Top Forward-backward Asymmetry at the Tevatron

Jing Shu

PMU INSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSE

JS, T. Tait, K.Wang, arXiv:0911.XXXX

P. Frampton, JS, K. Wang, arXiv: 0911.XXXX

IPMU Focus Week

Outline

- Why top? Why A_{FB}^t ?
- Different explanations
 - s-channel new physics: famaily nonuniversal axigluon
 - t-channel new physics: triplet/sextet scalars
- Conclusion and Outlook

Why top ?

Huge (natural) mass! $(m_t \sim 40 \ m_b)$ Great to probe the origin of EWSB and flavor!

 If NP explains the EWSB dynamics, it may strongly couples to the top.

 If NP contributes to flavor violation, it can induce large top flavor violation

• Top compositness

Great window for NP!

IPMU Focus Week

Nov 12,2009

Why A_{FB}^t ?

History of the measurements:

$$\begin{aligned} A_{FB}^{t} &= 0.20 \pm 0.11_{\text{stat.}} \pm 0.047_{\text{syst.}} \\ &(0.695 f b^{-1} \text{ CDF T.Schwarz Thesis}) \\ A_{FB}^{t} &= 0.19 \pm 0.09_{\text{stat.}} \pm 0.02_{\text{syst.}} \\ &(0.9 f b^{-1} \text{ D0 0712.0851}) \\ A_{FB}^{t} &= 0.17 \pm 0.07_{\text{stat.}} \pm 0.04_{\text{syst.}} \\ &(1.9 f b^{-1} \text{ CDF 0806.2472}) \\ A_{FB}^{t} &= 0.193 \pm 0.065_{\text{stat.}} \pm 0.024_{\text{syst.}} \\ &M_{t} = 175 \text{ GeV} \\ &(3.2 f b^{-1} \text{ CDF note 9724}) \end{aligned}$$

The asymmetry measured is persistently large at both CDF and D0

A similar anomaly (A_{FB}^b at the Z pole) has been there for a while.

Nov 12, 2009

IPMU Focus Week

The SM predication

 $O(\alpha_S^3)$ QCD interference $A_{FB}^{SM} = 0.051 \pm 0.015$

• ISR w FSR

Box w Tree diagram

J. Kuhn and G. Rodrigo, PRD 59, 054017 (1999); PRL 81, 49 (1998)

The latest measurement is 2σ away from SM predictions

Nov 12, 2009

IPMU Focus Week

What else do we know ?

• Total cross section $M_t = 172.5 \text{ GeV}$

 $\sigma_{t\bar{t}} = 7.50 \pm 0.31_{\text{stat}} \pm 0.34_{\text{syst}} \pm 0.15_{\text{th}} \text{ pb}$ $\sigma_{t\bar{t}}(\text{theory}) = 7.5^{+0.5}_{-0.7} \text{ pb}$ Consistent with each other

Differential Cross section

Data is slightly below the SM prediction for $M_{t\bar{t}} > 400 \text{ GeV}$

 $M_t = 175 \text{ GeV}$

$M_{t\overline{t}} \; [\text{GeV/c}^2]$	\mathcal{A}_i	$d\sigma/dM_{t\overline{t}} \; [{\rm fb}/{\rm GeV}/c^2]$
≤ 350	$0.016 {\pm} 0.001$	$0.47 \pm 0.07 \pm 0.08 \pm 0.03$
350-400	$0.023 {\pm} 0.001$	$62.3 \pm 7.0 \pm 7.9 \pm 3.7$
400-450	$0.026 {\pm} 0.001$	$33.8 \pm 4.0 \pm 3.0 \pm 2.0$
450-500	$0.027 {\pm} 0.001$	$15.8 \pm 3.0 \pm 1.3 \pm 0.9$
500-550	$0.029 {\pm} 0.001$	$9.9 \pm 2.0 \pm 0.9 \pm 0.6$
550-600	$0.030 {\pm} 0.001$	$5.7 \pm 1.2 \pm 0.7 \pm 0.3$
600-700	$0.030 {\pm} 0.001$	$2.3 \pm 0.6 \pm 0.4 \pm 0.1$
700-800	$0.030 {\pm} 0.001$	$0.8 \pm 0.3 \pm 0.2 \pm 0.1$
800-1400	$0.023 {\pm} 0.001$	$0.068 \pm 0.032 \pm 0.015 \pm 0.004$
		$p [ph] \in 0 + 10 (stat + IES)$

Integrated Cross Section [pb] 6.9 ± 1.0 (stat.+JES)

IPMU Focus Week

Wednesday, November 11, 2009

Nov 12,2009

Why axi-gluon (s-channel)?

A color octet is preferred for its QCD interference

Parity has to be violated in both the $u\overline{u}$ and $t\overline{t}$ vertex

 The vertex must have both the vector and axivector couplings.

 Need axi-vector coupling in the interference. (QCD provides the vector one).

IPMU Focus Week

Axigluon!!!

 \bar{p}

Nov 12, 2009

 \mathcal{D}

From s-channel new physics

$$\begin{split} &\sum |\mathcal{M}|^2 = 1 + c^2 + 4m^2 \\ &+ \frac{2\hat{s}(\hat{s} - m_G^2)}{(\hat{s} - m_G^2)^2 + m_G^2\Gamma_G^2} \left[g_V^q g_V^t \left(1 + c^2 + 4m^2 \right) \right. \\ &+ 2 g_A^q g_A^t c \right] + \frac{\hat{s}^2}{(\hat{s} - m_G^2)^2 + m_G^2\Gamma_G^2} \left[\left((g_V^q)^2 + (g_A^q)^2 \right) \right. \\ &\times \left((g_V^t)^2 (1 + c^2 + 4m^2) + (g_A^t)^2 (1 + c^2 - 4m^2) \right) \\ &+ 8 g_V^q g_A^q g_V^t g_A^t c \right] \,, \end{split}$$

$$m = m_t / \sqrt{s}$$

$$c = \beta \cos \theta$$

Provide the asymmetry from interference (Only axivector coupling is needed) ed $g_A^q g_A^t < 0$

For the new physics square term, need bot the vector and axi-vector coupling from the new resonance (like b $g_V^q g_A^q g_V^t g_A^t > 0$

asymmetry at LEP from Z)

Nov 12, 2009

The model

Conventional chiral color model (family universal) $g_A^q = g_A^t$ Wrong sign!

A family nonuniversal model (split 1st, 2nd with 3rd, 4th generation) Cancel the anomaly Not necessary in ED

Field	0.	a i C	\mathcal{A}^{c}	0.	a, c	dc		Н	Τ.	° c	Н.
rieid		u_i	u_i	Q_j	u_j	a_j		11 q	L_k	e_k	111
$\mathrm{SU}(3)_A$	3	1	1	1	$ar{3}$	$ar{3}$	3	3	1	1	1
$\begin{array}{c} \mathrm{SU}(3)_A\\ \mathrm{SU}(3)_B\\ \mathrm{SU}(2)_L\\ \mathrm{U}(1)_Y \end{array}$	1	$\overline{3}$	$\overline{3}$	3	1	1	3	$\overline{3}$	1	1	1
$\mathrm{SU}(2)_L$	2	1	1	2	1	1	1	2	2	1	2
$\mathrm{U}(1)_Y$	+1/3	-4/3	+2/3	+1/3	-4/3	+2/3	0	+1	-1	+2	+1

i = 1, 2 j = 3, 4

Nov 12, 2009

The model

The scalar Σ $(3, \overline{3})$ breaks $SU(3)_A \times SU(3)_B$ into the diagnol one $SU(3)_C$

$$\begin{pmatrix} G^1_{\mu} \\ G^0_{\mu} \end{pmatrix} = \begin{pmatrix} s_g & -c_g \\ c_g & s_g \end{pmatrix} \begin{pmatrix} A_{\mu} \\ B_{\mu} \end{pmatrix}$$

 $\theta = \operatorname{Arctan}(g_A/g_B)$

$$g_s = \frac{g_A g_B}{\sqrt{g_A^2 + g_B^2}} \quad g = \sqrt{g_A^2 + g_B^2}$$

$$\begin{array}{c} \mathbf{G}^{1} \\ \mathbf{G}^{1} \\ \mathbf{g}_{1B} = \mathbf{g} \mathbf{s}_{g}^{2} \mathbf{\psi}_{g} \end{array}$$

 $g_{v}^{q} = g_{v}^{t} = -gc_{2q} \qquad -g_{a}^{q} = g_{a}^{t} = g$

IPMU Focus Week

Nov 12, 2009 Wednesday, November 11, 2009

Nicely fit the data

00-000	0.021 ± 0.001	$10.0 \pm 0.0 \pm 1.0 \pm 0.9$
00-550	$0.029 {\pm} 0.001$	$9.9 \pm 2.0 \pm 0.9 \pm 0.6$
50-600	$0.030 {\pm} 0.001$	$5.7 \pm 1.2 \pm 0.7 \pm 0.3$
00-700	$0.030 {\pm} 0.001$	$2.3 \pm 0.6 \pm 0.4 \pm 0.1$
00-800	$0.030 {\pm} 0.001$	$0.8 \pm 0.3 \pm 0.2 \pm 0.1$
00-1400	0.023 ± 0.001	$0.068 \pm 0.032 \pm 0.015 \pm 0.004$

Integrated Cross Section [pb] 6.9 ± 1.0 (stat.+JES)

The $M_{t\bar{t}}$ constrain are from the last bin assuming the K factor there is I

Large parameter space for 90%CL (1.68 σ)

Allowed region for one sigma

Nov 12, 2009

IPMU Focus Week

4. 5(

6

7(8(

Other models......

Conventinal axigluon

RS KK gluon

Too light to explain the asymmery (1.2TeV)

Maximal 4.3%

Contaminate the invaraint mass distribution

Nov 12, 2009 Wednesday, November 11, 2009

Predictions without resonance

Can be checked in the near future!!!!

The SM model contribution reduces....

The new physics square term dominate (negative asymmetry) when approaching the resonance

Nov 12, 2009 Wednesday, November 11, 2009

New organizing principle?

Cartoon picture for the (inverse?) deconstructed version.

 $g_L^q g_R^q < 0 \qquad g_L^t g_R^t < 0$

• Left-handed and right-handed fermions are localized at each brane.

 $g_A^q > g_V^q \qquad g_A^t > g_V^t$ Light quarks and top quarks with the same chirality are localized at each brane. $g_A^q g_A^t < 0 \qquad g_V^q g_V^t > 0$

What is the EWP constrain in RS?

How about flat ED?

See Seongchan Park's talk

Nov 12, 2009

Wednesday, November 11, 2009

The t-channel explanation

S. Jung, H.Murayama, A.Pierce, J.Wess 0907.4112 K. Cheung, W. Keung, T.Yuan 0908.2589 JS, T.Tait, K.Wang, 0911.XXXX

Massless: collinear sigularity

A full analysis shows for scalars it is somewhat different......

Nov 12, 2009

Wednesday, November 11, 2009

T-channel explanation (scalar)

 $3 \times 3 = 6 + \overline{3}$

$$\mathcal{L}_{\phi} = D_{\mu}\phi^{\dagger}D^{\mu}\phi - M_{\phi}^{2}|\phi|^{2}$$
$$+\phi^{a}\bar{t}T_{r}^{a}(y_{S}+y_{P}\gamma_{5})u + h.c.$$

JS, T. Tait, K. Wang, 0911.XXXX $3 \times \overline{3} = 8 + 1$

$$\hat{t} = \begin{cases} t & (\text{octet or singlet}) \\ t^c & (\text{triplet or sextet}) \end{cases}$$

$$t^c = i\gamma^0\gamma^2 t$$
 :

Color Factor	Octet	Singlet	Sextet	Triplet
$C_{(0)}$	-2/3	4	1	1
$C_{(1)}$	4	3	3	-3/2
$C_{(2)}$	2	9	3/2	3/4

$$\sum |\mathcal{M}|^2 = 8g_S^4 (1 + c_\theta^2 + 4m^2) + 2y^2 g_S^2 C_{(0)} s \frac{(1 - c_\theta)^2 + 4m^2}{t_\phi} + y^4 C_{(2)} \frac{s^2 (1 - c_\theta)^2}{t_\phi^2}$$

$$t_{\phi} = (p_1 - k_1)^2 - m_{\phi}^2$$

Taylor Expansion:
$$\frac{1}{t_{\phi}} \sim 1 + \alpha c_{\theta}$$

Nov 12, 2009 Wednesday, November 11, 2009

The total cross section

Wednesday, November 11, 2009

IPMU Focus Week

17/25

The asymmetry

Intermediate mass region allows large positive asymmetrty.

Nov 12, 2009

IPMU Focus Week

Details of the Explanations.....

 $\sum |\mathcal{M}|^2 = 8g_S^4(1+c_\theta^2+4m^2) + 2y^2g_S^2C_{(0)}s\frac{(1-c_\theta)^2+4m^2}{t_\phi} + y^4C_{(2)}\frac{s^2(1-c_\theta)^2}{t_\phi^2}.$

The two cancel each other (competition)

Dominate at the low mass region.

Dominate at the Intermediate mass region. Dominate at the Internediate mass region.

Taylor Expansion:
$$\frac{1}{t_{\phi}} \sim 1 + \alpha c_{\theta}$$

Nov 12, 2009

Wednesday, November 11, 2009

19/25

Scalar vs vector bosons

The asymmetry is small in the scalar case for low masses.

Nov 12,2009

IPMU Focus Week

Parameter scan (scalar)

Invaraint mass distributions

JS, T. Tait, K. Wang, 0911.XXXX

Difficult for all.....

S. Jung, H.Murayama, A.Pierce, J.Wess 0907.4112

 $M_{t\overline{t}}$ (GeV)

800

600

1000

1200

Nov 12, 2009

IPMU Focus Week

 10^{-1}

400

22/25

1400

Tevatron / LHC signals

Nov 12, 2009

IPMU Focus Week

Wednesday, November 11, 2009

1400

M₄ (GeV)

14 TeV LHC

1200

Conclusion

- New axigluon works very well...... (with new Tevatron predictions to distinguish it)
- T-channel sextet/triplet works OK. (with LHC predictions)
- S-channel models typically are difficult to get very large asymmetry.
- T-channel models typically are difficult in the ttbar invariant mass distribution.

Great!

Outlook

- Models explain the EWSB and asymmetry.
- A effective theory approach including the gluon ttbar vertex (top compositeness)
- Thinking about both top and bottom asymmetry.

Unfortunately I have to stop here for lunch.....