Jared A. Evans\(^1\)\(^2\)
jaevans@ucdavis.edu

Department of Physics
University of California - Davis

UC Davis

\(^1\)arXiv:1001.1361 – JAE, J. Galloway, M.A.Luty and R.A.Tacchi
\(^2\)In Progress – JAE, J. Galloway, M.A.Luty and R.A.Tacchi
Outline

Motivation

Technicolor
 The Idea
 The Problems

Minimal Conformal Technicolor
 The Idea
 The Solutions

Into the UV

Flavor
 Model I
 Model II

Phenomenology

Conclusion
The standard model of particle physics is very successful at explaining low energy physics.
The standard model of particle physics is very successful at explaining low energy physics. One might argue that the standard model is *unreasonably* successful at explaining low energy physics.
The standard model of particle physics is very successful at explaining low energy physics.

One might argue that the standard model is *unreasonably* successful at explaining low energy physics.

The Higgs boson is the only missing element.
The standard model of particle physics is very successful at explaining low energy physics. One might argue that the standard model is *unreasonably* successful at explaining low energy physics. The Higgs boson is the only missing element.

Without a Higgs, *the model predicts its own demise around a TeV*.
The standard model of particle physics is very successful at explaining low energy physics. One might argue that the standard model is *unreasonably* successful at explaining low energy physics. The Higgs boson is the only missing element.

Without a Higgs, *the model predicts its own demise around a TeV*. But with a Higgs, *the electroweak scale should be dragged up to M_{pl}*.

THE STANDARD MODEL

<table>
<thead>
<tr>
<th>Fermions</th>
<th>Bosons</th>
</tr>
</thead>
<tbody>
<tr>
<td>u up</td>
<td>y photon</td>
</tr>
<tr>
<td>c charm</td>
<td>Z Z boson</td>
</tr>
<tr>
<td>t top</td>
<td>W W boson</td>
</tr>
<tr>
<td>d down</td>
<td>g gluon</td>
</tr>
<tr>
<td>s strange</td>
<td></td>
</tr>
<tr>
<td>b bottom</td>
<td></td>
</tr>
</tbody>
</table>

Leptons

e electron	V_e electron neutrino
μ muon	V_μ muon neutrino
τ tau	V_τ tau neutrino

Quarks

Yet to be confirmed

Source: AAAS
Sans Higgs contribution there are three WW scattering diagrams:

\[\sim E^2 \]

The cross section rises as \(\frac{E^4}{M_W^4} \Rightarrow \) unitarity violation at a TeV!
Sans Higgs contribution there are three WW scattering diagrams:

\[\sim E^2 + \sim E^2 + \sim E^2 \]

The cross section rises as \(\frac{E^4}{M_W^4} \Rightarrow \) unitarity violation at a TeV!

Some *new physics* must enter to cancel this growth before a TeV
Sans Higgs contribution there are three WW scattering diagrams:

The cross section rises as $\frac{E^4}{M_W^4} \Rightarrow$ unitarity violation at a TeV!

Some *new physics* must enter to cancel this growth before a TeV

Standard model Higgs s and t channel diagrams will do exactly that
The Standard Model
The Hierarchy Problem

Higgs boson receives a mass correction from high scale physics loops

\[\text{New Physics} \]

These corrections give \(\Delta m^2 \sim \Lambda^2_{\text{NEW PHYSICS}} \)

For \(M_h \) near the electroweak scale, one needs \(m_0^2 - \Delta m^2 = M_h^2 \)
Higgs boson receives a mass correction from high scale physics loops

New Physics

These corrections give $\Delta m^2 \sim \Lambda^{2}_{\text{NEW PHYSICS}}$

For M_h near the electroweak scale, one needs $m_0^2 - \Delta m^2 = M_h^2$

For $\Lambda_{NP} \sim O(M_{pl})$ we have $O(10^{38}) - O(10^{38}) = O(10^4)$, meaning disagreement only after the 34th decimal place
Higgs boson receives a mass correction from high scale physics loops

\[\Delta m^2 \sim \Lambda^2_{\text{NEW PHYSICS}} \]

These corrections give \(\Delta m^2 \sim \Lambda^2_{\text{NEW PHYSICS}} \)

For \(M_h \) near the electroweak scale, one needs

\[m_0^2 - \Delta m^2 = M_h^2 \]

For \(\Lambda_{NP} \sim O(M_{pl}) \) we have \(O(10^{38}) - O(10^{38}) = O(10^4) \), meaning disagreement only after the 34th decimal place

A very strong suggestion that the SM Higgs is wrong
Technicolor: The Good

One idea is Technicolor!

- $SU(N)$ gauge theories can introduce a completely natural hierarchy from the coupling constant running strong –

 \[
 \text{scale} = \Lambda_{\text{strong}} \sim \Lambda_{\text{cutoff}} e^{-\frac{8\pi^2}{bg^2(\Lambda_{\text{cutoff}})}}
 \]
One idea is Technicolor!

- $SU(N)$ gauge theories can introduce a \textit{completely natural} hierarchy from the coupling constant running strong –

 \[
 \text{scale} = \Lambda_{\text{strong}} \sim \Lambda_{\text{cutoff}} e^{-\frac{8\pi^2}{bg^2(\Lambda_{\text{cutoff}}^2)}}
 \]

- Electroweak Symmetry Breaking: $SU(2)_W \otimes U(1)_Y \rightarrow U(1)_{\text{em}}$
One idea is Technicolor!

- $SU(N)$ gauge theories can introduce a *completely natural* hierarchy from the coupling constant running strong –

$$\text{scale} = \Lambda_{\text{strong}} \sim \Lambda_{\text{cutoff}} e^{-\frac{8\pi^2}{bg^2(\Lambda_{\text{cutoff}})}}$$

- Electroweak Symmetry Breaking: $SU(2)_W \otimes U(1)_Y \rightarrow U(1)_{\text{em}}$

- Correct W and Z Mass Ratio (tree level): $\rho = \frac{M_W}{M_Z} \cos \theta_W = 1$
One idea is Technicolor!

- $SU(N)$ gauge theories can introduce a *completely natural* hierarchy from the coupling constant running strong –

$$\text{scale} = \Lambda_{\text{strong}} \sim \Lambda_{\text{cutoff}} e^{-\frac{8\pi^2}{bg^2(\Lambda_{\text{cutoff}})}}$$

- Electroweak Symmetry Breaking: $SU(2)_W \otimes U(1)_Y \rightarrow U(1)_{\text{em}}$
- Correct W and Z Mass Ratio (tree level): $\rho = M_W/M_Z \cos \theta_W = 1$
- Rich Phenomenology: new strong resonances near scale Λ_{strong}
One idea is Technicolor!

- $SU(N)$ gauge theories can introduce a completely natural hierarchy from the coupling constant running strong –

 \[\text{scale} = \Lambda_{\text{strong}} \sim \Lambda_{\text{cutoff}} e^{-\frac{8\pi^2}{b g^2 (\Lambda_{\text{cutoff}})}} \]

- Electroweak Symmetry Breaking: $SU(2)_W \otimes U(1)_Y \rightarrow U(1)_{\text{em}}$

- Correct W and Z Mass Ratio (tree level): $\rho = \frac{M_W}{M_Z} \cos \theta_W = 1$

- Rich Phenomenology: new strong resonances near scale Λ_{strong}

- No Dangerous Mass Scales: chiral symmetry protects masses
Technicolor: The Good

One idea is Technicolor!

- $SU(N)$ gauge theories can introduce a completely natural hierarchy from the coupling constant running strong –
 \[\text{scale} = \Lambda_{\text{strong}} \sim \Lambda_{\text{cutoff}} e^{-\frac{8\pi^2}{b^2 \Lambda_{\text{cutoff}}}} \]

- Electroweak Symmetry Breaking: $SU(2)_W \otimes U(1)_Y \rightarrow U(1)_{\text{em}}$
- Correct W and Z Mass Ratio (tree level): $\rho = \frac{M_W}{M_Z} \cos \theta_W = 1$
- Rich Phenomenology: new strong resonances near scale Λ_{strong}
- No Dangerous Mass Scales: chiral symmetry protects masses
- Example Already Exists (sort of): the Standard Model without a Higgs should give a mass to the W and Z bosons (QCD)
Technicolor: The Bad

Technicolor sounds great, but . . .

Although it has its merits, technicolor is definitely not without problems. The worst of which:

Fig. 1. Expected range of S and T parameters in a general theory of electroweak symmetry breaking that is strongly coupled at the TeV scale. The reference Higgs mass is taken to be 1 TeV. The region denoted by NDA ("naive dimensional analysis") is what is expected in a general theory of strong electroweak symmetry breaking [4]. The region denoted by QCD is what is expected in a theory of scaled-up QCD [8]. The present model is similar in spirit to the early composite Higgs models, but it is based on a conformal rather than an asymptotically free gauge theory. The large coupling to the top quark is another important new ingredient in the present model.

Asymptotically free $SU(2)$ gauge theories that give rise to the symmetry breaking pattern $SU(4) \rightarrow Sp(4)$ were considered as composite Higgs theories in the second paper in Ref. [7]. Ref. [9] analyzes a version of this theory where the top quark is included and top partners are introduced to raise the scale of compositeness above the TeV scale. Ref. [10] analyzes a 5D model with the same coset, but considers a different stabilizing potential with different phenomenology. In the 5D models, the top loop contribution to the Higgs mass are also off by top partners. In the present model, the top quark contribution to the composite Higgs mass is cut off entirely by compositeness of the Higgs sector, and there is strong dynamics near the TeV scale.

The experimental signature of the top quark coupling to the symmetry breaking sector

The S parameter is too large! ($S \sim \frac{M_{TC}}{3\pi}$)

Even the most generous estimates, put the theory outside of the S-T plane ellipse.
Technicolor: The Bad

Technicolor sounds great, but . . .

Although it has its merits, technicolor is definitely not without problems. The worst of which:

Fits to **Precision Electroweak Data** are awful in technicolor models

![Diagram showing the range of S and T parameters](image)

The experimental signature of the top quark coupling to the symmetry breaking sector

The S parameter is too large! ($S \sim N_{TC}/3\pi$)

Even the most generous estimates, put the theory outside of the S-T plane ellipse

Evans (UCD)
MCTC: Flavor
October 11, 2010
7 / 24
Technicolor: The Bad

Technicolor sounds great, but . . .
Although it has its merits, technicolor is definitely not without problems. The worst of which:

Fits to Precision Electroweak Data are awful in technicolor models

The S parameter is too large!
\(S \sim N_{TC}/3\pi \)
Technicolor: The Bad

Technicolor sounds great, but . . .

Although it has its merits, technicolor is definitely not without problems. The worst of which:

Fits to Precision Electroweak Data are awful in technicolor models

The S parameter is too large! ($S \sim N_{TC}/3\pi$)

Even the most generous estimates, put the theory outside of the S-T plane ellipse
Technicolor: The Ugly

Fermion Masses:
- Generically, no simple mass mechanism for fermions
- Extended Technicolor (ETC) can be introduced

Low Mass Particles:
- Generic ETC models have myriad low mass PNGBs
- About as problematic as explaining absence of SUSY partners

Flavor Changing Neutral Currents (FCNCs):
- Generically ETC adds FCNCs that require extreme fine tuning
- Adding Walking TC ameliorates these

Clearly the story is at best very ugly
Technicolor: The Ugly

Fermion Masses:
- Generically, no simple mass mechanism for fermions
- Extended Technicolor (ETC) can be introduced

Low Mass Particles:
- Generic ETC models have myriad low mass PNGBs
- About as problematic as explaining absence of SUSY partners
- Flavor Changing Neutral Currents (FCNCs): Generically ETC adds FCNCs that require extreme fine tuning
- Adding Walking TC ameliorates these
- Clearly the story is at best very ugly
Fermion Masses:
▶ Generically, no simple mass mechanism for fermions
▶ Extended Technicolor (ETC) can be introduced

Low Mass Particles:
▶ Generic ETC models have myriad low mass PNGBs
▶ About as problematic as explaining absence of SUSY partners
Technicolor: The Ugly

Fermion Masses:
- Generically, no simple mass mechanism for fermions
- Extended Technicolor (ETC) can be introduced

Low Mass Particles:
- Generic ETC models have myriad low mass PNGBs
- About as problematic as explaining absence of SUSY partners

Flavor Changing Neutral Currents (FCNCs):
Technicolor: The Ugly

Fermion Masses:
- Generically, no simple mass mechanism for fermions
- Extended Technicolor (ETC) can be introduced

Low Mass Particles:
- Generic ETC models have myriad low mass PNGBs
- About as problematic as explaining absence of SUSY partners

Flavor Changing Neutral Currents (FCNCs):
- Generically ETC adds FCNCs that require extreme fine tuning
- Adding Walking TC ameliorates these
Fermion Masses:
- Generically, no simple mass mechanism for fermions
- Extended Technicolor (ETC) can be introduced

Low Mass Particles:
- Generic ETC models have myriad low mass PNGBs
- About as problematic as explaining absence of SUSY partners

Flavor Changing Neutral Currents (FCNCs):
- Generically ETC adds FCNCs that require extreme fine tuning
- Adding Walking TC ameliorates these

Clearly the story is at best very ugly
Technicolor: The Ugly

Fermion Masses:
- Generically, no simple mass mechanism
- Extended Technicolor (ETC) can be introduced

Low Mass Particles:
- Generic ETC models have myriad low mass PNGBs
- About as problematic as explaining absence of SUSY partners

Flavor Changing Neutral Currents (FCNCs):
- Generically ETC adds FCNCs that require extreme fine tuning
- Adding Walking TC ameliorates these

Clearly the story is at best very ugly
Minimal Conformal Technicolor (MCTC) can avoid all these problems.
Minimal Conformal Technicolor (MCTC) can avoid all these problems

- An $SU(2)_{CTC}$ coupling approaches a strong conformal fixed point

Minimal Conformal Technicolor: A New Hope

Evans (UCD) | MCTC: Flavor | October 11, 2010
Minimal Conformal Technicolor (MCTC) can avoid all these problems

- An $\text{SU}(2)_{CTC}$ coupling approaches a strong conformal fixed point
- Sterile technifermions get mass terms, force the coupling strong

Conformal dynamics:

- $d \equiv d(H) \lesssim 1.5$ to separate EW scale from flavor scale
- $\Delta \equiv d(H^\dagger H) \geq 4$ to evade the hierarchy problem
Minimal Conformal Technicolor (MCTC) can avoid all these problems

- An SU(2)$_{CTC}$ coupling approaches a strong conformal fixed point
- Sterile technifermions get mass terms, force the coupling strong
- Confinement breaks the SU(4) global symmetry down to Sp(4)
Minimal Conformal Technicolor (MCTC) can avoid all these problems:

- An SU(2)_{CTC} coupling approaches a strong conformal fixed point.
- Sterile technifermions get mass terms, force the coupling strong.
- Confinement breaks the SU(4) global symmetry down to Sp(4).
- VEV-less SUSY “Higgs” at high scale mediates fermion masses.
 - i.e. This is a Bosonic TC model (Dine, Kagan, Samuel 1990).
Minimal Conformal Technicolor (MCTC) can avoid all these problems

- An SU(2)$_{CTC}$ coupling approaches a strong conformal fixed point
- Sterile technifermions get mass terms, force the coupling strong
- Confinement breaks the SU(4) global symmetry down to Sp(4)
- VEV-less SUSY “Higgs” at high scale mediates fermion masses
 - i.e. This is a Bosonic TC model (Dine, Kagan, Samuel 1990)
- S-parameter is suppressed by a mixing angle (which can be small)
Minimal Conformal Technicolor (MCTC) can avoid all these problems

- An $SU(2)_{CTC}$ coupling approaches a strong conformal fixed point
- Sterile technifermions get mass terms, force the coupling strong
- Confinement breaks the $SU(4)$ global symmetry down to $Sp(4)$
- VEV-less SUSY “Higgs” at high scale mediates fermion masses
 - i.e. This is a Bosonic TC model (Dine, Kagan, Samuel 1990)
- S-parameter is suppressed by a mixing angle (which can be small)
- Large scale separation keeps the FCNCs small
Minimal Conformal Technicolor (MCTC) can avoid all these problems

- An SU(2)$_{CTC}$ coupling approaches a strong conformal fixed point
- Sterile technifermions get mass terms, force the coupling strong
- Confinement breaks the SU(4) global symmetry down to Sp(4)
- VEV-less SUSY “Higgs” at high scale mediates fermion masses
 - i.e. This is a Bosonic TC model (Dine, Kagan, Samuel 1990)
- S-parameter is suppressed by a mixing angle (which can be small)
- Large scale separation keeps the FCNCs small

Conformal dynamics:

- Need $d \equiv d(H) \lesssim 1.5$ to separate EW scale from flavor scale
- While $\Delta \equiv d(H^\dagger H) \geq 4$ to evade the hierarchy problem
In the good ol’ days, all dimensions were integer – half integer if things got really crazy!

The arguments of CTC rely on large anomalous dimensions, there exists support from both:

Theory:

Lattice:
The arguments of CTC rely on large anomalous dimensions, there exists support from both:

Theory: (Rattazzi, Rychkov, Tonni, Vichi 2008; Rychkov, Vichi 2009; Rattazzi, Rychkov, Vichi 2010; Poland, Simmons-Duffin 2010)

- $\Delta_M \equiv \text{Min}\{d(\mathcal{H}^\dagger \tau^a \mathcal{H}), d(\mathcal{H}^\dagger \mathcal{H})\}$ bound is very strong ($\Delta_M > 4 \Rightarrow d \geq 1.6$)
- Bounds on singlet $\mathcal{H}^\dagger \mathcal{H}$ are weak

Lattice:

![Graph showing continuum running](image-url)
The arguments of CTC rely on large anomalous dimensions, there exists support from both:

Theory:

- \(\Delta_M \equiv \text{Min}\{d(\mathcal{H}^\dagger \tau^a \mathcal{H}), d(\mathcal{H}^\dagger \mathcal{H})\} \) bound is very strong \((\Delta_M > 4 \Rightarrow d \gtrsim 1.6) \)
- Bounds on singlet \(\mathcal{H}^\dagger \mathcal{H} \) are weak

Lattice:

- Evidence for conformal window \(N_c = 3, 12 \lesssim N_f \lesssim 16 \)
- Measure of \(d \) \((\text{Bursa et al. 2010}) \)
 - \(N_c = 2, N_f = 6, 1.97 \lesssim d \lesssim 2.87 \)
- S-parameter suppression! \((\text{LSD 2010}) \)
Field Content: \((\text{SU}(2)_{CTC}, \text{SU}(2)_W)_{U(1)_Y}\)

\[
\psi \sim (2, 2)_0; \quad \chi \sim (2, 1)_{-\frac{1}{2}}; \quad \chi' \sim (2, 1)_{\frac{1}{2}}; \quad \xi \sim (2, 1)_0 \times N \sim 8
\]

\[
\mathcal{L} \ni -\kappa \psi \psi - \tilde{\kappa} \chi \chi' - K \xi \xi
\]

\[
+ \frac{g_t^2}{\Lambda_t^{d-4}} \left(Q_t^c \right)^{\dagger} (\psi \chi) + \text{h.c.}
\]

\[
+ \frac{g_{4TC}^2}{\Lambda_t^{\Delta-4}} |\psi \chi|^2 + \ldots
\]
Minimal Conformal Technicolor

The Model

Field Content: \((\text{SU}(2)_{CTC}, \text{SU}(2)_W)_{U(1)_Y}\)

\[\psi \sim (2, 2)_0; \quad \chi \sim (2, 1)_{-\frac{1}{2}}; \quad \chi' \sim (2, 1)_{\frac{1}{2}}; \quad \xi \sim (2, 1)_0 \times N \sim 8\]

\[\mathcal{L} \ni -\kappa \psi \psi - \tilde{\kappa} \chi \chi' - K \xi \xi\]

\[+ \frac{g_t^2}{\Lambda_t^{d-1}} (Q t^c)^\dagger (\psi \chi) + \text{h.c.}\]

\[+ \frac{g_{4TC}^2}{\Lambda_t^{\Delta-4}} |\psi \chi|^2 + \ldots\]

This mass term knocks \(SU(2)_{CTC}\) running out of its conformal fixed point
Minimal Conformal Technicolor

The Model

Field Content: \((\text{SU}(2)_{CTC}, \text{SU}(2)_W)_{\text{U}(1)_Y})\)

\[\psi \sim (2, 2)_0; \quad \chi \sim (2, 1)_{-\frac{1}{2}}; \quad \chi' \sim (2, 1)_{\frac{1}{2}}; \quad \xi \sim (2, 1)_0 \times N \sim 8\]

\[\mathcal{L} \ni -\kappa \psi \psi - \bar{\gamma} \chi \chi' - K \xi \xi\]

\[+ \frac{g_t^2}{\Lambda_t^{d-1}} (Q t^c) \dagger (\psi \chi) + \text{h.c.}\]

\[+ \frac{g_{4TC}^2}{\Lambda_t^{A-4}} |\psi \chi|^2 + \ldots\]

Vacuum alignment

Fermion mass \(\propto -\cos \theta\)

Top loop, gauge, Higgs \(\propto \sin^2 \theta\)

EW vacuum is \(\theta = 0\)

TC vacuum is \(\theta = \frac{\pi}{2}\)
Minimal Conformal Technicolor

The Model

Field Content: \((\text{SU}(2)_{CTC}, \text{SU}(2)_W) U(1)_Y\)

\[\psi \sim (2, 2)_0; \quad \chi \sim (2, 1)_{-\frac{1}{2}}; \quad \chi' \sim (2, 1)_{\frac{1}{2}}; \quad \xi \sim (2, 1)_0 \times N \sim 8\]

\[\mathcal{L} \ni -\kappa \psi \psi - \bar{\kappa} \chi \chi' - K \xi \xi\]

\[+ \frac{g_t^2}{\Lambda_t^{d-1}} (Q t^c)^\dagger (\psi \chi) + \text{h.c.}\]

\[+ \frac{g_{4TC}^2}{\Lambda_t^{\Delta-4}} |\psi \chi|^2 + \ldots\]

Vacuum alignment

Fermion mass \(\propto -\cos \theta\)

Top loop, gauge, Higgs \(\propto \sin^2 \theta\)

The mixing angle, \(\theta\), can be small \((\sim 0.1)\)
Minimal Conformal Technicolor
Return of the TC Model

Fermion Masses?
Low Mass Particles?
FCNCs?
S-Parameter?

Natural! (through MSSM-like Higgs messenger)
A Higgs-like PNGB, \(h \), and a “hidden” PNGB, \(a \)
Suppressed by high scale!
Small \(\theta \) ⇒ small \(S \)-parameter!
Small enough to fit EW data?

▶ Top loop contribution gives:
\[m_h \sim \sqrt{3} c_t M_{\text{top}} \]
▶ For \(c_t & \sin \theta \ll 1/4 \), model in inside the S-T EW ellipse

\[\frac{S}{T} \]
Fermion Masses?
Low Mass Particles?
FCNCs?
S-Parameter?

Natural! (through MSSM-like Higgs messenger)
Minimal Conformal Technicolor

Return of the TC Model

Fermion Masses? Natural! (through MSSM-like Higgs messenger)

Low Mass Particles? A Higgs-like PNGB, h, and a “hidden” PNGB, a

FCNCs?

S-Parameter?
Minimal Conformal Technicolor

Return of the TC Model

Fermion Masses?
Natural! (through MSSM-like Higgs messenger)

Low Mass Particles?
A Higgs-like PNGB, h, and a “hidden” PNGB, a

FCNCs?
Suppressed by high scale!

S-Parameter?

Fig. 4. Precision electroweak fit in the model described in the text for $m_h = 120$ GeV.
Fermion Masses? Natural! (through MSSM-like Higgs messenger)
Low Mass Particles? A Higgs-like PNGB, \(h \), and a “hidden” PNGB, \(a \)
FCNCs? Suppressed by high scale!
S-Parameter? Small \(\theta \Rightarrow \) small S-parameter!
Minimal Conformal Technicolor

Return of the TC Model

Fermion Masses? Natural! (through MSSM-like Higgs messenger)
Low Mass Particles? A Higgs-like PNGB, h, and a “hidden” PNGB, a
FCNCs? Suppressed by high scale!
S-Parameter? Small $\theta \Rightarrow$ small S-parameter!

Small enough to fit EW data?
Minimal Conformal Technicolor
Return of the TC Model

Fermion Masses?
- Natural! (through MSSM-like Higgs messenger)

Low Mass Particles?
- A Higgs-like PNGB, h, and a “hidden” PNGB, a
 - Suppressed by high scale!

FCNCs?
- Small $\theta \Rightarrow$ small S-parameter!

S-Parameter?
- Small enough to fit EW data?

- Top loop contribution gives: $m_h \sim \sqrt{3} c_t M_{top}$
- For c_t & $\sin \theta \lesssim \frac{1}{4}$, model in inside the S-T EW ellipse

Small enough to fit EW data?

Fig. 4. Precision electroweak fit in the model described in the text for $m_h = 120$ GeV.

We use the recent electroweak fit of Ref. [27]. Like the standard model, the present model has a single parameter (in this case $\sin \theta$) that controls the precision electroweak fit, and has a good fit for a small range of this parameter. However, the limit $\theta \ll 1$ is fine tuned, and we must be close to this limit to get a good electroweak fit. To quantify this tuning, we evaluate the sensitivity of the electroweak VEV to the technifermion mass κ, a parameter in the fundamental theory that controls the vacuum angle θ. We have

$$\text{sensitivity} = \frac{d \ln v^2}{d \ln \kappa} = -\frac{2}{\tan^2 \theta}. \quad (4.16)$$

As expected, this goes as $f^2/v^2 \sim \theta^{-2}$ for small θ. For $\theta \sim 0.25$ the sensitivity is ~ -30. The fine tuning is further reduced for smaller m_h. Fine tuning may be completely absent if there are additional positive contributions to the T parameter. In this case, we can allow $\sin \theta \sim 0.5$, which gives a sensitivity parameter ~ 5.

Evans (UCD)
MCTC: Flavor
October 11, 2010
Consider a supersymmetric theory with the following field content:

\[SU(3)_{SCTC} \times SU(2)_L \times SU(2)_R \supset U(1)_Y \]
Consider a supersymmetric theory with the following field content:

\[\text{SU}(3)_{\text{SCTC}} \times \text{SU}(2)_L \times \text{SU}(2)_R \supset U(1)_Y \]

\[
\begin{align*}
\Psi & \sim (3, 2, 1) \\
\Psi^c & \sim (\bar{3}, 1, 2) \\
\Sigma_a & \sim (3, 1, 1) \\
\Sigma^c_a & \sim (\bar{3}, 1, 1) \\
P & \sim (1, 2, 1) \\
P^c & \sim (1, 1, 2) \\
H & \sim (1, 2, 2) \\
a & = 1, \ldots, 4
\end{align*}
\]
Consider a supersymmetric theory with the following field content:

$$SU(3)_{SCTC} \times SU(2)_L \times SU(2)_R \supset U(1)_Y$$

<table>
<thead>
<tr>
<th>Field</th>
<th>Representation</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ψ</td>
<td>$(3, 2, 1)$</td>
<td>technifermions (ultimately cause EWSB)</td>
</tr>
<tr>
<td>Ψ^c</td>
<td>$(\bar{3}, 1, 2)$</td>
<td></td>
</tr>
<tr>
<td>Σ_a</td>
<td>$(3, 1, 1)$</td>
<td></td>
</tr>
<tr>
<td>Σ^c_a</td>
<td>$(\bar{3}, 1, 1)$</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>$(1, 2, 1)$</td>
<td></td>
</tr>
<tr>
<td>P^c</td>
<td>$(1, 1, 2)$</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>$(1, 2, 2)$</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>$1, \ldots, 4$</td>
<td></td>
</tr>
</tbody>
</table>
Consider a supersymmetric theory with the following field content:

\[
SU(3)_{SCTC} \times SU(2)_L \times SU(2)_R \supseteq U(1)_Y
\]

- \(\Psi \sim (3, 2, 1) \) → technifermions (ultimately cause EWSB)
- \(\Psi^c \sim (\bar{3}, 1, 2) \)
- \(\Sigma_a \sim (3, 1, 1) \) → sterile technifermions (break \(SU(3)_{SCTC} \), get \(N_f = 6 \) for conformal running)
- \(\Sigma^c_a \sim (\bar{3}, 1, 1) \)
- \(P \sim (1, 2, 1) \)
- \(P^c \sim (1, 1, 2) \)
- \(H \sim (1, 2, 2) \)
- \(a = 1, \ldots, 4 \)
Consider a supersymmetric theory with the following field content:

\[SU(3)_{SCTC} \times SU(2)_L \times SU(2)_R \supset U(1)_Y \]

- \(\Psi \sim (3, 2, 1) \rightarrow \) technifermions (ultimately cause EWSB)
- \(\Psi^c \sim (\bar{3}, 1, 2) \rightarrow \) sterile technifermions (break \(SU(3)_{SCTC} \), get \(N_f = 6 \) for conformal running)
- \(\Sigma_a \sim (3, 1, 1) \rightarrow \) fields in place to cancel anomalies
- \(\Sigma^c_a \sim (\bar{3}, 1, 1) \rightarrow \)
- \(P \sim (1, 2, 1) \rightarrow \)
- \(P^c \sim (1, 1, 2) \rightarrow \)
- \(H \sim (1, 2, 2) \rightarrow \)
- \(a = 1, \ldots, 4 \rightarrow \)
Consider a supersymmetric theory with the following field content:

\[SU(3)_{SCTC} \times SU(2)_L \times SU(2)_R \supset U(1)_Y \]

- \(\Psi \sim (3, 2, 1) \) → technifermions (ultimately cause EWSB)
- \(\Psi^c \sim (\bar{3}, 1, 2) \) → sterile technifermions (break \(SU(3)_{SCTC} \), get \(N_f = 6 \) for conformal running)
- \(\Sigma_a \sim (3, 1, 1) \) → fields in place to cancel anomalies
- \(\Sigma^c_a \sim (\bar{3}, 1, 1) \)
- \(P \sim (1, 2, 1) \) → messengers of flavor
- \(P^c \sim (1, 1, 2) \)
- \(H \sim (1, 2, 2) \)
- \(a = 1, \ldots, 4 \)
Consider a supersymmetric theory with the following field content:

$$SU(3)_{SCTC} \times SU(2)_L \times SU(2)_R \supset U(1)_Y$$

- $\Psi \sim (3, 2, 1) \rightarrow$ technifermions (ultimately cause EWSB)
- $\Psi^c \sim (\bar{3}, 1, 2) \rightarrow$ sterile technifermions (break $SU(3)_{SCTC}$, get $N_f = 6$ for conformal running)
- $\Sigma_a \sim (3, 1, 1) \rightarrow$ fields in place to cancel anomalies
- $\Sigma_a^c \sim (\bar{3}, 1, 1) \rightarrow$ messengers of flavor
- $P \sim (1, 2, 1)
- P^c \sim (1, 1, 2)
- H \sim (1, 2, 2)
- a = 1, \ldots, 4

At SUSY breaking scale Σ_4 gets a VEV

$$\langle \Sigma \rangle = \langle \Sigma^c \rangle = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \nu_\Sigma \end{pmatrix}$$

$$SU(3)_{SCTC} \rightarrow SU(2)_{CTC}$$
Superconformal Technicolor

Superpotential

Superpotential terms $W \ni \Sigma \Sigma^c + (\Sigma \Sigma^c)^2$ break SCTC at the SUSY scale (and gives mass to 3rd SCTC color of Σ terms)
Superconformal Technicolor

Superpotential

Superpotential terms $W \ni \Sigma \Sigma^c + (\Sigma \Sigma^c)^2$ break SCTC at the SUSY scale (and gives mass to 3rd SCTC color of Σ terms)

$$W \ni \psi \Sigma \psi^c + \psi \Sigma^c P + \psi^c \Sigma P^c + \Sigma \Sigma \Sigma + \Sigma^c \Sigma^c \Sigma^c + \Sigma \psi \psi + \Sigma^c \psi^c \psi^c$$
Superconformal Technicolor

Superpotential

Superpotential terms $W \ni \Sigma \Sigma^c + (\Sigma \Sigma^c)^2$ break SCTC at the SUSY scale (and gives mass to 3rd SCTC color of Σ terms)

$$W \ni \psi H \psi^c + \psi \Sigma^c P + \psi^c \Sigma P^c + \Sigma \Sigma \Sigma + \Sigma^c \Sigma^c \Sigma^c + \Sigma \psi \psi + \Sigma^c \psi^c \psi^c$$

Communicates mass to SM fermions
Superconformal Technicolor

Superpotential

Superpotential terms $W \ni \Sigma \Sigma^c + (\Sigma \Sigma^c)^2$ break SCTC at the SUSY scale (and gives mass to 3rd SCTC color of Σ terms)

$$W \ni \psi H \psi^c + \psi \Sigma^c P + \psi^c \Sigma P^c + \Sigma \Sigma \Sigma + \Sigma^c \Sigma^c \Sigma^c + \Sigma \psi \psi + \Sigma^c \psi^c \psi^c$$

Communicates mass to SM fermions

Masses for 3rd SCTC color (and P fields)
Superconformal Technicolor
Superpotential

Superpotential terms $W \ni \Sigma \Sigma^c + (\Sigma \Sigma^c)^2$ break SCTC at the SUSY scale (and gives mass to 3rd SCTC color of Σ terms)

$W \ni \Psi H \Psi^c + \Psi \Sigma^c P + \Psi^c \Sigma P^c + \Sigma \Sigma \Sigma + \Sigma^c \Sigma^c \Sigma^c + \Sigma \Psi \Psi + \Sigma^c \Psi^c \Psi^c$

Communicates mass to SM fermions
Masses for 3rd SCTC color (and P fields)
Masses for fermions of CTC
Superconformal Technicolor

Superpotential

Superpotential terms $W \ni \Sigma\Sigma^c + (\Sigma\Sigma^c)^2$ break SCTC at the SUSY scale (and gives mass to 3rd SCTC color of Σ terms)

$$W \ni \bar{\psi}H\psi^c + \psi\Sigma^cP + \psi^c\Sigma P^c + \Sigma\Sigma\Sigma + \Sigma^c\Sigma^c\Sigma^c + \Sigma\psi\psi + \Sigma^c\psi^c\psi^c$$

Communicates mass to SM fermions

Masses for 3rd SCTC color (and P fields)

Masses for fermions of CTC

After SUSY breaking, we find:

$$L_{\text{eff}} \sim \xi_a\xi_b + \psi\psi + \psi^c\psi^c + |\psi\psi^c|^2 + (\psi\psi^c)^\dagger (Qt^c)$$

where $\Sigma_{1,2,3}, \Sigma_{1,2,3}^c \rightarrow \xi_a (a = 1, \ldots, 6)$
Superconformal Technicolor

Superpotential terms \(W \supset \Sigma \Sigma^c + (\Sigma \Sigma^c)^2 \) break SCTC at the SUSY scale (and gives mass to 3rd SCTC color of \(\Sigma \) terms)

\[
W \supset \psi H \psi^c - \psi \Sigma^c P + \psi^c \Sigma P^c + \Sigma \Sigma \Sigma + \Sigma^c \Sigma^c \Sigma^c + \Sigma \psi \psi + \Sigma^c \psi^c \psi^c
\]

Communicates mass to SM fermions

Masses for 3rd SCTC color (and \(P \) fields)

Masses for fermions of CTC

After SUSY breaking, we find:

\[
L_{\text{eff}} \sim \xi_a \xi_b + \psi \psi + \psi^c \psi^c + |\psi \psi^c|^2 + (\psi \psi^c)^\dagger (Q t^c)
\]

where \(\Sigma_{1,2,3}, \Sigma_{1,2,3}^c \rightarrow \xi_a (a = 1, \ldots, 6) \)

Which is almost the lagrangian for Minimal Conformal Technicolor!
Superconformal Technicolor

Superpotential terms \(W \ni \Sigma \Sigma^c + (\Sigma \Sigma^c)^2 \) break SCTC at the SUSY scale (and gives mass to 3rd SCTC color of \(\Sigma \) terms)

\[
W \ni \psi H \psi^c + \psi^c \Sigma P^c + \Sigma \Sigma \Sigma + \Sigma^c \Sigma^c \Sigma^c + \Sigma \psi \psi + \Sigma^c \psi^c \psi^c
\]

Communicates mass to SM fermions

Masses for 3rd SCTC color (and \(P \) fields)

Masses for fermions of CTC

After SUSY breaking, we find:

\[
L_{\text{eff}} \sim \xi_a \xi_b + \psi \psi + \psi^c \psi^c + |\psi \psi^c|^2 + (\psi \psi^c)\dagger (Q t^c)
\]

where \(\Sigma_{1,2,3}, \Sigma_{1,2,3}^c \rightarrow \xi_a (a = 1, \ldots, 6) \)

\(+ \lambda_a^\dagger \lambda_a \)

Which is almost the lagrangian for Minimal Conformal Technicolor!
Seiberg argued SUSY QCD with $\frac{3}{2} N_c < N_f < 3 N_c$ will flow to a SCFT. Strong fixed points expected for $N_f \approx 2 N_c$ ($N_f \approx 4 N_c$ for non-SUSY)
Seiberg argued SUSY QCD with $\frac{3}{2} N_c < N_f < 3N_c$ will flow to a SCFT. Strong fixed points expected for $N_f \approx 2N_c$ ($N_f \approx 4N_c$ for non-SUSY).

Dimensions in SCFTs are known to be: $d(X) = \frac{3}{2} R_{SC}(X)$

Determining dimensions in the theory is done by “a-Maximization”
Seiberg argued SUSY QCD with $\frac{3}{2} N_c < N_f < 3N_c$ will flow to a SCFT. Strong fixed points expected for $N_f \approx 2N_c$ ($N_f \approx 4N_c$ for non-SUSY).

Dimensions in SCFTs are known to be: $d(X) = \frac{3}{2} R_{SC}(X)$

Determining dimensions in the theory is done by “a-Maximization”

The superconformal R-symmetry, R_{SC} of any 4d SCFT is set to be that which maximizes the quantity $a(R) = \frac{3}{32} \left(3 \text{Tr} R^3 - \text{Tr} R \right)$ (Intriligator, Wecht 2003)
Seiberg argued SUSY QCD with $\frac{3}{2} N_c < N_f < 3 N_c$ will flow to a SCFT. Strong fixed points expected for $N_f \approx 2N_c$ ($N_f \approx 4N_c$ for non-SUSY).

Dimensions in SCFTs are known to be: $d(X) = \frac{3}{2} R_{SC}(X)$

Determining dimensions in the theory is done by “a-Maximization”

The superconformal R-symmetry, R_{SC} of any 4d SCFT is set to be that which maximizes the quantity $a(R) = \frac{3}{32} \left(3 \text{Tr} R^3 - \text{Tr} R \right)$ (Intriligator, Wecht 2003)

- Fix large Yukawas marginal
- Neglect other superpotential terms
- Apply a-maximization

This will try to construct the theory with Yukawa fixed points.
We have: $m_{\text{top}} \sim 4\pi v_{\text{ew}} \left(\frac{y_{TC}}{4\pi} \right) \left(\frac{y_t}{4\pi} \right) \left(\frac{\Lambda_{TC}}{M_{\text{flavor}}} \right)^{d-1}$

$\Rightarrow \left(\frac{y_{TC}}{4\pi} \right) \left(\frac{y_t}{4\pi} \right) \left(\frac{\Lambda_{TC}}{M_{\text{flavor}}} \right)^{d-1} \sim \frac{1}{10}$
We have: $m_{top} \sim 4\pi v_{ew} \left(\frac{y_{TC}}{4\pi} \right) \left(\frac{y_t}{4\pi} \right) \left(\frac{\Lambda_{TC}}{M_{flavor}} \right)^{d-1}$

\[\Rightarrow \left(\frac{y_{TC}}{4\pi} \right) \left(\frac{y_t}{4\pi} \right) \left(\frac{\Lambda_{TC}}{M_{flavor}} \right)^{d-1} \sim \frac{1}{10} \]

We need both y_{TC} and y_t strong at the flavor scale!
We have: $m_{\text{top}} \sim 4\pi v_{\text{ew}} \left(\frac{y_{TC}}{4\pi} \right) \left(\frac{y_t}{4\pi} \right) \left(\frac{\Lambda_{TC}}{M_{\text{flavor}}} \right)^{d-1}$

$\Rightarrow \left(\frac{y_{TC}}{4\pi} \right) \left(\frac{y_t}{4\pi} \right) \left(\frac{\Lambda_{TC}}{M_{\text{flavor}}} \right)^{d-1} \sim \frac{1}{10}$

We need both y_{TC} and y_t strong at the flavor scale!

Coincidence problem?
We have: \(m_{\text{top}} \sim 4\pi v_{\text{ew}} \left(\frac{y_{TC}}{4\pi} \right) \left(\frac{y_t}{4\pi} \right) \left(\frac{\Lambda_{TC}}{M_{\text{flavor}}} \right)^{d-1} \)

\[
\Rightarrow \left(\frac{y_{TC}}{4\pi} \right) \left(\frac{y_t}{4\pi} \right) \left(\frac{\Lambda_{TC}}{M_{\text{flavor}}} \right)^{d-1} \sim \frac{1}{10}
\]

We need both \(y_{TC} \) and \(y_t \) strong at the flavor scale!

Coincidence problem? Not if both reach fixed points!
We have: \[m_{\text{top}} \sim 4\pi v_{\text{ew}} \left(\frac{y_{TC}}{4\pi} \right) \left(\frac{y_t}{4\pi} \right) \left(\frac{\Lambda_{TC}}{M_{\text{flavor}}} \right)^{d-1} \]

\[\Rightarrow \left(\frac{y_{TC}}{4\pi} \right) \left(\frac{y_t}{4\pi} \right) \left(\frac{\Lambda_{TC}}{M_{\text{flavor}}} \right)^{d-1} \sim \frac{1}{10} \]

We need both \(y_{TC} \) and \(y_t \) strong at the flavor scale!

Coincidence problem? Not if both reach fixed points!

But \(d (H_u) > 1 \Rightarrow \) We need strong color group!

i.e. \(SU(N)_{\text{strong}} \times SU(3)_{\text{weak}} \rightarrow SU(3)_C \)
We have:

\[m_{\text{top}} \sim 4\pi v_{\text{ew}} \left(\frac{y_{TC}}{4\pi} \right) \left(\frac{y_t}{4\pi} \right) \left(\frac{\Lambda_{TC}}{M_{\text{flavor}}} \right)^{d-1} \]

\[\Rightarrow \left(\frac{y_{TC}}{4\pi} \right) \left(\frac{y_t}{4\pi} \right) \left(\frac{\Lambda_{TC}}{M_{\text{flavor}}} \right)^{d-1} \sim \frac{1}{10} \]

We need both \(y_{TC} \) and \(y_t \) strong at the flavor scale!

Coincidence problem? Not if both reach fixed points!

But \(d (H_u) > 1 \Rightarrow \) We need strong color group!

i.e. \(SU(N)_{\text{strong}} \times SU(3)_{\text{weak}} \rightarrow SU(3)_C \)

In SM, \(N_c = 3 \) and \(N_f = 6 \Rightarrow \) No room for fields to do breaking
Flavor in the UV
That Dastardly Top!

We have: \(m_{\text{top}} \sim 4\pi v_{\text{ew}} \left(\frac{y_{TC}}{4\pi} \right) \left(\frac{y_t}{4\pi} \right) \left(\frac{\Lambda_{TC}}{M_{\text{flavor}}} \right)^{d-1} \)

\[\Rightarrow \left(\frac{y_{TC}}{4\pi} \right) \left(\frac{y_t}{4\pi} \right) \left(\frac{\Lambda_{TC}}{M_{\text{flavor}}} \right)^{d-1} \sim \frac{1}{10} \]

We need both \(y_{TC} \) and \(y_t \) strong at the flavor scale!

Coincidence problem? Not if both reach fixed points!

But \(d(H_u) > 1 \Rightarrow \) We need strong color group!

i.e. \(SU(N)_{\text{strong}} \times SU(3)_{\text{weak}} \rightarrow SU(3)_{C} \)

In SM, \(N_c = 3 \) and \(N_f = 6 \Rightarrow \) No room for fields to do breaking

Two options: \(N_c > 3 \) or split the quark flavors!
Field Content of the Flavor Sector

\[(SU(6)_{SC} \times SU(3)_A \times SU(3)_B \times SU(2)_L)_{U(1)_Y}\]

\[W \ni y_{ij}^u Q_i H_u U_j^c + y_{ij}^d Q_i H_d D_j^c \]
\[+ x_{ij}^u \bar{q}_i H_d \bar{u}_j^c + x_{ij}^d \bar{q}_i H_u \bar{d}_j^c \]
\[+ z_{ij}^Q Q_i \Delta^c \bar{q}_j + z_{ij}^u U_i \Delta \bar{u}_j + z_{ij}^Q D_i \Delta \bar{d}_j \]

\[\Phi \sim (6, \bar{3}, 1, 1) \]
\[\Phi^c \sim (\bar{6}, 3, 1, 1) \]
\[\Delta \sim (6, 1, \bar{3}, 1) \]
\[\Delta^c \sim (\bar{6}, 1, 3, 1) \]
\[Q_i \sim (6, 1, 1, 2)_{1/6} \]
\[U_i^c \sim (\bar{6}, 1, 1, 1)_{-2/3} \]
\[D_i^c \sim (\bar{6}, 1, 1, 1)_{1/3} \]
\[\bar{q}_i \sim (1, 1, \bar{3}, 2)_{-1/6} \]
\[\bar{u}_i^c \sim (1, 1, 3, 1)_{2/3} \]
\[\bar{d}_i^c \sim (1, 1, 3, 1)_{-1/3} \]
Flavor with $N_c > 3$

Field Content of the Flavor Sector

$$(SU(6)_{SC} \times SU(3)_A \times SU(3)_B \times SU(2)_L)_{U(1)_Y}$$

These fields get VEVs:

$$\langle \Phi \rangle = \langle \Phi^c \rangle \propto \begin{pmatrix} 1_3 \\ 0_3 \end{pmatrix}$$

$$\langle \Delta \rangle = \langle \Delta^c \rangle \propto \begin{pmatrix} 0_3 \\ 1_3 \end{pmatrix}$$

$$\begin{align*}
\Phi & \sim (6, \bar{3}, 1, 1)_0 \\
\Phi^c & \sim (\bar{6}, 3, 1, 1)_0 \\
\Delta & \sim (6, 1, \bar{3}, 1)_0 \\
\Delta^c & \sim (\bar{6}, 1, 3, 1)_0 \\
Q_i & \sim (6, 1, 1, 2)_{1/6} \\
U^c_i & \sim (\bar{6}, 1, 1, 1)_{-2/3} \\
D^c_i & \sim (\bar{6}, 1, 1, 1)_{1/3} \\
\bar{q}_i & \sim (1, 1, \bar{3}, 2)_{-1/6} \\
\bar{u}^c_i & \sim (1, 1, 3, 1)_{2/3} \\
\bar{d}^c_i & \sim (1, 1, 3, 1)_{-1/3}
\end{align*}$$
Flavor with $N_c > 3$

Field Content of the Flavor Sector

\[
(SU(6)_{SC} \times SU(3)_A \times SU(3)_B \times SU(2)_L)_{U(1)_Y}
\]

These fields get VEVs:

\[
\langle \phi \rangle = \langle \phi^c \rangle \propto \begin{pmatrix} 1_3 \\ 0_3 \end{pmatrix}
\]

\[
\langle \Delta \rangle = \langle \Delta^c \rangle \propto \begin{pmatrix} 0_3 \\ 1_3 \end{pmatrix}
\]

These break:

\[
SU(6)_{SC} \times SU(3)_A \times SU(3)_B \\
\rightarrow SU(3)_C \times SU(3)_{C'}
\]
Flavor with $N_c > 3$
Field Content of the Flavor Sector

$$(SU(6)_{SC} \times SU(3)_A \times SU(3)_B \times SU(2)_L)_{U(1)_Y}$$

These fields contain the SM quarks

- $\Phi \sim (6, \bar{3}, 1, 1)_0$
- $\Phi^c \sim (\bar{6}, 3, 1, 1)_0$
- $\Delta \sim (6, 1, \bar{3}, 1)_0$
- $\Delta^c \sim (\bar{6}, 1, 3, 1)_0$
- $Q_i \sim (6, 1, 1, 2)_{1/6}$
- $U^c_i \sim (\bar{6}, 1, 1, 1)_{-2/3}$
- $D^c_i \sim (\bar{6}, 1, 1, 1)_{1/3}$
- $\tilde{q}_i \sim (1, 1, \bar{3}, 2)_{-1/6}$
- $\tilde{u}^c_i \sim (1, 1, 3, 1)_{2/3}$
- $\tilde{d}^c_i \sim (1, 1, 3, 1)_{-1/3}$
Flavor with $N_c > 3$

Field Content of the Flavor Sector

$$(SU(6)_{SC} \times SU(3)_A \times SU(3)_B \times SU(2)_L)_{U(1)_Y}$$

These fields contain the SM quarks

They will be separated into:

$Q_i^{(1,...,6)} \rightarrow Q_i^{(1,2,3)} + Q_i^{(4,5,6)} \equiv q_i + q'_i$

q_i are the SM quarks
Flavor with $N_c > 3$

Field Content of the Flavor Sector

$$(SU(6)_{SC} \times SU(3)_A \times SU(3)_B \times SU(2)_L)_{U(1)_Y}$$

q'_i partners with the \tilde{q}_i fields to create new quarks at a higher scale through interactions of the form:

$$W \ni z^{Q}_{ij} Q_i \Delta^c \tilde{q}_j$$

$$\Phi \sim (6, \bar{3}, 1, 1)_0$$
$$\Phi^c \sim (\bar{6}, 3, 1, 1)_0$$
$$\Delta \sim (6, 1, \bar{3}, 1)_0$$
$$\Delta^c \sim (\bar{6}, 1, 3, 1)_0$$
$$Q_i \sim (6, 1, 1, 2)_{1/6}$$
$$U^c_i \sim (\bar{6}, 1, 1, 1)_{-2/3}$$
$$D^c_i \sim (\bar{6}, 1, 1, 1)_{1/3}$$
$$\tilde{q}_i \sim (1, 1, \bar{3}, 2)_{-1/6}$$
$$\tilde{u}_i^c \sim (1, 1, 3, 1)_{2/3}$$
$$\tilde{d}_i^c \sim (1, 1, 3, 1)_{-1/3}$$
Flavor with $N_c > 3$

Field Content of the Flavor Sector

$$(SU(6)_{SC} \times SU(3)_A \times SU(3)_B \times SU(2)_L)_{U(1)_Y}$$

q'_i partners with the \tilde{q}_i fields to create new quarks at a higher scale through interactions of the form:

$$W \ni z_{ij}^Q Q_i \Delta^c \tilde{q}_j$$

There are twelve new quarks under $SU(3)_{C'}$:

$$\begin{align*}
\Phi & \sim (6, \bar{3}, 1, 1)_0 \\
\Phi^c & \sim (\bar{6}, 3, 1, 1)_0 \\
\Delta & \sim (6, 1, \bar{3}, 1)_0 \\
\Delta^c & \sim (\bar{6}, 1, 3, 1)_0 \\
Q_i & \sim (6, 1, 1, 2)_{1/6} \\
U_i^c & \sim (\bar{6}, 1, 1, 1)_{-2/3} \\
D_i^c & \sim (\bar{6}, 1, 1, 1)_{1/3} \\
\tilde{q}_i & \sim (1, 1, \bar{3}, 2)_{-1/6} \\
\tilde{u}_i^c & \sim (1, 1, 3, 1)_{2/3} \\
\tilde{d}_i^c & \sim (1, 1, 3, 1)_{-1/3}
\end{align*}$$
(SU(6)_{SC} \times SU(3)_A \times SU(3)_B \times SU(2)_L)_{U(1)_Y}

W \ni y^u_{ij} Q_i H_u U^c_j + y^d_{ij} Q_i H_d D^c_j
+ x^u_{ij} \tilde{q}_i H_d \tilde{u}^c_j + x^d_{ij} \tilde{q}_i H_u \tilde{d}^c_j
+ z^Q_{ij} Q_i \Delta^c \tilde{q}_j + z^u_{ij} U_i \Delta \tilde{u}_j + z^Q_{ij} D_i \Delta \tilde{d}_j

These give mass to the SM fermions through H communicating with the technisector

Φ \sim (6, \bar{3}, 1, 1)_0
Φ^c \sim (\bar{6}, 3, 1, 1)_0
Δ \sim (6, 1, \bar{3}, 1)_0
Δ^c \sim (\bar{6}, 1, 3, 1)_0
Q_i \sim (6, 1, 1, 2)_{1/6}
U^c_i \sim (\bar{6}, 1, 1, 1)_{-2/3}
D^c_i \sim (\bar{6}, 1, 1, 1)_{1/3}
\tilde{q}_i \sim (1, 1, \bar{3}, 2)_{-1/6}
\tilde{u}^c_i \sim (1, 1, 3, 1)_{2/3}
\tilde{d}^c_i \sim (1, 1, 3, 1)_{-1/3}
Flavor with $N_C > 3$

Field Content of the Flavor Sector

$$(SU(6)_{SC} \times SU(3)_A \times SU(3)_B \times SU(2)_L)_{U(1)_Y}$$

$$W \ni y^u_{ij} Q_i H_u U_j^c + y^d_{ij} Q_i H_d D_j^c$$
$$+ x^u_{ij} \tilde{q}_i H_d \tilde{u}_j^c + x^d_{ij} \tilde{q}_i H_u \tilde{d}_j^c$$
$$+ z^{Q}_{ij} Q_i \Delta^c \tilde{q}_j + z^{u}_{ij} U_i \Delta \tilde{u}_j + z^{Q}_{ij} D_i \Delta \tilde{d}_j$$

These give mass to the SM fermions through H communicating with the technisector.

The give an $O(M_{SUSY})$ mass to the 12 $SU(3)_{C'}$ quarks.

Φ \sim (6, \bar{3}, 1, 1)_0
Φ^c \sim (\bar{6}, 3, 1, 1)_0
Δ \sim (6, 1, \bar{3}, 1)_0
Δ^c \sim (\bar{6}, 1, 3, 1)_0
Qi \sim (6, 1, 1, 2)_{1/6}
Ui^c \sim (\bar{6}, 1, 1, 1)_{-2/3}
Di^c \sim (\bar{6}, 1, 1, 1)_{1/3}
\tilde{q}_i \sim (1, 1, \bar{3}, 2)_{-1/6}
\tilde{u}_i^c \sim (1, 1, 3, 1)_{2/3}
\tilde{d}_i^c \sim (1, 1, 3, 1)_{-1/3}
Suppressing Flavor Violation

Flavor looks disastrous!

Since $M \gg m, \tilde{m}$, to suppress FCNCs we need $M_X^{ij} = M_X^\delta^{ij}$.

Evans (UCD) MCTC: Flavor October 11, 2010 18 / 24
Suppressing Flavor Violation

Flavor looks disastrous!

Set $M_{ij}^X \equiv z_{ij}^X \langle \Delta \rangle$
and $\tilde{m}_{ij}^X \equiv x_{ij}^X \nu$

\[
\begin{pmatrix}
 u_{1}'^c & u_{2}'^c & u_{3}'^c & \tilde{u}_1 & \tilde{u}_2 & \tilde{u}_3 \\
 u_{1}' & m_u & 0 & 0 & M_{11}^Q & M_{12}^Q & M_{13}^Q \\
 u_{2}' & 0 & m_c & 0 & M_{12}^Q & M_{22}^Q & M_{23}^Q \\
 u_{3}' & 0 & 0 & m_t & M_{13}^Q & M_{23}^Q & M_{33}^Q \\
 \tilde{u}_1 & M_{11}^U & M_{21}^U & M_{31}^U & \tilde{m}_1^U & \tilde{m}_2^U & \tilde{m}_3^U \\
 \tilde{u}_2 & M_{12}^U & M_{22}^U & M_{32}^U & \tilde{m}_1^U & \tilde{m}_2^U & \tilde{m}_3^U \\
 \tilde{u}_3 & M_{13}^U & M_{23}^U & M_{33}^U & \tilde{m}_1^U & \tilde{m}_2^U & \tilde{m}_3^U
\end{pmatrix}
\]
Suppressing Flavor Violation

Flavor looks disastrous!

Set \(M_{ij}^X \equiv z_{ij}^X \langle \Delta \rangle \)
and \(\tilde{m}_{ij}^X \equiv x_{ij}^X \nu \)

Since \(M \gg m, \tilde{m} \), to suppress FCNCs we need \(M_{ij}^X = M^X \delta_{ij} \)
Supersymmetric Conformal Technicolor with Topcolor

The Audience: Okay, now you are just messing with us...

\[
SU(3)_{tC} \times SU(3)_{\bar{C}} \times SU(2)_L \bigg)_{U(1)_Y}
\]

\[
\begin{align*}
W & \ni y_t H_u q_3 t^c + y_b H_d q_3 b^c \\
& + (y_u)_{ij} H_u q_i u_j^c + (y_d)_{ij} H_d q_i d_j^c \\
& + z_t \Phi t^c U + z_t \Phi b^c D \\
& + (z_u)_i q_i H_u U^c + (z_d)_i q_i H_d D^c \\
& + \mu_u U U^c + \mu_d D D^c
\end{align*}
\]
Supersymmetric Conformal Technicolor with Topcolor

The Audience: Okay, now you are just messing with us . . .

\[
\left(SU(3)_{tC} \times SU(3)_{\bar{C}} \times SU(2)_L \right)_{U(1)_Y}
\]

These fields get VEVs \(\mathcal{O}(M_{\text{SUSY}}) \):

\[
\langle \Phi \rangle = \langle \Phi^c \rangle \propto \mathbf{1}_3
\]
Supersymmetric Conformal Technicolor with Topcolor

The Audience: Okay, now you are just messing with us...

\[(SU(3)_{tC} \times SU(3)_{\bar{C}} \times SU(2)_L)_{U(1)_Y}\]

These fields get VEVs $\mathcal{O}(M_{SUSY})$:

\[
\langle \Phi \rangle = \langle \Phi^c \rangle \propto 1_3
\]

Which break $SU(3)_{tC} \times SU(3)_{\bar{C}} \rightarrow SU(3)_C$

<table>
<thead>
<tr>
<th>Field</th>
<th>Multiplet</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Φ</td>
<td>$(3, \bar{3}, 1)_0$</td>
<td></td>
</tr>
<tr>
<td>Φ^c</td>
<td>$(\bar{3}, 3, 1)_0$</td>
<td></td>
</tr>
<tr>
<td>q_3</td>
<td>$(3, 1, 2)_{1/6}$</td>
<td></td>
</tr>
<tr>
<td>t^c</td>
<td>$(\bar{3}, 1, 1)_{-2/3}$</td>
<td></td>
</tr>
<tr>
<td>b^c</td>
<td>$(\bar{3}, 1, 1)_{1/3}$</td>
<td></td>
</tr>
<tr>
<td>q_i</td>
<td>$(1, 3, 2)_{1/6}$</td>
<td></td>
</tr>
<tr>
<td>u^c_i</td>
<td>$(1, \bar{3}, 1)_{-2/3}$</td>
<td></td>
</tr>
<tr>
<td>d^c_i</td>
<td>$(1, \bar{3}, 1)_{1/3}$</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>$(1, 3, 1)_{2/3}$</td>
<td></td>
</tr>
<tr>
<td>U^c</td>
<td>$(1, \bar{3}, 1)_{-2/3}$</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>$(1, 3, 1)_{-1/3}$</td>
<td></td>
</tr>
<tr>
<td>D^c</td>
<td>$(1, \bar{3}, 1)_{1/3}$</td>
<td></td>
</tr>
</tbody>
</table>
Supersymmetric Conformal Technicolor with Topcolor

The Audience: Okay, now you are just messing with us...

\[(SU(3)_{tC} \times SU(3)_{\bar{C}} \times SU(2)_L)_{U(1)_Y}\]

These are the third generation quarks charged under topcolor:

- $\Phi \sim (3, \bar{3}, 1)_0$
- $\Phi^c \sim (\bar{3}, 3, 1)_0$
- $q_3 \sim (3, 1, 2)_{1/6}$
- $t^c \sim (\bar{3}, 1, 1)_{-2/3}$
- $b^c \sim (\bar{3}, 1, 1)_{1/3}$
- $q_i \sim (1, 3, 2)_{1/6}$
- $u^c_i \sim (1, 3, 1)_{-2/3}$
- $d^c_i \sim (1, 3, 1)_{1/3}$
- $U \sim (1, 3, 1)_{2/3}$
- $U^c \sim (1, \bar{3}, 1)_{-2/3}$
- $D \sim (1, 3, 1)_{-1/3}$
- $D^c \sim (1, \bar{3}, 1)_{1/3}$
Supersymmetric Conformal Technicolor with Topcolor

The Audience: Okay, now you are just messing with us...

\[\left(SU(3)_{tC} \times SU(3)_{\bar{C}} \times SU(2)_L \right)_{U(1)_Y} \]

These are the first two generations of quarks

\(i = 1, 2 \)
Supersymmetric Conformal Technicolor with Topcolor

The Audience: Okay, now you are just messing with us.

$$(SU(3)_{tC} \times SU(3)_{\bar{C}} \times SU(2)_L)_{U(1)_Y}$$

These are new high scale quarks

$\Phi \sim (3, \bar{3}, 1)_0$

$\Phi^c \sim (\bar{3}, 3, 1)_0$

$q_3 \sim (3, 1, 2)_{1/6}$

$t^c \sim (\bar{3}, 1, 1)_{-2/3}$

$b^c \sim (\bar{3}, 1, 1)_{1/3}$

$q_i \sim (1, 3, 2)_{1/6}$

$u^c_i \sim (1, \bar{3}, 1)_{-2/3}$

$d^c_i \sim (1, \bar{3}, 1)_{1/3}$

$U \sim (1, 3, 1)_{2/3}$

$U^c \sim (1, \bar{3}, 1)_{-2/3}$

$D \sim (1, 3, 1)_{-1/3}$

$D^c \sim (1, \bar{3}, 1)_{1/3}$
Supersymmetric Conformal Technicolor with Topcolor

The Audience: Okay, now you are just messing with us . . .

\[(SU(3)_{tC} \times SU(3)_{\bar{C}} \times SU(2)_L)_{U(1)_Y} \]

These are new high scale quarks

They have dirac masses of \(\mathcal{O}(M_{SUSY}) \)

\(\Phi \)	\((3, \bar{3}, 1)_0 \)
\(\Phi^c \)	\((\bar{3}, 3, 1)_0 \)
\(q_3 \)	\((3, 1, 2)_{1/6} \)
\(t^c \)	\((\bar{3}, 1, 1)_{-2/3} \)
\(b^c \)	\((\bar{3}, 1, 1)_{1/3} \)
\(q^c_i \)	\((1, 3, 2)_{1/6} \)
\(u^c_i \)	\((1, \bar{3}, 1)_{-2/3} \)
\(d^c_i \)	\((1, \bar{3}, 1)_{1/3} \)
\(U \)	\((1, 3, 1)_{2/3} \)
\(U^c \)	\((1, \bar{3}, 1)_{-2/3} \)
\(D \)	\((1, 3, 1)_{-1/3} \)
\(D^c \)	\((1, \bar{3}, 1)_{1/3} \)
The Audience: Okay, now you are just messing with us...

\((SU(3)_{tC} \times SU(3)_{\bar{C}} \times SU(2)_L)_{U(1)_Y} \)

These are new high scale quarks

They have dirac masses of \(\mathcal{O}(M_{\text{SUSY}}) \)

Through interactions with \(t^c \) and \(b^c \), they communicate mixing between the 3rd and first two generations of quarks
Supersymmetric Conformal Technicolor with Topcolor

The Audience: Okay, now you are just messing with us...

\[
\left(SU(3)_t \times SU(3)_{\bar{t}} \times SU(2)_L \right)_{U(1)_Y}
\]

\[
W \ni \begin{aligned}
& y_t H_u q_3 t^c + y_b H_d q_3 b^c \\
+ & (y_u)_{ij} H_u q_i u_j^c + (y_d)_{ij} H_d q_i d_j^c \\
+ & z_t \Phi t^c U + z_t \Phi b^c D \\
+ & (z_u)_{i} q_i H_u U^c + (z_d)_{i} q_i H_d D^c \\
+ & \mu_u UU^c + \mu_d DD^c
\end{aligned}
\]

\[
\begin{align*}
\Phi & \sim (3, \bar{3}, 1)_0 \\
\Phi^c & \sim (\bar{3}, 3, 1)_0 \\
q_3 & \sim (3, 1, 2)_{1/6} \\
t^c & \sim (\bar{3}, 1, 1)_{-2/3} \\
b^c & \sim (\bar{3}, 1, 1)_{1/3} \\
q_i & \sim (1, 3, 2)_{1/6} \\
u_i^c & \sim (1, \bar{3}, 1)_{-2/3} \\
d_i^c & \sim (1, \bar{3}, 1)_{1/3} \\
U & \sim (1, 3, 1)_{2/3} \\
U^c & \sim (1, \bar{3}, 1)_{-2/3} \\
D & \sim (1, 3, 1)_{-1/3} \\
D^c & \sim (1, \bar{3}, 1)_{1/3}
\end{align*}
\]
Supersymmetric Conformal Technicolor with Topcolor

The Audience: Okay, now you are just messing with us...
We have then a mass matrix of:

\[M_u = \begin{pmatrix} u \\ t \\ U \end{pmatrix}^T \begin{pmatrix} m_u & 0 & \delta_u \\ 0 & m_t & 0 \\ 0 & \Delta_u & \mu_u \end{pmatrix} \begin{pmatrix} u^c \\ t^c \\ U^c \end{pmatrix} \]
We have then a mass matrix of:

$$M_u = \begin{pmatrix} u \\ t \\ U \end{pmatrix}^T \begin{pmatrix} m_u & 0 & \delta_u \\ 0 & m_t & 0 \\ 0 & \Delta_u & \mu_u \end{pmatrix} \begin{pmatrix} u^c \\ t^c \\ U^c \end{pmatrix}$$

Diagonalization of $M_u^\dagger M_u$ and $M_d^\dagger M_d$ can give the correct CKM matrix elements for very reasonable parameter choices.
We have then a mass matrix of:

\[M_u = \begin{pmatrix} u \\ t \\ U \end{pmatrix}^T \begin{pmatrix} m_u & 0 & \delta_u \\ 0 & m_t & 0 \\ 0 & \Delta_u & \mu_u \end{pmatrix} \begin{pmatrix} u^c \\ t^c \\ U^c \end{pmatrix} \]

Diagonalization of \(M_u^\dagger M_u \) and \(M_d^\dagger M_d \) can give the correct CKM matrix elements for very reasonable parameter choices.

FCNCs suppressed since all terms mix through the very heavy \(U \) or \(D \)
We have then a mass matrix of:

$$M_u = \begin{pmatrix} u \\ t \\ U \end{pmatrix}^T \begin{pmatrix} m_u & 0 & \delta_u \\ 0 & m_t & 0 \\ 0 & \Delta_u & \mu_u \end{pmatrix} \begin{pmatrix} u^c \\ t^c \\ U^c \end{pmatrix}$$

Diagonalization of $M_u^\dagger M_u$ and $M_d^\dagger M_d$ can give the correct CKM matrix elements for very reasonable parameter choices.

FCNCs suppressed since all terms mix through the very heavy U or D.

Still, the strongly interacting tC gluon exchange puts the SUSY scale bound into the 10s of TeV range.
Finding MCTC at the LHC

Detection of this model at the LHC is difficult, but not impossible!
Detection of this model at the LHC is difficult, but not impossible!

We will have light $SU(2)_{CTC}$ gauginos, our global symmetry structure is

$$SU(4) \times U(1)_\lambda \rightarrow Sp(4)$$

\Rightarrow 3 physical PNGBs – h, a and η

h is a composite Higgs

\gg For good S-parameter, it needs to be light (120 GeV)

\gg Will look just like a SM Higgs (ILC may be able to distinguish)

a is a new state which is very weakly coupled to the SM

\gg For a good S-parameter, it will be heavy

$m_a \sim m_h \sin \theta$

\gg Decays through anomalies or into tops

\gg Pair production possibly large enough if σ_{TC} is $\mathcal{O}(\text{TeV})$

η is a new state which is also very weakly coupled to the SM

\gg Similar story to a, but much lighter . . .

\ddots but unfortunately
Finding MCTC at the LHC

Detection of this model at the LHC is difficult, but not impossible!

We will have light $SU(2)_{CTC}$ gauginos, our global symmetry structure is

$SU(4) \times U(1)_\lambda \rightarrow Sp(4)$

\Rightarrow 3 physical PNGBs – h, a and η

h is a composite Higgs

- For good S-parameter, it needs to be light (120 GeV)
- Will look just like a SM Higgs (ILC may be able to distinguish)

η is a new state which is also very weakly coupled to the SM

- Similar story to a, but much lighter . . .
- but unfortunately
Finding MCTC at the LHC

Detection of this model at the LHC is difficult, but not impossible!

We will have light $SU(2)_{CTC}$ gauginos, our global symmetry structure is

$$SU(4) \times U(1)_{\lambda} \rightarrow Sp(4)$$

\Rightarrow 3 physical PNGBs – h, a and η

h is a composite Higgs

- For good S-parameter, it needs to be light (120 GeV)
- Will look just like a SM Higgs (ILC may be able to distinguish)

a is a new state which is very weakly coupled to the SM

- For a good S-parameter, it will be heavy $m_a \sim \frac{m_h}{\sin \theta}$
- Decays through anomalies or into tops
- Pair production possibly large enough if σ_{TC} is \mathcal{O} (TeV)
Detection of this model at the LHC is difficult, but not impossible!

We will have light $SU(2)_{CTC}$ gauginos, our global symmetry structure is

$$SU(4) \times U(1)_{\lambda} \rightarrow Sp(4)$$

\Rightarrow 3 physical PNGBs – h, a and η

h is a composite Higgs
- For good S-parameter, it needs to be light (120 GeV)
- Will look just like a SM Higgs (ILC may be able to distinguish)

a is a new state which is very weakly coupled to the SM
- For a good S-parameter, it will be heavy $m_a \sim \frac{m_h}{\sin \theta}$
- Decays through anomalies or into tops
- Pair production possibly large enough if σ_{TC} is $O(\text{TeV})$

η is a new state which is also very weakly coupled to the SM
- Similar story to a, but much lighter . . .
Finding MCTC at the LHC

Detection of this model at the LHC is difficult, but not impossible!

We will have light $SU(2)_{CTC}$ gauginos, our global symmetry structure is

$$SU(4) \times U(1)_\lambda \rightarrow Sp(4)$$

\Rightarrow 3 physical PNGBs – h, a and η

h is a composite Higgs

- For good S-parameter, it needs to be light (120 GeV)
- Will look just like a SM Higgs (ILC may be able to distinguish)

a is a new state which is very weakly coupled to the SM

- For a good S-parameter, it will be heavy $m_a \sim \frac{m_h}{\sin \theta}$
- Decays through anomalies or into tops
- Pair production possibly large enough if σ_{TC} is $O(\text{TeV})$

η is a new state which is also very weakly coupled to the SM

- Similar story to a, but much lighter . . . but unfortunately
Conclusion

- We have seen two realistic models of flavor in strong EWSB
Conclusion

- We have seen two realistic models of flavor in strong EWSB
- Both are natural, UV-complete models for conformal technicolor
Conclusion

- We have seen two realistic models of flavor in strong EWSB
- Both are natural, UV-complete models for conformal technicolor
- These models are partially intended as “existence proofs”
Conclusion

- We have seen two realistic models of flavor in strong EWSB
- Both are natural, UV-complete models for conformal technicolor
- These models are partially intended as “existence proofs”
- Recent developments from both theory and lattice support CTC, the superconformal symmetry is essential to the model
Conclusion

- We have seen two realistic models of flavor in strong EWSB
- Both are natural, UV-complete models for conformal technicolor
- These models are partially intended as “existence proofs”
- Recent developments from both theory and lattice support CTC, the superconformal symmetry is essential to the model
- This is a relatively young idea with much need for model building
We have seen two realistic models of flavor in strong EWSB

Both are natural, UV-complete models for conformal technicolor

These models are partially intended as “existence proofs”

Recent developments from both theory and lattice support CTC, the superconformal symmetry is essential to the model

This is a relatively young idea with much need for model building

The phenomenology needs to be developed more thoroughly, but there is definitely interesting new physics there

Much more work is in progress
Thank you!