mention a modulation amplitude of ~25% as a somewhat simplistic estimate

Avignone, Creswick, Nussinov 2008 (arxiv:0807.3758)

- We set out to do a better calculation, and in the process understand channeling and blocking for dark matter detection
- Our results are preliminary and our work is in progress

What we need

• Consider the WIMP-nucleus elastic collision for a WIMP of mass *m* and a nucleus of mass *M*.

From Gondolo 2002, Phys. Rev. D66, 103513

What we need

- We need to determine the probability $p(E, E_R, \hat{\mathbf{q}})$ that an energy E is measured when the recoil is in the direction $\hat{\mathbf{q}}$ with energy E_R .
- The recoil nucleus can either be channeled or not channeled:

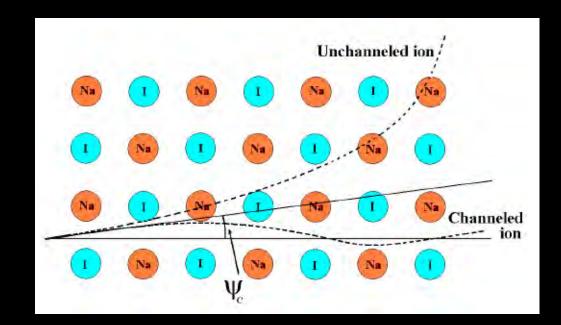
$$p(E, E_R, \hat{\mathbf{q}}) = \chi(E_R, \hat{\mathbf{q}})\delta(E - E_R)$$
 Channeled
+[1 - $\chi(E_R, \hat{\mathbf{q}})]\delta(E - QE_R)$ Not channeled

where $\chi(E_R, \hat{\mathbf{q}})$ is the fraction of channeled nuclei with recoil energy E_R in direction $\hat{\mathbf{q}}$

Modeling of channeling

- Our calculations are based on classical analytic models developed in the 1960's and 70's, in particular Lindhard's model (Lindhard 1965, Komaki & Fujimoto 1970, Dearnaley 1973, Gemmell 1974, Appleton & Foti 1977)
- We use the continuum string or plane model, in which the screened Thomas-Fermi potential is averaged over a direction parallel to the row or plane.
- Only one row or one plane is considered.
- In the direction perpendicular to the row or plane, the "transverse energy" $E_{\perp} = E \sin^2 \psi + U$ is conserved.

Our calculations


- Compute the channeling fraction for:
 - Incoming particles
 - Recoiling nuclei

Our calculations

- Compute the channeling fraction for:
 - Incoming particles
 - Recoiling nuclei

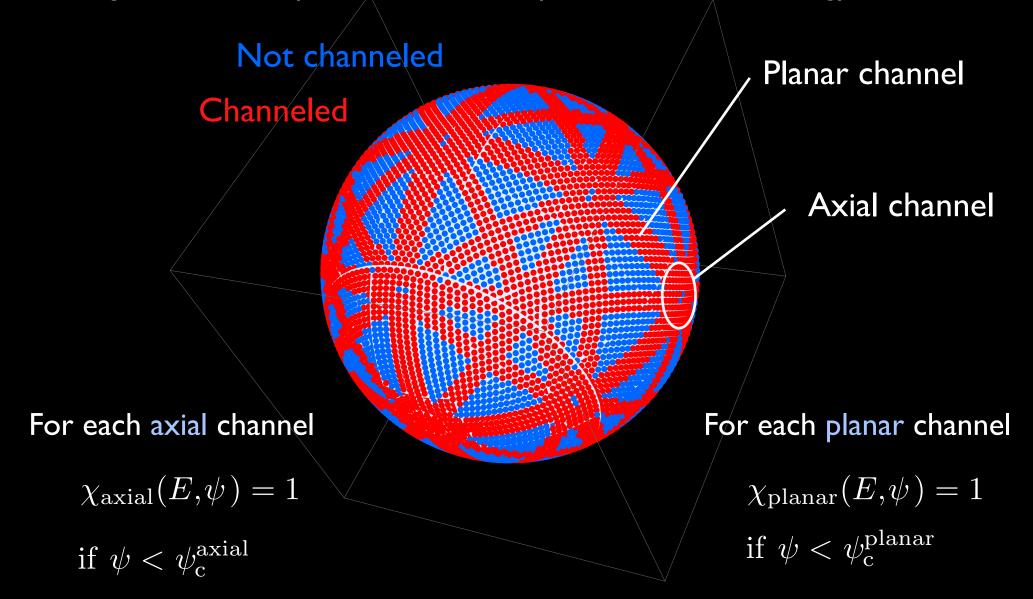
Channeling of incoming particles

• Low energy incident ions are channeled if they are incident upon a string or plane of atoms at an angle ψ smaller than a critical angle ψ_c (Lindhard 1965)

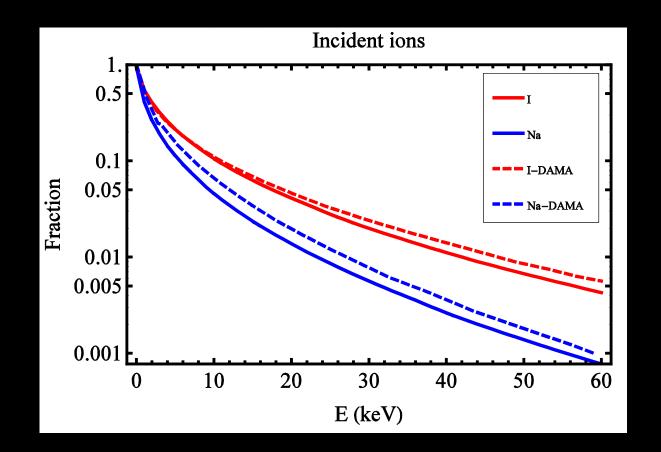
Bernabei et al. 2008, Eur. Phys. J. C53, 205

Channeling fraction of incoming particles

• We integrate the channeling probability over direction to find the total fraction of channeled nuclei


$$P(E) = \frac{1}{4\pi} \int \chi(E, \hat{\mathbf{q}}) \, d\Omega_q$$

where $d\Omega_{
m q}$ is a infinitesimal solid angle around $\hat{
m q}$


 We use the Hierarchical Equal Area isoLatitude Pixelization (HEALPix) method to compute the integral

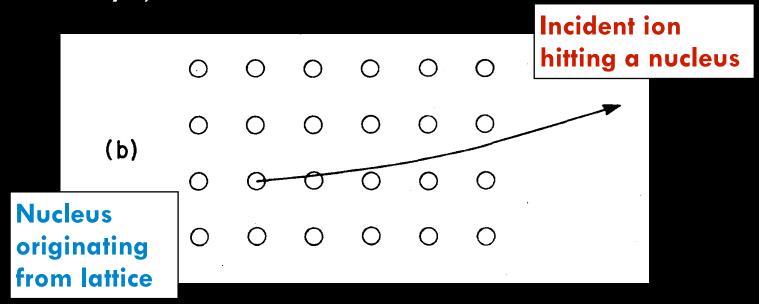
Fraction of channeled Na recoils

Using the HEALPix pixelization of the sphere for incident energy of 50 keV

Channeling fraction for incoming particles

- We agree with DAMA results to a good approximation
- Our result is based on analytic calculations with basic assumptions, whereas DAMA used a Monte Carlo

Our calculations


- Compute the channeling fraction for:
 - Incoming particles
 - Recoiling nuclei

Our calculations

- Compute the channeling fraction for:
 - Incoming particles
 - Recoiling nuclei

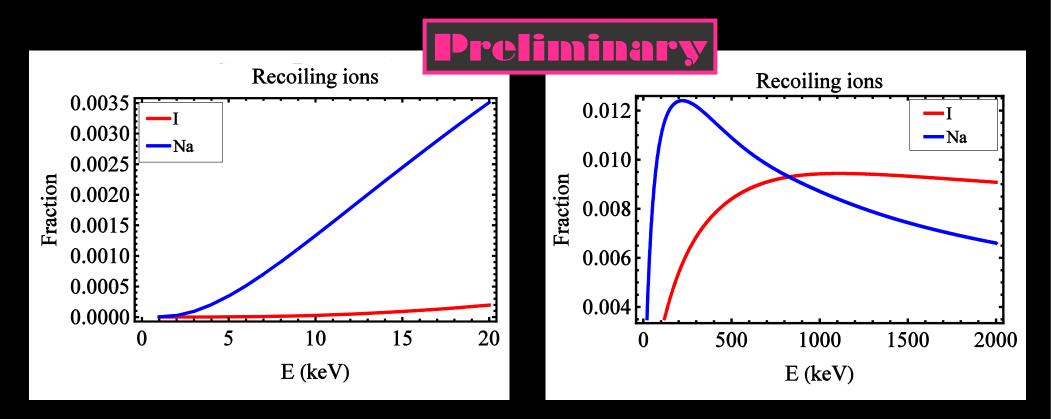
Channeling of recoiling nuclei

- Recoiling nuclei start at or close to the lattice sites
- In a perfect lattice no recoil would be channeled ("rule of reversibility")

 However, there are channeled recoils due to lattice vibrations, as already understood in the 70's

Channeling of recoiling nuclei

• For a given E_R and ψ , the condition for channeling is given by $E_R \sin^2 \psi + U(r_i) < U(r_c)$


Initial distance

Smallest minimum distance of approach

- The distribution function of the emitting atom due to thermal vibrations can be represented by a Gaussian
- The fraction of channeled nuclei recoiling at angle ψ with the axis is equal to

$$\chi_{\text{axial}}(E_R,\psi) = \int_{r_{i,\min}}^{\infty} g(r) \, dr$$

Fraction of recoils that are channeled

- These results now differ from DAMA's
- These are upper bounds to what we can expect to be the true fraction

Preliminary conclusions

- Channeling in crystalline detectors can lead to a daily modulation in a WIMP signal.
- Channeling of recoiling nuclei and incoming particles have different mechanisms. We were able to reproduce DAMA results for incident ions, but for recoiling nuclei the channeling fraction is much smaller.
- Small channeling fractions would mean small daily modulation amplitudes.
- Daily modulation amplitudes strongly depend on the velocity dispersion of the WIMP, and would be larger for dark halo components with smaller velocity dispersion

Work in progress

- We are writing a paper about the channeling fractions for NaI, Ge, and Si.
- We will evaluate the daily modulations for Nal, Ge, and Si to obtain more accurate results.
- Analytic results may not be enough, and we may collaborate with other groups to carry out sophisticated Monte Carlo simulations to confirm our results.