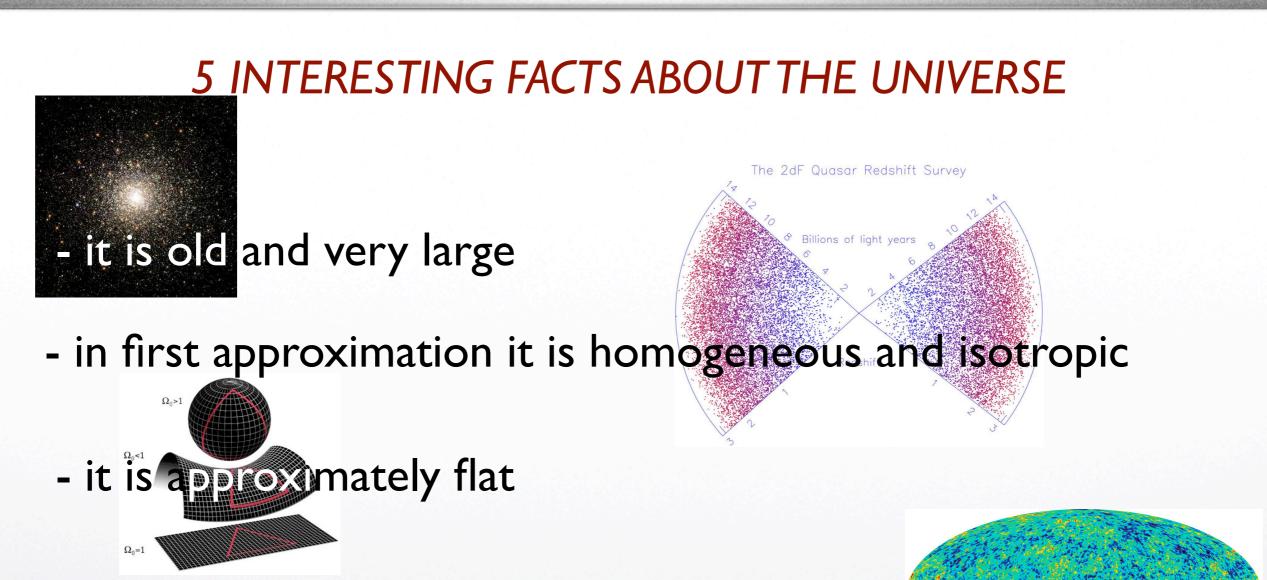
Magnetic inflation: realizing natural inflation on a steep potential

Lorenzo Sorbo

with M.Anber, in preparation



- structure grew out of small, scale invariant perturbations
- spectrum of primordial perturbations was gaussian

All these facts can be explained by

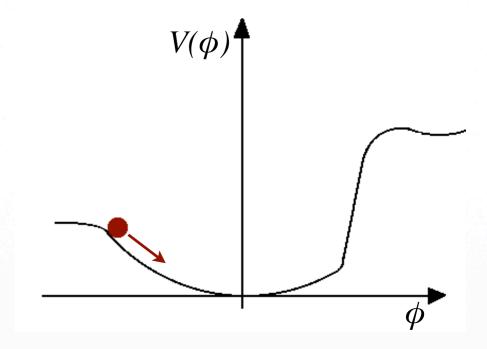
:= period of accelerated expansion in the very early Universe

a=scale factor of the Universe. Obeys

$$H^2 = \frac{8\pi G}{3} \ \varrho \equiv \frac{\varrho}{3M_P^2}$$

during inflation require H~constant

(not so easy, since ϱ dilutes away for ordinary matter...)



How to get some "slowly diluting" matter?

✓ very early Universe filled by scalar field ϕ , potential $V(\phi)>0$

 \checkmark to induce acceleration, $V(\phi)$ must be flat

 $V'(\phi) \ll V(\phi)/M_P$

✓ to have long enough inflation, $V(\phi)$ must stay flat for long enough $V''(\phi)$

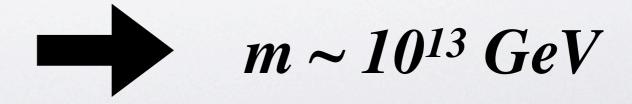
 $V''(\phi) \ll V(\phi)/M_P^2$

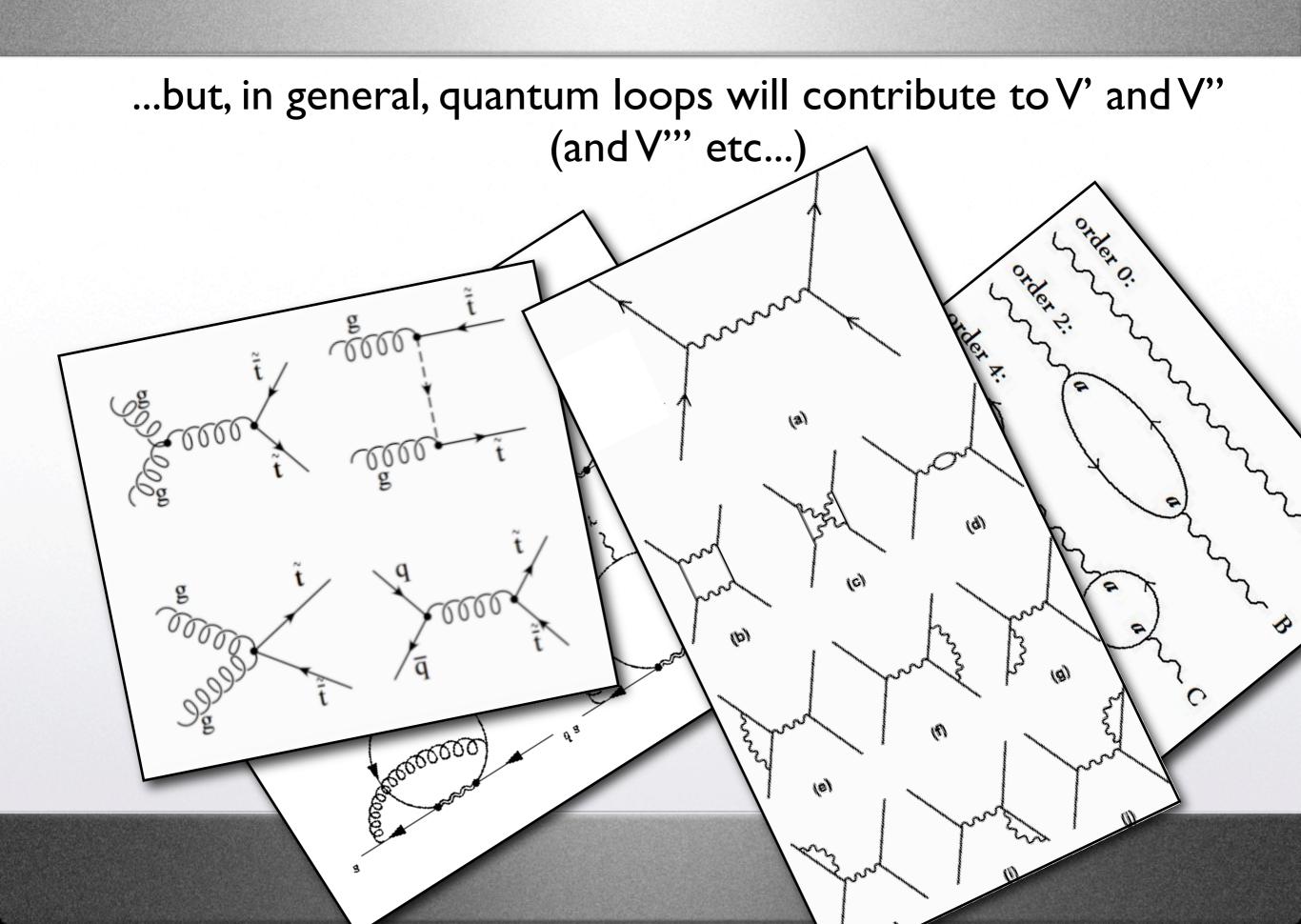
Simple way of realizing $|V'(\phi)| < \langle V(\phi)/M_{P,} |V''(\phi)| < \langle V(\phi)/M_{P^2}$: monomial potential, with ϕ large enough

Most famous example: quadratic potential (chaotic inflation) Linde 1983

$$V(\phi) = m^2 \phi^2 / 2$$

Amplitude of perturbations produced during inflation





Radiative corrections can disrupt the inflationary potential in two ways

I - affect the functional form of $V(\phi)$

2- affect value of the parameters that appear in $V(\phi)$

Chaotic inflation example

I- adds terms $\propto \phi^n$, n=4, 6, ...

2- push *m* to larger values (e.g. M_P - cf EW hierarchy pbm)

How to make sure that radiative effects are under control?

The situation is actually not so horrible... Smolin 80

If we have a theory where ϕ interacts only with gravity

<u>then</u> quantum corrections are not a problem!

Indeed: for potential V(ϕ), quantum gravity effects are

 $\mathcal{O}(I) V(\phi)^2 / M_P^4$ and $\mathcal{O}(I) V''(\phi) V(\phi) / M_P^2$

negligible during inflation

however, in general there will coupling to other fields

reheating

How to make sure that radiative effects are under control?

A very well-known system that contains "controllably small" quantities is the **Standard Model**: "small" quantities are protected against radiative effects by <u>symmetries</u>

If a model has a symmetry, quantum effects cannot violate it (unless the symmetry is anomalous...)

If the symmetry is broken, quantum effects cannot make the breaking much larger (ie the breaking parameter is controllably small) A field ϕ has a shift symmetry if the theory that describes it is invariant under the transformation

$$\varphi \rightarrow \varphi + c$$

(*c*=arbitrary constant)

If this symmetry is exact, the only possible potential for ϕ is $V(\phi)$ =constant

(i.e. a cosmological constant)

an exact shift symmetry is an overkill... ...but we can break the symmetry a bit and generate a potential

An (important) example

If ϕ is a phase, then shift symmetry \Leftrightarrow global U(1)

Theory with a spontaneously broken global U(I)

$$\mathcal{L} = \partial_{\mu} H^* \, \partial^{\mu} H - \lambda \, \left(|H|^2 - v^2
ight)^2$$

• Decompose $H = (v + \delta H) e^{i\phi/v}$ where δH is massive and φ is a massless Goldstone boson <u>(pseudoscalar)</u>

The global U(1) is broken e.g. by gravitational instantons

$$\delta \mathcal{L} = e^{-S} M_P^3 (H + H^*) + \dots$$

 $\delta V \sim e^{-S} M_P^3 v \cos(\phi/v)$

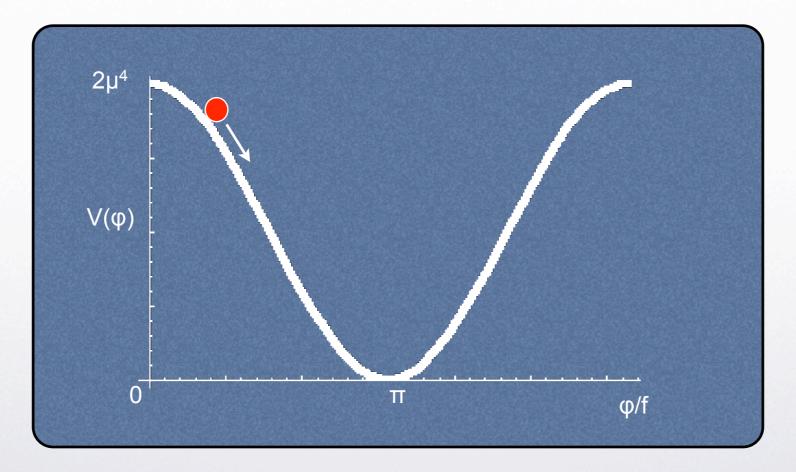
 $(S = \text{instanton action}, \propto M_{P^n})$ $v \cos(\phi/v)$

A potential is generated:

...using a pNGB as an inflaton... Natural inflation

Freese et al 1990

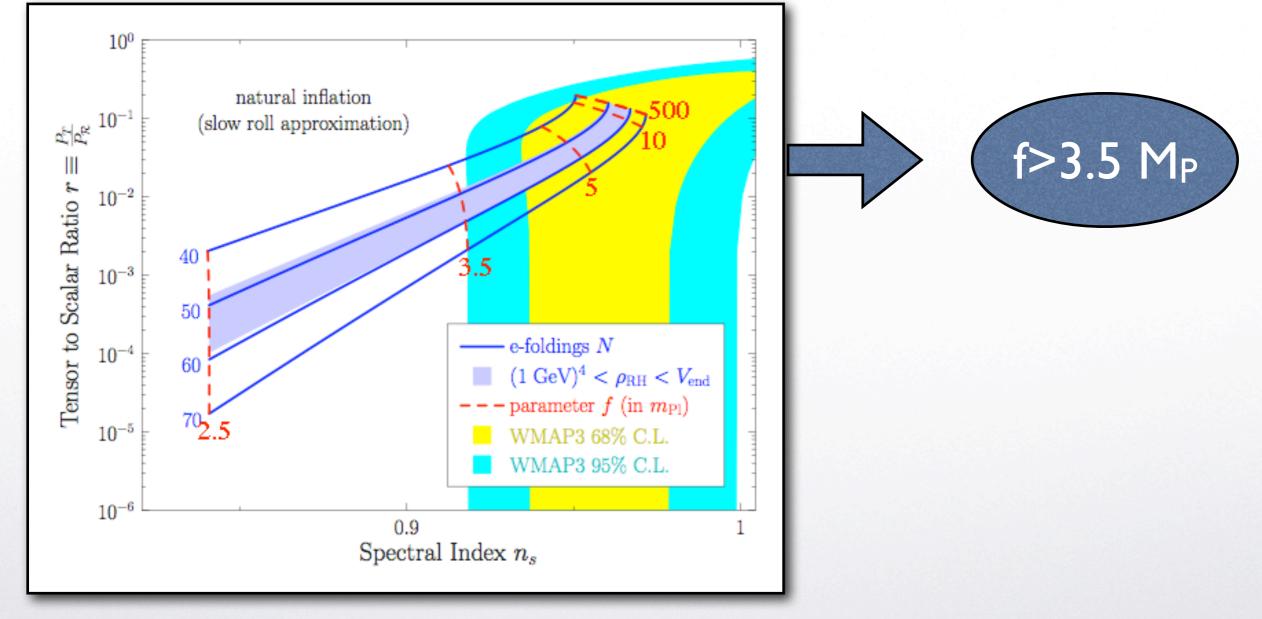
$V(\phi) = \mu^4 [\cos(\phi/f) + 1]$



Because of its radiative stability,

A pNGB gives an extremely well motivated model of inflation from the point of view of effective field theory

What about data?



from Savage et al, 2006

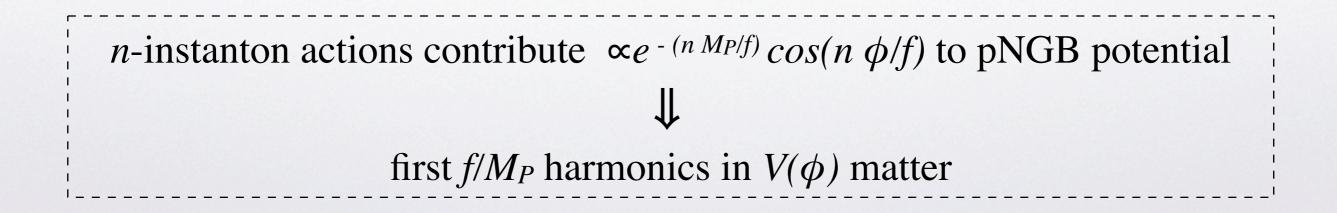
Stringy models of natural inflation?

YES, in principle (string theory contains a plethora of pNGBs)

However

Banks, Dine, Fox and Gorbatov 03

String Theory appears to require $f < M_P$



Ways out?

Kim, Nilles and Peloso 2004

 $V = \Lambda_1^4 \left[1 - \cos\left(\frac{\theta}{f_1} + \frac{\rho}{g_1}\right) \right] + \Lambda_2^4 \left[1 - \cos\left(\frac{\theta}{f_2} + \frac{\rho}{g_2}\right) \right]$

Blanco-Pillado et al 2004

- Use pNGBs and moduli

 $\mathcal{L} = -\sqrt{-g} \sum_{i=1}^{N} \left\{ \frac{1}{2} \left(\partial \phi_i \right)^2 + \Lambda_i^4 \left[1 + \cos(\phi_i/f_i) \right] \right\}$

...all based on multi field dynamics to generate a flat effective potential

- Use many pNGBs

- ...

- Use two pNGBs

A different way of approaching the problem...

The inflaton can be slowed down (even on a steep potential!) if it **dissipates** its kinetic energy

e.g. particle production associated to motion of ϕ rate depends on ϕ

...back to the origins...

In the early '70s (pre-inflation), try to explain isotropy from initial anisotropy by particle production

Today, chaotic inflation paradigm allows to ignore primordial anisotropy problem-but still need flat potential

Particle production can help mitigate the requirement of flat potential

Trapped inflation (I)

Green et al 2009

Idea: field χ with mass $m_{\chi}(\phi(t))$ At some time $t_{0, m_{\chi}}(t_0)=0$, with $\dot{m_{\chi}}(t_0)\neq 0$. \Rightarrow Heisenberg inequality $\hbar \ge \Delta E \ \Delta t \sim m_{\chi}(m_{\chi}/\dot{m_{\chi}})$ violated

Concept of number of quanta of χ not well defined

Trapped inflation (II)

Particles created at expenses of inflaton kinetic energy

(the only useful energy available)

Inflaton rolling is slowed down for ~1 efold

To get 60 efolds, need many production events

Green et al 2009

 $rac{1}{2}g^2\sum(\phi-\phi_i)^2\chi_i^2\;.$

depending on parameters, I to 10¹² events per efold are needed this structure can be present in some stringy constructions

A mechanism analogous to trapping is built in natural inflation Ant

Anber and LS in preparation

Idea: pNGB driving natural inflation is "naturally" coupled to gauge fields

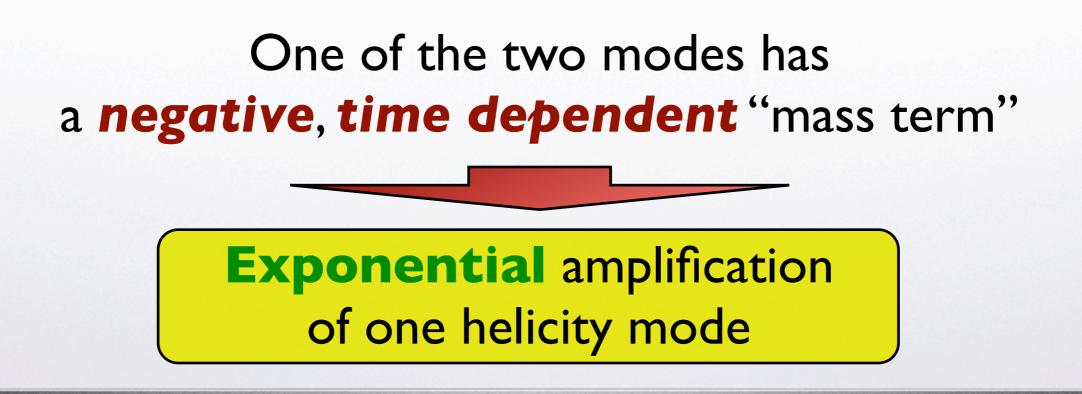
$${\cal L}_{\phi\,F_{\mu
u}} = lpha\,rac{\phi}{4\,f}\epsilon_{\mu
u
ho\lambda}\,F^{\mu
u}\,F^{
ho\lambda}$$

α = dimensionless constant

Equation for the U(1) field in the presence of $\phi(t)$:

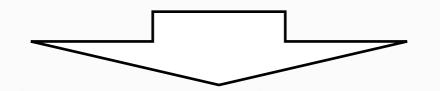
$$rac{\partial^2 A_\pm}{\partial t^2} + \left(rac{ec k^2}{a^2} \mp rac{lpha}{f} \, rac{d\Phi}{dt} \, rac{ec kec ec s}{a}
ight) A_\pm = 0$$

 A_{\pm} = >ve and <ve helicity comoving modes of the vector potential



Equation for A_{\pm} can be solved by assuming ϕ , H=constant

Modes with $k/a < \alpha \phi/f$ feel tachyonic mass until k=aH



amplification by

more precisely...

$$A_{+}(\tau, \vec{k}) \simeq \frac{1}{\sqrt{2|\vec{k}|}} \left(\frac{|\vec{k}|}{2\xi a H}\right)^{1/4} e^{-2\sqrt{2\xi|\vec{k}|/aH} + \pi\xi}$$

Exponential amplification term!

$$\xi \equiv rac{lpha \, \dot{\phi}}{2 \, f \, H}$$

Slowing down the inflaton

backreaction equation

$$\ddot{\phi}+3\,H\dot{\phi}+V'\left(\phi
ight)=-rac{lpha}{f}\langleec{E}\cdotec{B}
angle$$
 with

$$\langle \vec{E} \cdot \vec{B} \rangle \propto exp\{\pi \alpha \phi/fH\}$$

As ϕ starts increasing under the effect of the steep potential, the backreaction term gets important, slowing it down.

Slow roll equation \Rightarrow

$$\left(V'\left(\phi\right) \widetilde{=} -\frac{\alpha}{f} \langle \vec{E} \cdot \vec{B} \rangle\right)$$

the slow roll solution... $\dot{\phi} \simeq rac{f H}{\pi \, \alpha} \log \left[rac{M_P^4 \, f \, V'(\phi)}{V(\phi)^2}
ight]$

...and a constraint on the model:

 $\Delta \phi = \pi f$ from top to bottom of potential

total # efoldings ~ $H \Delta \phi / \dot{\phi} \sim \alpha \log \left[\frac{M_P^4 f V'(\phi)}{V(\phi)^2} \right]^{-1}$

 $\alpha > 100$

Consistency

We have assumed that the contribution to the electromagnetic modes to the Hubble parameter is negligible.

$$Q_{EM} \sim \vec{E^2} + \vec{B^2} \sim \vec{E} \cdot \vec{B} \sim fV'(\phi)/\alpha$$

$Q_{EM}/V(\phi) \sim fV'(\phi)/(\alpha V(\phi))$

negligible, for $\alpha >> 1$, unless at the bottom of $V(\phi)$

...but... is it really inflation?

Need the slow roll parameters ε and $\eta << l$:

$$\begin{split} \epsilon &=\; \frac{\dot{\Phi}^2}{2\,H^2\,M_P^2} \simeq \frac{2\,f^2}{\alpha^2\,M_P^2} \\ \eta &=\; 2\,\epsilon - \frac{f}{\pi\alpha}\,\left(\frac{V''(\Phi)}{V'(\Phi)} - 2\,\frac{V'(\Phi)}{V(\Phi)}\right) \end{split}$$

Bottom line - background evolution

For $\alpha > O(100)$, possible to get ~60 efolds of inflationary expansion

How to get such a large α ?

Choi and Kim 85

One example

Two axions in $E_8 \times E_8$

$$\mathcal{L}_{axions} = \frac{1}{2} (\partial_{\mu} a_{1})^{2} + \frac{1}{2} (\partial_{\mu} a_{2})^{2}$$

$$- \frac{1}{2} (\frac{a_{1}}{M_{1}} + \frac{a_{2}}{M_{2}}) F_{\mu\nu}^{i} \tilde{F}_{\mu\nu}^{i}$$

$$- \frac{1}{2} (\frac{a_{1}}{M_{1}} - \frac{a_{2}}{M_{2}}) F_{\mu\nu}^{'i} \tilde{F}_{\mu\nu}^{'i}$$

$$= \frac{1}{2} (\partial_{\mu} a)^{2} + \frac{1}{2} (\partial_{\mu} a')^{2} - \frac{a}{2M} \tilde{FF}$$

$$- \frac{a'}{2M} (\tilde{FF} + \frac{M_{2}^{2} + M_{1}^{2}}{M_{1}^{2} - M_{2}^{2}} \tilde{FF})$$

$$a = (M_{1}a_{1} + M_{2}a_{2})/(M_{1}^{2} + M_{2}^{2})^{\frac{1}{2}}$$

$$a' = (M_{2}a_{1} - M_{1}a_{2})/(M_{1}^{2} + M_{2}^{2})^{\frac{1}{2}}$$

$$M = \frac{1}{2} \left(M_1^2 + M_2^2 \right)^{\frac{1}{2}}$$
$$M' = M_1 M_2 \left(M_1^2 + M_2^2 \right)^{\frac{1}{2}} / \left(M_1^2 - M_2^2 \right)^{\frac{1}{2}}$$

Perturbations (I)

Equation for perturbations

$$\begin{split} \delta\ddot{\phi} + 3\,H\,\delta\dot{\phi} + \left(-\nabla^2 + V''(\phi)\right)\delta\phi &= -\frac{\alpha}{f}\delta\left[\vec{E}\cdot\vec{B}\right] \\ &> H^2 \end{split}$$

Two contributions to
$$\delta \begin{bmatrix} \vec{E} \cdot \vec{B} \end{bmatrix}$$
:
 $\delta \begin{bmatrix} \vec{E} \cdot \vec{B} \end{bmatrix} \simeq \begin{bmatrix} \vec{E} \cdot \vec{B} - \langle \vec{E} \cdot \vec{B} \rangle \end{bmatrix}_{\delta \phi = 0} + \frac{\partial \langle \vec{E} \cdot \vec{B} \rangle}{\partial \dot{\phi}} \delta \dot{\phi}$
intrinsic
fluctuations
 $\delta_{\vec{E} \cdot \vec{B}}$
fluctuations induced by
fluctuations in ϕ

Perturbations (II)

Fourier-transformed effective equation for perturbations

$$\delta\ddot{\phi}_p + H\left(3 + \frac{\pi \,\alpha \,V'\left(\Phi_0\right)}{3 \,f \,H^2}\right)\,\delta\dot{\phi}_p + \left(\frac{p^2}{a^2} + V''\left(\Phi_0\right)\right)\,\phi_p = -\frac{\alpha}{f}\,\delta_{\vec{E}\cdot\vec{B}}(p)$$

Solution (using Green function method)

$$\delta\phi_{\vec{p}}\left(t\right) = -\frac{\alpha}{f} \int dt' G\left(t, t'\right) \delta_{\vec{E}\cdot\vec{B}}\left(t', \vec{p}\right)$$

two point function of inflaton perturbations

Barnaby et al 09

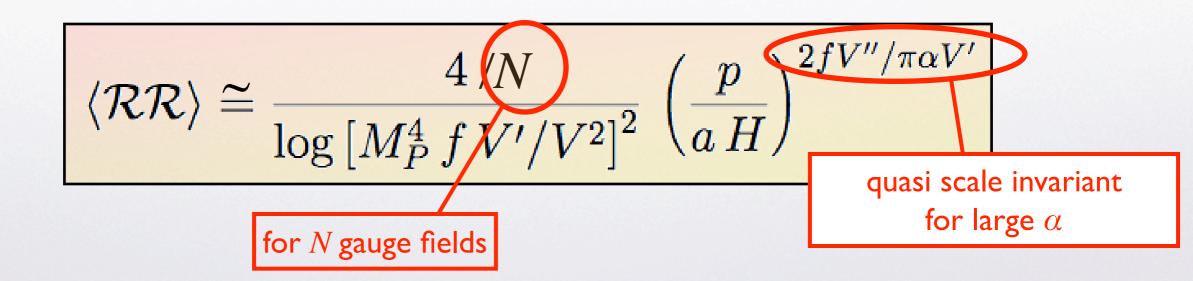
$$\langle 0|\delta\phi_{\vec{p}}\,\delta\phi_{\vec{p}'}|0\rangle = \frac{\alpha^2}{f^2} \int dt' \,G\left(t,\,t'\right) \int dt'' \,G\left(t,\,t''\right) \,\langle 0|\delta_{\vec{E}\cdot\vec{B}}\left(t',\,\vec{p}\right)\delta_{\vec{E}\cdot\vec{B}}\left(t'',\,\vec{p'}\right)|0\rangle$$

Perturbations (III)

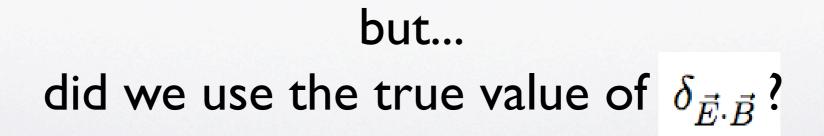
Inflaton power spectrum related to two point function of ϕ by

$$\mathcal{P}_{\mathcal{R}}(p) = rac{p^3 H^2 \langle \phi_{\vec{p}} \phi_{\vec{p}'}
angle}{2 \, \pi^2 \, \dot{\phi}^2 \, \delta^{(3)}(\vec{p} + \vec{p'})}$$

Spectrum of metric perturbations



Amplitude ~ $0.05 Log(M_P/E_{infl})^{-2} N^{-1}$ for $E_{infl} \sim TeV$, need $N \sim 10^5$



More dissipation? (very much in progress)

Large electromagnetic fields on subhorizon scales

Light particles charged under the U(1)s copiously produced

Amplitude of $\delta_{\vec{E}\cdot\vec{B}}$ reduced

Since perturbations in $\phi\,$ are sensitive only to $\,\delta_{\vec{E}\cdot\vec{B}}\,$, amplitude of perturbations reduced

Nota bene: this does not affect the slowing down of the zero mode of the inflaton, that is just based on energy conservation

Cosmological magnetic fields

Anber and LS 06

The model comes with a bonus!

If one of the U(1)s is $U(1)_{EM}$, then magnetic fields of cosmological interest generated

(note: the origin of galactic and cluster magnetic fields is still mysterious)

And with a signature!

The magnetic fields generated this way should be maximally helical

Conclusions

- We do not have to be very creative to realize natural inflation on a steep potential (but we need to be fine tuned at ~1%...)
- Spectrum of perturbations is quasi-scale invariant
- Amplitude tends to be large, but there are ways out (in progress)