Top Forward-backward Asymmetry at the Tevatron

Jing Shu

IPMU
 INSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSE

JS, T. Tait, K.Wang, arXiv:0911.XXXX
P. Frampton, JS, K. Wang, arXiv: 0911.XXXX

Outline

- Why top? Why $A_{F B}^{t}$?
- Different explanations
- s-channel new physics: famaily nonuniversal axigluon
- t-channel new physics: triplet/sextet scalars
- Conclusion and Outlook

Why top ?

Huge (natural) mass! $\quad\left(m_{t} \sim 40 m_{b}\right)$
Great to probe the origin of EWSB and flavor!

- If NP explains the EWSB dynamics, it may strongly couples to the top.
- If NP contributes to flavor violation, it can induce large top flavor violation
- Top compositness

Great window for NP!

Why $A_{F B}^{t}$?

History of the measurements:

$$
\begin{aligned}
& A_{F B}^{t}= 0.20 \pm 0.11_{\text {stat. }} \pm 0.047_{\text {syst. }} \\
&\left(0.695 \mathrm{fb}^{-1} \mathrm{CDF} \mathrm{T.Schwarz} \mathrm{Thesis}\right) \\
& A_{F B}^{t}= 0.19 \pm 0.09_{\text {stat. }} \pm 0.02_{\text {syst. }}\left(0.9 \mathrm{fb}^{-1} \quad \mathrm{D} 00712.0851\right) \\
& A_{F B}^{t}= 0.17 \pm 0.07_{\text {stat. }} \pm 0.04_{\text {syst. }} \\
&\left(1.9 \mathrm{fb}^{-1} \quad \mathrm{CDF} 0806.2472\right) \\
& A_{F B}^{t}= 0.193 \pm 0.065_{\text {stat. }} \pm 0.024_{\text {syst. }} \mathrm{M}_{t}=175 \mathrm{GeV} \\
&\left(3.2 \mathrm{fb}^{-1} \mathrm{CDF} \text { note } 9724\right)
\end{aligned}
$$

The asymmetry measured is persistently large at both CDF and D0

A similar anomaly ($A_{F B}^{b}$ at the \mathbf{Z} pole) has been there for a while.

The SM predication

$O\left(\alpha_{S}^{3}\right)$ QCD interference

$$
A_{F B}^{S M}=0.051 \pm 0.015
$$

- ISR w FSR

- Box w Tree diagram

J. Kuhn and G. Rodrigo, PRD 59, 054017 (I999); PRL 8I, 49 (I998)

The latest measurement is 2σ away from SM predictions

What else do we know ?

- Total cross section $\quad M_{t}=172.5 \mathrm{GeV}$

$$
\begin{aligned}
& \sigma_{t \bar{t}}=7.50 \pm 0.31_{\text {stat }} \pm 0.34_{\text {syst }} \pm 0.15_{\text {th }} \mathrm{pb} \\
& \sigma_{t \bar{t}} \text { (theory) }=7.5_{-0.7}^{+0.5} \mathrm{pb} \quad \text { Consistent with each other }
\end{aligned}
$$

- Differential Cross section $\quad M_{t}=175 \mathrm{GeV}$

Data is slightly below the SM prediction for $M_{t \bar{t}}>400 \mathrm{GeV}$

$M_{t \bar{t}}\left[\mathrm{GeV} / \mathrm{c}^{2}\right]$	\mathcal{A}_{i}	$d \sigma / d M_{t \bar{t}}\left[\mathrm{fb} / \mathrm{GeV} / c^{2}\right]$
≤ 350	0.016 ± 0.001	$0.47 \pm 0.07 \pm 0.08 \pm 0.03$
$350-400$	0.023 ± 0.001	$62.3 \pm 7.0 \pm 7.9 \pm 3.7$
$400-450$	0.026 ± 0.001	$33.8 \pm 4.0 \pm 3.0 \pm 2.0$
$450-500$	0.027 ± 0.001	$15.8 \pm 3.0 \pm 1.3 \pm 0.9$
$500-550$	0.029 ± 0.001	$9.9 \pm 2.0 \pm 0.9 \pm 0.6$
$550-600$	0.030 ± 0.001	$5.7 \pm 1.2 \pm 0.7 \pm 0.3$
$600-700$	0.030 ± 0.001	$2.3 \pm 0.6 \pm 0.4 \pm 0.1$
$700-800$	0.030 ± 0.001	$0.8 \pm 0.3 \pm 0.2 \pm 0.1$
$800-1400$	0.023 ± 0.001	$0.068 \pm 0.032 \pm 0.015 \pm 0.004$
Integrated Cross Section $[\mathrm{pb}] 6.9 \pm 1.0$ (stat.+JES)		

Why axi-gluon (s-channel)?

- Need axi-vector coupling in the interference. (QCD provides the vector one).

From s-channel new physics

$$
\begin{aligned}
& \sum|\mathcal{M}|^{2}=1+c^{2}+4 m^{2} \\
& +\frac{2 \hat{s}\left(\hat{s}-m_{G}^{2}\right)}{\left(\hat{s}-m_{G}^{2}\right)^{2}+m_{G}^{2} \Gamma_{G}^{2}}\left[g_{V}^{q} g_{V}^{t}\left(1+c^{2}+4 m^{2}\right)\right. \\
& \left.+2 g_{A}^{q} g_{A}^{t} c\right]+\frac{\hat{s}^{2}}{\left(\hat{s}-m_{G}^{2}\right)^{2}+m_{G}^{2} \Gamma_{G}^{2}}\left[\left(\left(g_{V}^{q}\right)^{2}+\left(g_{A}^{q}\right)^{2}\right)\right. \\
& \times\left(\left(g_{V}^{t}\right)^{2}\left(1+c^{2}+4 m^{2}\right)+\left(g_{A}^{t}\right)^{2}\left(1+c^{2}-4 m^{2}\right)\right) \\
& \left.+8 g_{V}^{q} g_{A}^{q} g_{V}^{t} g_{A}^{t} c\right],
\end{aligned}
$$

Provide the asymmetry from interference (Only axivector coupling is needed)
For the new physics square term, need

$$
\begin{aligned}
& m=m_{t} / \sqrt{s} \\
& c=\beta \cos \theta
\end{aligned}
$$

bot the vector and axi-vector coupling

from the new resonance (like b asymmetry at LEP from Z)

The model

Conventional chiral color model (family universal)
$g_{A}^{q}=g_{A}^{t} \quad$ Wrong sign!
A family nonuniversal model (split Ist, 2nd with 3rd, 4th 'generation) Cancel the anomaly

Not necessary in ED

Field	Q_{i}	u_{i}^{c}	d_{i}^{c}	Q_{j}	u_{j}^{c}	d_{j}^{c}	Σ	H_{q}	L_{k}	e_{k}^{c}	H_{l}
$\mathrm{SU}(3)_{A}$	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\overline{\mathbf{3}}$	$\overline{\mathbf{3}}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
$\mathrm{SU}(3)_{B}$	$\mathbf{1}$	$\overline{\mathbf{3}}$	$\overline{\mathbf{3}}$	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{1}$	$\overline{\mathbf{3}}$	$\overline{\mathbf{3}}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
$\mathrm{SU}(2)_{L}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{2}$
$\mathrm{U}(1)_{Y}$	$+1 / 3$	$-4 / 3$	$+2 / 3$	$+1 / 3$	$-4 / 3$	$+2 / 3$	0	+1	-1	+2	+1

$i=1,2 \quad j=3,4$

The model

The scalar $\Sigma(3, \overline{3})$ breaks $S U(3)_{A} \times S U(3)_{B}$ into the diagnol one $S U(3)_{C}$

$$
\begin{aligned}
\binom{G_{\mu}^{1}}{G_{\mu}^{0}}=\left(\begin{array}{cc}
s_{g} & -c_{g} \\
c_{g} & s_{g}
\end{array}\right)\binom{A_{\mu}}{B_{\mu}} \quad \theta=\operatorname{Arctan}\left(g_{A} / g_{B}\right) \\
g_{s}=\frac{g_{A} g_{B}}{\sqrt{g_{A}^{2}+g_{B}^{2}}} \quad g=\sqrt{ } g_{A}^{2}+g_{B}^{2}
\end{aligned}
$$

$$
g_{v}^{q}=g_{v}^{t}=-g c_{2 g}
$$

$$
-g_{a}^{q}=g_{a}^{t}=g
$$

$$
c_{2 g} \equiv \cos (2 \theta)
$$

Other models.

Conventinal axigluon

Too light to explain the asymmery (I.2TeV)

Maximal 4.3\%
Contaminate the invaraint mass distribution

Predictions without resonance

Can be checked in the near future!!!!

The SM model contribution reduces....

The new physics square term dominate (negative asymmetry) when approaching the resonance

New organizing principle?

Cartoon picture for the (inverse?) deconstructed version.

- Left-handed and right-handed fermions are localized at each brane.

$$
\begin{aligned}
g_{g}^{q} g_{R}^{q} & <0 \\
g_{A}^{q} & >g_{V}^{q}
\end{aligned}
$$

$$
\begin{gathered}
g_{L}^{t} g_{R}^{t}<0 \\
g_{A}^{t}>g_{V}^{t}
\end{gathered}
$$

- Light quarks and top quarks with the same chirality are localized at each brane.

$$
g_{A}^{q} g_{A}^{t}<0 \quad g_{V}^{q} g_{V}^{t}>0
$$

What is the EWP constrain in RS?
How about flat ED? See Seongchan Park's talk

The t-channel explanation

S. Jung, H.Murayama, A.Pierce, J.Wess 0907.4II2 K. Cheung, W. Keung, T.Yuan 0908.2589 JS, T.Tait, K.Wang, 09II.XXXX

Massless: collinear sigularity
A full analysis shows for scalars it is somewhat different.

T-channel explanation (scalar)

JS, T.Tait, K.Wang, 09 I I.XXXX

$$
\begin{aligned}
\mathcal{L}_{\phi}= & D_{\mu} \phi^{\dagger} D^{\mu} \phi-M_{\phi}^{2}|\phi|^{2} \\
& +\phi^{a} \hat{t} T_{r}^{a}\left(y_{S}+y_{P} \gamma_{5}\right) u+\text { h.c. },
\end{aligned}
$$

$$
\begin{aligned}
& 3 \times \overline{3}=8+1 \\
& 3 \times 3=6+\overline{3}
\end{aligned}
$$

$$
t^{c}=i \gamma^{0} \gamma^{2} t
$$

Color Factor	Octet	Singlet	Sextet	Triplet
$C_{(0)}$	$-2 / 3$	4	1	1
$C_{(1)}$	4	3	3	$-3 / 2$
$C_{(2)}$	2	9	$3 / 2$	$3 / 4$

$$
\begin{aligned}
& \sum|\mathcal{M}|^{2}=8 g_{S}^{4}\left(1+c_{\theta}^{2}+4 m^{2}\right)+ \\
& \quad 2 y^{2} g_{S}^{2} C_{(0)} s \frac{\left(1-c_{\theta}\right)^{2}+4 m^{2}}{t_{\phi}}+y^{4} C_{(2)} \frac{s^{2}\left(1-c_{\theta}\right)^{2}}{t_{\phi}^{2}}
\end{aligned}
$$

$t_{\phi}=\left(p_{1}-k_{1}\right)^{2}-m_{\phi}^{2}$
Taylor Expansion: $\frac{1}{t_{\phi}} \sim 1+\alpha c_{\theta}$

The total cross section

Interference

New Physics square term dominate!

Competition makes no deviation

No competition for octet.

The asymmetry

Intermediate mass region allows large positive asymmetrty.

Details of the Explanations.......

The two cancel each other (competition)

Dominate at the low mass region.

Dominate at the Intermediate mass

Dominate at the Intemediate mass region. region.

Taylor Expansion: $\frac{1}{t_{\phi}} \sim 1+\alpha c_{\theta}$

Scalar vs vector bosons

The asymmetry is small in the scalar case for low masses.

Parameter scan (scalar)

Invaraint mass distributions

JS, T.Tait, K.Wang, 09II.XXXX

Difficult for all.......

S. Jung, H.Murayama, A.Pierce, J. Wess 0907.4I I2

Tevatron / LHC signals

Too small to contaminate the
Tevatron ttbar events

10\% ~ I of the LHC ttbar events (large E and gluon pdf)
Prediction: ttbar always assicated with an extra hard jet!

Conclusion

Great!

- New axigluon works very well....... (with new Tevatron predictions to distinguish it)
- T-channel sextet/triplet works OK. (with LHC predictions)
- S-channel models typically are difficult to get very large asymmetry.
- T-channel models typically are difficult in the ttbar invariant mass distribution.

Outlook

- Models explain the EWSB and asymmetry.
- A effective theory approach including the gluon ttbar vertex (top compositeness)
- Thinking about both top and bottom asymmetry.

Unfortunately I have to stop here for lunch.............

