Breaking statistical isotropy

Marco Peloso, University of Minnesota

Gumrukcuoglu, Contaldi, M.P, JCAP 0711:005,2007

Gumrukcuoglu, Kofman, MP, PRD 78:103525,2008

Himmetoglu, Contaldi, M.P, PRL 102:111301,2009

Himmetoglu, Contaldi, M.P, PRD 79:063517,2009

For FRW $\quad\left\langle a_{\ell m}^{*} a_{\ell^{\prime} m^{\prime}}\right\rangle=C_{\ell} \delta_{\ell \ell} \delta m m^{\prime}$

Claims of violation of statistical isotropy of the CMB perturbations. A number of " $2-3 \sigma$ effects", significance susceptible to statistics used. Some of these claims concern the largest scale modes, for which additional problems due to galaxy contamination

Larger modes (low ℓ) probe earlier inflationary stages

Cleaned CMB map by Tegmark et al' 03. WMAP1 \neq channels combined to eliminate foregrounds (depending on ℓ and latitude)

Axis from $\max _{\hat{n}} \sum_{m} m^{2}\left|a_{\ell m}(\widehat{n})\right|^{2}$

Low quadrupole	$\sim 1 / 20$
Planar octupole	$\sim 1 / 20$
Alignment, $\Delta \theta \simeq 10^{\circ}$	$\sim 1 / 62$

Plane of alignment, 30° apart from galactic plane
Anomalous lack of power at large scales outside galaxy Slightly greater quadrupole than WMAP1 (using galaxy cut)

Land, Magueijo, '05, $\ell=2-5$ aligned $\max _{m, \hat{n}}\left|a_{\ell m}(\widehat{n})\right|^{2}$
WMAP1 and WMAP + data agree at large scales. \neq treatment Land, Magueijo, '06

Model comparison (Bayesian)

North-south asymmetry

WMAP1, Q, V, W bands with Kp0 (-25\%)

Ecliptic axis

164 circles, draw 82 axis, and compute power in the separate hemispheres, in $C_{\ell}=2-63$
Dark $=$ high $C_{\ell, N} / C_{\ell, S}$ when north points inside big circle

- Power in that disk $>$ in 80% of isotropic simulations
- Power in that disk $<$ in 20% of isotropic simulations

In the frame in which is maximal, asymmetry $>$ than for 99.7% of isotropic realizations

Hoftuft et al '09, model comparison SM vs. $[1+A \hat{n} \cdot \hat{v}] s(\widehat{n})$
WMAP5 downgraded to 4.5°
KQ85 (-16.3\%); KQ85e (-26.9\%)

Data	Mask	$\ell_{\text {mod }}$	$\left(l_{\mathrm{bf}}, b_{\mathrm{bf}}\right)$	A_{bf}	Significance (σ)	$\Delta \log \mathcal{L}$	$\Delta \log E$
ILC	KQ85	64	$\left(224^{\circ},-22^{\circ}\right) \pm 24^{\circ}$	0.072 ± 0.022	3.3	7.3	2.6
V-band	KQ85	64	$\left(232^{\circ},-22^{\circ}\right) \pm 23^{\circ}$	0.080 ± 0.021	3.8	\cdots	\cdots
V-band	KQ85	40	$\left(224^{\circ},-22^{\circ}\right) \pm 24^{\circ}$	0.119 ± 0.034	3.5	\cdots	\cdots
V-band	KQ85	80	$\left(235^{\circ},-17^{\circ}\right) \pm 22^{\circ}$	0.070 ± 0.019	3.7	\cdots	\cdots
W-band	KQ85	64	$\left(232^{\circ},-22^{\circ}\right) \pm 24^{\circ}$	0.074 ± 0.021	3.5	\cdots	\cdots
ILC	KQ85e	64	$\left(215^{\circ},-19^{\circ}\right) \pm 28^{\circ}$	0.066 ± 0.025	2.6	\cdots	\cdots
Q-band	KQ85e	64	$\left(245^{\circ},-21^{\circ}\right) \pm 23^{\circ}$	0.088 ± 0.022	3.9	\ldots	\ldots
V-band	KQ85e	64	$\left(228^{\circ},-18^{\circ}\right) \pm 28^{\circ}$	0.067 ± 0.025	2.7	\ldots	\cdots
W-band	KQ85e	64	$\left(226^{\circ},-19^{\circ}\right) \pm 31^{\circ}$	0.061 ± 0.025	2.5	\ldots	\ldots
ILC $^{\text {a }}$	Kp2	~ 40	$\left(225^{\circ},-27^{\circ}\right)$	0.11 ± 0.04	2.8	6.1	1.8

$1 / 2$ resolution

Eriksen et al. 2004

ILC
V-band
W-band

Groeneboom and Eriksen '08 studied the "ACW model"

$$
P(\vec{k})=P(k)\left[1+g_{*}(\vec{k} \cdot \vec{v})^{2}\right]
$$

Ackerman, Carroll, Wise '07

Note: "Taylor expansion" that may be expected for axis $(x-y)$
\& planar $(z \leftrightarrow-z)$ symmetric geometry. ACW model is unstable

V-band

$$
g_{*}=0.10 \pm 0.04
$$

W-band

Increase of significance with ℓ Pullen, Kamionkowski '07

Models ?

Likely, accepted only if it explains $N>1$ effects
Perhaps we should learn to compute cosmological perturbations beyond FRW

Simplest: Bianchi-I with residual Rd isotropy

$$
d s^{2}=-d t^{2}+a(t)^{2} d x^{2}+b(t)^{2}\left[d y^{2}+d z^{2}\right]
$$

Standard formalism for FRW
Bardeen '80; Mukhanov '85

$$
\delta g_{\mu \nu}, \delta \phi \leftrightarrow v, h_{+}, h_{\times}
$$

Anisotropic background

| How many |
| :--- | :---: | :---: | :--- |
| physical modes ? |\quad| | $\delta g_{\mu \nu}, \delta \phi$ |
| :---: | :---: |
| | |
| | |
| | Gen. coord. transf.
 $\delta g_{0 \mu}$ |

How do
 they behave ?

Coupled to each other already at the linearized level (due to less symmetric background)

Decoupled

- UV regime
- limit of isotropic background
$\left\langle a_{\ell m} a_{\ell^{\prime} m^{\prime}}^{*}\right\rangle \not \subset \delta_{\ell \ell^{\prime}} \delta_{m m^{\prime}}$
Nonstandard amplitude for gravity waves (\neq results for the 2 polarizations)

$$
g_{\mu \nu}=\left(\begin{array}{ccc}
-(1+2 \Phi) & a \chi & b\left(\partial_{i} B+B_{i}^{T}\right) \\
& a^{2}(1-2 \psi) & a b\left(\partial \tilde{\varnothing}+\widetilde{B}_{i}^{T}\right) \\
& & b^{2}\left[(1-2 Z) \delta_{i j}+\partial_{i} \partial^{Z} \not \subset+\partial_{(i} \mathscr{Z}_{j)}\right]
\end{array}\right)
$$

seven 2d scalars + three 2d vectors, decoupled at linearized level

Choose a gauge preserving all $\delta g_{0 \mu}$, since they are the nondynamical fields (ADM formalism)

- Harder to indentify nondynamical modes in standard gauges
- Can be promoted to gauge invariant formulation

$$
\left(\Phi \equiv \Phi+\left(\frac{\Sigma}{H_{b}}\right)^{\bullet} ; \widehat{B}=B-\frac{\Sigma}{b H_{b}}+b \dot{E} ; \ldots\right)
$$

Dynamical Y_{i} and nondynamical N_{i} fields

$$
\begin{aligned}
S=\int d^{3} k d t\left[a_{i j} \dot{Y}_{i}^{*} \dot{Y}_{j}+\right. & \left(b_{i j} N_{i}^{*} \dot{Y}_{j}+\text { h.c. }\right)+c_{i j} N_{i}^{*} N_{j} \\
& \left.+\left(d_{i j} \dot{Y}_{i}^{*} Y_{j}+\text { h.c. }\right)+e_{i j} Y_{i}^{*} Y_{j}+\left(f_{i j} N_{i}^{*} Y_{j}+\text { h.c. }\right)\right]
\end{aligned}
$$

Coefficients background-dependent
Solving for $N, \quad \frac{\delta S}{\delta N_{i}^{*}}=0 \Rightarrow c_{i j} N_{j}=-b_{i j} \dot{Y}_{j}-f_{i j} Y_{j}$
Action for the dynamical (propagating) modes

$$
\begin{array}{rlr}
S \rightarrow & \int d^{3} k d t\left[\dot{Y}_{i}^{*} K_{i j} \dot{Y}_{j}+\left(\dot{Y}_{i}^{*} \Lambda_{i j} Y_{j}+\text { h.c. }\right)-Y_{i}^{*} \Omega_{i j}^{2} Y_{j}\right] \\
& K_{i j} \equiv a_{i j}-\left(b^{\dagger}\right)_{i k}\left(c^{-1}\right)_{k m} b_{m j} \leftarrow & \text { Eigenvalues indicate } \\
\Lambda_{i j} \equiv d_{i j}-\left(b^{\dagger}\right)_{i k}\left(c^{-1}\right)_{k m} f_{m j} & \text { the nature of a mode } \\
& \Omega_{i j}^{2} \equiv e_{i j}-\left(f^{\dagger}\right)_{i k}\left(c^{-1}\right)_{k m} f_{m j} &
\end{array}
$$

$$
\frac{\delta S}{\delta Y_{i}^{*}}=0 \rightarrow K_{i j} \ddot{Y}_{j}+\left[\dot{K}_{i j}+\left(\Lambda_{i j}+\text { h.c. }\right)\right] \dot{Y}_{j}+\left(\dot{\Lambda}_{i j}+\Omega_{i j}^{2}\right) Y_{j}=0
$$

Simplest example $\quad \mathcal{L}=\frac{M_{p}^{2}}{2} R-\frac{1}{2}(\partial \phi)^{2}-V(\phi)$
Asymptotic Kasner (vacuum) $d s^{2}=-d t^{2}+t^{2 \alpha} d x^{2}+t^{2 \beta}\left(d y^{2}+d z^{2}\right)$ solution in the past $\quad \alpha+2 \beta=1, \alpha^{2}+2 \beta^{2}=1$

$$
S_{(2)}=\frac{1}{2} \int d \eta d^{3} k\left[\left|H_{\times}^{\prime}\right|^{2}-\omega_{\times}^{2}\left|H_{\times}\right|^{2}+\left|H_{+}^{\prime}\right|^{2}+|V|^{2}-\left(H_{+}^{*}, V^{*}\right) \Omega^{2}\binom{H_{+}}{V}\right]
$$

Initial conditions from early time frequencies ?

Pbm: $\omega_{\times}^{2}, \Omega^{2} \sim p^{2}+f\left(H^{2}\right)$, and $H \sim \frac{1}{t}, p_{x} \sim t^{1 / 3}, p_{y, z} \sim \frac{1}{t^{2 / 3}}$
$H \gg p$ in the asymptotic past (mode in long wavelength regime)

$$
\omega_{\times}^{2} \rightarrow a^{2}\left[-\frac{5}{9 t^{2}}+p_{y}^{2}+p_{z}^{2}\right], \quad \Omega_{i j}^{2} \rightarrow a^{2}\left[\frac{4}{9 t^{2}}+p_{y}^{2}+p_{z}^{2}\right] \delta_{i j}
$$

No adiabatic evolution; $\omega_{\times}^{2}<0$

$$
\begin{aligned}
& P_{H} \propto p^{3}\left|H_{\times}\right|^{2} \\
& \quad \text { Large growth }
\end{aligned}
$$

Strong scale dependency

- Analogous to instability of contracting Kasner

Belinsky, Khalatnikov, Lifshitz '70, '82

- Potentially detectable GW, even if $V_{0}^{1 / 4}<10^{16} \mathrm{GeV}$
- Tuned duration of inflation. If $N \gg 60$, effect blown away

Search for a longer / controllable anisotropic stage

(contrast Wald's theorem on isotropization of Bianchi spaces)

- Higer curvature terms Barrow, Hervik '05
- Kalb-Ramond axion Kaloper '91
- Vector field, $\left\langle A_{z}\right\rangle \neq 0$
$\longrightarrow \quad$ Potential term $V\left(A_{\mu} A^{\mu}\right) \quad$ Ford '89
$\longrightarrow \quad$ Fixed norm Ackerman, Carroll, Wise '07
$\longrightarrow \quad$ Slow roll due to $A_{\mu} A^{\mu} R$ Golovnev, Mukhanov, Vanchurin '08 Kanno, Kirma, Soda, Yokoyama '08 Yokoyama, Soda '08 Chiba '08 Kovisto, Mota '08

$$
\begin{gathered}
S=\int d^{4} x \sqrt{-g}\left[\frac{M_{p}^{2}}{2} R-\frac{F^{2}}{4}+\frac{\xi}{2} R A^{2}\right] \quad \begin{array}{c}
\text { Nonminimal } \\
\text { coupling }
\end{array} \\
H=\frac{1}{3}\left[H_{a}+2 H_{b}\right] \\
g_{\mu \nu}=\operatorname{diag}\left(-1, a^{2}, b^{2}, b^{2}\right) \quad h=\frac{1}{3}\left[H_{b}-H_{a}\right] \\
A_{\mu}=\left(0, a B M_{p}, 0,0\right) \rightarrow A^{2}=M_{p}^{2} B^{2} \\
\ddot{B}+3 H \dot{B}+\left\{-2 H h-5 h^{2}-2 \dot{h}+(1-6 \xi)\left(2 H^{2}+h^{2}+\dot{H}\right)\right\} B=0 \\
\xi=1 / 6 \text { used for }
\end{gathered}
$$

Primordial magnetic fields Turner, Widrow '88
Vector inflation Golovnev, Mukhanov, Vanchurin '08
Vector curvaton Dimopoulos, Lyth, Rodriguez '08

$$
\mathcal{L}=-\frac{1}{4} F^{2}+\frac{1}{12} R A^{2}=-\frac{1}{4} F^{2}+H^{2} A^{2}
$$

+ sign leads to a ghost (not a tachyon!)

Stückelberg: $\quad A_{\mu} \rightarrow B_{\mu}^{T}+\frac{1}{H} \partial_{\mu} \phi$

$$
H^{2} A^{2} \rightarrow H^{2} B_{\mu}^{T} B^{\mu T}+\partial_{\mu} \phi \partial^{\mu} \phi
$$

$$
\text { (signature }-+++ \text {) }
$$

Does not require anisotropy!
Cf. PF mass $-m^{2} h_{\mu \nu} h^{\mu \nu}+m^{2}\left(h_{\mu}^{\mu}\right)^{2}$ to avoid ghost

Alternatively, $\quad \mathcal{L}=-\frac{1}{4} F^{2}-\frac{M^{2}}{2} A^{2}=\frac{1}{2} A^{\mu} P_{\mu \nu}^{-1} A^{\nu}$

$$
P_{\mu \nu}=-\frac{\eta_{\mu \nu}+k_{\mu} k_{\nu} / M^{2}}{k^{2}+M^{2}}
$$

- $M^{2}>0$. Go in the rest frame, $k^{\mu}=-k_{\mu}=\left(\sqrt{M^{2}}, 0,0,0\right)$
$-\left(\eta_{\mu \nu}+k_{\mu} k_{\nu} / M^{2}\right)=\operatorname{diag}(0,-1,-1,-1)$
- $M^{2}<0$. Frame with no energy, $k^{\mu}=k_{\mu}=\left(0,0,0, \sqrt{-M^{2}}\right)$
$-\left(\eta_{\mu \nu}+k_{\mu} k_{\nu} / M^{2}\right)=\operatorname{diag}(1,-1,-1,0)$

Exhaustive computation if $A \mu$ has no VEV (no $\delta A_{\mu} \leftrightarrow \delta g_{\mu \nu}$ linearized mixing)

Vector inflation Golovnev, Mukhanov, Vanchurin '08

 Kanno, Kimura, Soda, Yokoyama '08$$
\begin{aligned}
& \mathcal{L}=\sum_{a}-\frac{1}{4} F_{\mu \nu}^{(a)} F^{(a) \mu \nu}-\frac{1}{2}\left(m^{2}-\frac{R}{6}\right) A_{\mu}^{(a)} A^{(a) \mu} \\
& \vec{A}^{(a)}=a M_{p} \vec{B}^{(a)} \rightarrow \ddot{B}+3 H \dot{B}+m^{2} B=0, \quad \frac{h}{H} \sim \frac{1}{\sqrt{N}} \\
&\left\{\begin{aligned}
\delta g_{\mu \nu} & \rightarrow 10-4=2 \mathrm{dyn}+4 \text { non dyn } \\
\delta A_{\mu}^{(a)} & \rightarrow
\end{aligned}\right. \\
&
\end{aligned}
$$

Simplest case, 3 mutually orthogonal vectors with equal vev
$\rightarrow 18$ coupled modes

$$
\delta_{2} S \supset a^{2} M_{p}\left[(\dot{B}+H B) \delta F_{0 j}^{(i)}+\left(m^{2}-2 H^{2}-\dot{H}\right) B \delta A_{j}^{(i)}\right] h_{i j}^{T T}
$$

18 coupled modes, 11 dynamical and 7 non dynamical
We computed the kinetic matrix for the dynamical modes

$$
\delta_{2} S=\int d^{3} k d t\left[\dot{Y}_{i}^{*} K_{i j} \dot{Y}_{j}+\ldots\right]
$$

$\operatorname{det} K$

$$
k_{1}: k_{2}: k_{3}=100: 80: 60
$$

Simplified computation: concentrate on one vector field

 Collective effect of the remaining ones \equiv cosmological constant$$
\begin{gathered}
\mathcal{L}=\frac{M_{p}^{2}}{2} R-V_{0}-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-\frac{1}{2}\left(m^{2}-\frac{R}{6}\right) A_{\mu} A^{\mu} \\
A_{\mu}=\left(0, a B M_{p}, 0,0\right)+\delta A_{\mu} \rightarrow \\
H=\frac{\sqrt{V_{0}}}{\sqrt{3} M_{p}}+O\left(B^{2}\right) \quad, \quad h=\frac{H}{3} B^{2}+\mathrm{O}\left(B^{4}\right) \\
B \text { slowly rolling for } m \ll H
\end{gathered}
$$

vev along x only, can do 2d decomposition

$$
\delta g_{\mu \nu}\left\{\begin{array} { l }
{ 1 \text { dyn } + 3 \text { non dyn } 2 \mathrm { ds } } \\
{ 1 \text { dyn } + 1 \text { non dyn } 2 \mathrm { dv } }
\end{array} \quad \delta A _ { \mu } \left\{\begin{array}{l}
2 \mathrm{dyn}+1 \text { non dyn } 2 \mathrm{ds} \\
1 \mathrm{dyn} 2 \mathrm{dv}
\end{array}\right.\right.
$$

7 coupled modes rather than 18

Parametrically, $\operatorname{det} K=B^{2}-\frac{H^{2}}{p^{2}}+\ldots$
Perturbations diverge when it vanishes

Fixed norm vector fields Kostelecky, Samuel '89; Jacobson, Mattingly '04; Carroll, Lim '04

$$
S=\int d^{4} x \sqrt{-g}\left[\frac{M_{p}^{2}}{2} R-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\lambda\left(A^{2}-m^{2}\right)-V_{0}\right]
$$

Ackerman, Carroll, Wise '07

$$
d s^{2}=-d t^{2}+\mathrm{e}^{2 H_{a} t} d x^{2}+\mathrm{e}^{2 H_{b} t}\left(d y^{2}+d z^{2}\right)
$$

$$
\left\langle A_{x}\right\rangle=m \Rightarrow \quad H_{b}=\left(1+\frac{m^{2}}{M_{p}^{2}}\right) H_{b}
$$

Test field χ

$$
P_{\delta \chi}=P(|\vec{k}|)\left(1+g_{*} k_{x}^{2}\right)
$$

Assumed $\delta \chi \rightarrow \delta g_{\mu \nu}$
through modulated pertrbations
Dvali, Gruzinov, Zaldarriaga '03
Kofman '03

Complete study ($\delta g_{\mu \nu}, \delta A_{\mu}$) shows that this model is unstable

One mode becomes a ghost at that point
Kinetic term vanishes \rightarrow perturbations diverge
Problems in theories with fixed A^{2} also pointed out by Clayton '01

So what?

Linearized computation blows up; maybe nonlinear evolution ok Linearized computation \rightarrow CMB

Assume singularity cured, any other problem ?
nonlinear interactions: $|0\rangle \rightarrow$ ghost-nonghost; UV ∞
For a gravitationally coupled ghost today, $\wedge<3 \mathrm{MeV}$
Cline et al' 03
$U(1)$ hard breaking, A_{L} interactions p / m enhanced
Quantum theory out of control at $E \gtrsim m \sim H$ whole sub-horizon regime
Unclear UV completion $\pm|D H|^{2} \rightarrow \pm m^{2} A^{2}$
Ghost condensation ?

Scalar-Vector Coupling

$$
S=\int d^{4} x \sqrt{-g}[\frac{M_{p}^{2}}{2} R-\frac{1}{2} \partial_{\mu} \phi_{1} \partial^{\mu} \phi_{1}-V_{1}\left(\phi_{1}\right)-\frac{1}{4}\left[f^{2}\left(\phi_{1}\right)\right] F_{\mu \nu} F^{\mu \nu}-\underbrace{\frac{1}{2} \partial_{\mu} \phi_{2} \partial^{\mu} \phi_{2}-V_{2}\left(\phi_{2}\right)}_{\text {Isotropic expansion }}]
$$

supports anisotropic expansion due to vector field.

$$
\begin{aligned}
& V_{1}\left(\phi_{1}\right)=m_{1}^{2} \phi_{1}^{2} / 2 \\
& V_{2}\left(\phi_{2}\right)=m_{2}^{2} \phi_{2}^{2} / 2 \\
& m_{2} / m_{1}<1 \\
& f\left(\phi_{1}\right)=\exp \left[\frac{\phi_{1}^{2}}{M_{p}^{2}}\right]
\end{aligned}
$$

Power Spectrum for h_{\times}

$$
k_{x}=|k| \xi
$$

Conclusions

- Some evidence of broken statistical isotropy
- Full computations in simplest non FRW scalar-tensor coupling; $P_{+} \neq P_{\times}$; Nondiagonal $C_{\ell \ell^{\prime} m m^{\prime}}$ Easy to extend further
- Problems with specific realizations

