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Overview

• The string landscape
• Resonant tunnelling in the landscape?
• Resonant tunnelling in optics!
• Resonant tunnelling in QM.
• What is required for resonant tunnelling in 

QFT?
• A no-go theorem
• Getting around our no-go theorem



At the last count, there were 10500 different vacua in string theory.

Each vacuum has its own properties depending on the compact internal space
(eg: physical laws, particle content, values for fundamental constants).

With 10500 vacua available, seems likely that at least one could correspond to
our Universe (ie. contains the Standard Model, and a positive vacuum energy
with ρvac = Λ/8πG ∼ 10−12(eV )4)
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At the last count, there were 10500 different vacua in string theory.

Each vacuum has its own properties depending on the compact internal space
(eg: physical laws, particle content, values for fundamental constants).

With 10500 vacua available, seems likely that at least one could correspond to
our Universe (ie. contains the Standard Model, and a positive vacuum energy
with ρvac = Λ/8πG ∼ 10−12(eV )4)

The string theory landscape

  
How and why was our Universe selected amongst
the 10500 possible choices???
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The Anthropic Principle

Only a Universe like our own would 
have the right conditions for intelligent(!) 
observers to evolve.

If the cosmological constant were too 
large an positive, Universe would 
expand too fast for structures to form

If the cosmological constant were too 
large and negative, Universe would 
have collapsed before structures had 
the chance to form.



The Anthropic Principle

This explanation might be regarded as 
unscientific.

It does not predict anything.
It is not falsifiable.

How do we measure probability in the 
landscape? Are we in a probable 
Universe?

An alternative to anthropic selection 
would be desirable…..
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Resonant tunnelling in QM

Imagine a double barrier in  Quantum Mechanics

Probability of tunnelling through a 
single barrier is always exponentially 
suppressed

But, when “conditions are right”, 
probability of tunnelling at once 
through the double barrier can be 
order unity!!!

This is resonant tunnelling in QM.
Has been observed experimentally 
(eg. in semiconductors)
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Probability of tunnelling between adjacent vacua is suppressed

TA→B ! 1 TB→C ! 1

Usually, probability of tunnelling from A to C is given by the product, and is
also suppressed

TA→C = TA→BTB→C ! 1

But, if conditions are right, resonance occurs and TA→C = O(1)
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Probability of tunnelling between adjacent vacua is suppressed

TA→B ! 1 TB→C ! 1

Usually, probability of tunnelling from A to C is given by the product, and is
also suppressed

TA→C = TA→BTB→C ! 1

But, if conditions are right, resonance occurs and TA→C = O(1)

What if something similar 
happened in the landscape?

Tye,  hep-th/0611148 
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What is meant by this in 
the landscape?
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What if something similar 
happened in the landscape?

Suppose the Universe began with a very large vacuum energy, then 
there are lots and lots of vacua with lower energy.

And therefore lots and lots of tunnelling paths to lower energy vacua.

Expect that at least one such path is a resonant path.



What if something similar 
happened in the landscape?

Tunnel to lower energy vacuum with probability of order unity!



What if something similar 
happened in the landscape?

Tunnel to lower energy vacuum with probability of order unity!

Now there are far fewer vacua of lower energy (assume no AdS vacua)

And therefore far fewer tunnelling paths to lower energy vacua, and indeed, 
no resonant paths!

This explains why a small vacuum energy is much more likely!
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Can such a thing happen in the 
landscape?

• Can it happen in QFT?
• Can it happen in N-dimensional QM?
• How does it happen in QM?
• How does it happen in optics?

  Recall some GCSE physics!!!!
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…Reflected ray.

Refractive index of glass 
differs from that of air, so 
that critical angle is less 
than 90 degrees.

When angle of incidence 
exceeds critical angle, total 
internal reflection occurs.



Total internal reflection

A glass prism

Incident ray….

…Reflected ray.

Refractive index of glass 
differs from that of air, so 
that critical angle is less 
than 90 degrees.

When angle of incidence 
exceeds critical angle, total 
internal reflection occurs.

This is like reflection 
off a potential barrier 
in mechanics.



Frustrated total internal reflection
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Frustrated total internal reflection
Two prisms, small separation.

Incident ray….

... Reflected ray

... Transmitted ray

This is like barrier 
penetration, ie 
tunnelling in QM
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Fabry-Perot interferometer
Two parallel, partially silvered mirrors

Light is partially reflected 
and partially transmitted 
through each mirror

If transmitted rays are in phase, 
they interfere constructively and 
amplitude is enhanced. 

This  occurs when 
cavity width=(n+1/2)(wavelength)

This is like resonant tunnelling in QM!



Tunnelling in QM

A B

1
E q1 q2

Consider a particle of mass, m, 
and energy, E. 

Classically, particle in region A 
incident on barrier 1 will be 
reflected at turning point q = q1.
 
Quantum mechanically particle 
is described by Schrodinger eqn: 

and can tunnel through to B 

− !2

2m

d2ψ

dq2
+ V (q)ψ = Eψ



ψ(q) ∼=
α+√
k(q)

exp
[

i

!

∫ q

dq′k(q′)
]

+
α−√
k(q)

exp
[
− i

!

∫ q

dq′k(q′)
]

,

k(q) =
√

2m(E − V (q)),

Tunnelling in QM

A B

1
E q1 q2

WKB approximation

In classically allowed regions, A or B, 
we have E>V(q) and



ψ(q) ∼=
β+√
κ(q)

exp
[

1
!

∫ q

dq′κ(q′)
]

+
β−√
κ(q)

exp
[
−1

!

∫ q

dq′κ(q′)
]

,

κ(q) =
√

2m(V (q)− E),

Tunnelling in QM

A B

1
E q1 q2

WKB approximation

In classically forbidden region, 1, 
we have E<V(q) and



Tunnelling in QM

A B

1
E q1 q2

WKB approximation

Can use WKB connection formulae to 
evaluate the probability of tunnelling 
from A to B

where
TA→B =

∣∣∣∣
αB

+

αA
+

∣∣∣∣
2

= 4/Θ2,

Θ = 2 exp
[

1
!

∫ q2

q1

dq′κ(q′)
]

.
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TA→C =
∣∣∣∣
αC

+

αA
+

∣∣∣∣
2

= 4/(ΘΦ cos W )2,

W =
1
!

∫ q3

q2

dq′ k(q′),

Φ = 2 exp
[

1
!

∫ q4

q3

dq′κ(q′)
]

.

k(q) =
√

2m(E − V (q))

κ(q) =
√

(2m(V (q)− E)

Resonant tunnelling in QM
Again, we can use the WKB 
connection formulae to show 
that, probability of tunnelling 
from A to C is

where
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cos W = 0 =⇒ W = (n + 1/2)π
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αC

+
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+
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2

= 4/(ΘΦ cos W )2,
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!

∫ q3
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!
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q3
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.

k(q) =
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2m(E − V (q))

κ(q) =
√

(2m(V (q)− E)

Resonant tunnelling in QM
Again, we can use the WKB 
connection formulae to show 
that, probability of tunnelling 
from A to C is

where

Bohr-Sommerfeld quantization condition for 
existence of a bound state in B

Width of B=(n+1/2)(de Broglie wavelengths)

A B C

1 2
E q1 q2 q3 q4

Resonant tunnelling when
cos W = 0 =⇒ W = (n + 1/2)π
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Resonant tunnelling in QM

Bound state corresponds to a 
particle oscillating between turning 
points in the central classically 
allowed region, B.

As it oscillates it picks up a 
quantum phase. 

If this phase is (n+1/2)π  then 
resonant tunnelling occurs
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Resonant tunnelling in QM

Bound state corresponds to a 
particle oscillating between turning 
points in the central classically 
allowed region, B.

As it oscillates it picks up a 
quantum phase. 

If this phase is (n+1/2)π  then 
resonant tunnelling occurs

• The existence of a classical solution which  
oscillates between two stationary points.
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Resonant tunnelling in QM

• The quantum phase which this solution acquires  
is (n+1/2)π.

Bound state corresponds to a 
particle oscillating between turning 
points in the central classically 
allowed region, B.

As it oscillates it picks up a 
quantum phase. 

If this phase is (n+1/2)π  then 
resonant tunnelling occurs

• The existence of a classical solution which  
oscillates between two stationary points.
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Consider the mechanics of a particle of unit mass in N -dimensions. The clas-
sical path of the particle is given by !q(t) = (q1(t), . . . qN(t)), and is found by
extremizing the action,

S =
∫

dt

[
1
2
!̇q · !̇q − V (!q)

]

Quantum mechanically, a particle, of energy E is described by the wavefunction
ψ(!q) satisfying the time independent Schrodinger equation,

[
−!2

2
!∇2 + V (!q)

]
ψ = Eψ.
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Consider the mechanics of a particle of unit mass in N -dimensions. The clas-
sical path of the particle is given by !q(t) = (q1(t), . . . qN(t)), and is found by
extremizing the action,

S =
∫

dt

[
1
2
!̇q · !̇q − V (!q)

]

Quantum mechanically, a particle, of energy E is described by the wavefunction
ψ(!q) satisfying the time independent Schrodinger equation,

[
−!2

2
!∇2 + V (!q)

]
ψ = Eψ.

Tunnelling in N dimensional QM

We can think of QFT as N →∞ limit of N dimensional QM
Direct application of the WKB approximation run into diificulties 
owing to ambiguity in direction of gradient

This problem was resolved by Banks, Bender and Wu (PRD 8 
(1973) 3346) by reducing the problem to one-dimensional QM 
along classical paths and MPEPs

!∇
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Classical Paths and MPEPs

N dimensional space is split into 
classically allowed regions with 
E>V,  and classically forbidden 
regions with E<V

In classically allowed 
region, wavefunction is 
peaked along classical 
paths (well known)

In classically forbidden 
region, wavefunction is 
peaked along “Most 
probable escape 
paths” (MPEPs)



Consider a curve, !Q(λ) ∈ RN , parametrized by λ.
The curve has tangent vector !v‖(λ) = ∂ !Q/∂λ, and N − 1 orthogonal normal
vectors !v i

⊥(λ), i = 1, . . . , N − 1, satisfying

!v‖ · !v i
⊥ = 0, !v i

⊥ · !v j
⊥ ∝ δij .
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Consider a curve, !Q(λ) ∈ RN , parametrized by λ.
The curve has tangent vector !v‖(λ) = ∂ !Q/∂λ, and N − 1 orthogonal normal
vectors !v i

⊥(λ), i = 1, . . . , N − 1, satisfying

!v‖ · !v i
⊥ = 0, !v i

⊥ · !v j
⊥ ∝ δij .

Classical Paths and MPEPs

Curve is a classical path or MPEP if wavefunction is peaked there, ie

!v i
⊥ · !∇σ|!q=!Q = 0, i = 1, . . . , N − 1.



CP satisfies
d2 !Q

dλ2
+ V = 0

where λ plays the role of real time and is related to the proper distance along
the curve:

ds =
√

2(E − V )dλ

In semi-classical approximation, wavefunction is dominated by its value close to
the CP

ψ(!q) ∼=
1

[2(E − V (!q))]
1
4

[
α+e

i
!

R s ds
√

2(E−V (!q)) + α−e−
i
!

R s ds
√

2(E−V (!q))
]
,
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CP satisfies
d2 !Q

dλ2
+ V = 0

where λ plays the role of real time and is related to the proper distance along
the curve:

ds =
√

2(E − V )dλ

In semi-classical approximation, wavefunction is dominated by its value close to
the CP

ψ(!q) ∼=
1

[2(E − V (!q))]
1
4

[
α+e

i
!

R s ds
√

2(E−V (!q)) + α−e−
i
!

R s ds
√

2(E−V (!q))
]
,

Classical Paths and MPEPs

MPEP satisfies
d2 !Q

dλ2
+ V = 0

where λ plays the role of imaginary time and is related to the proper distance
along the curve:

ds =
√

2(V − E)dλ

In semi-classical approximation, wavefunction is dominated by its value close to
the CP

ψ(!q) ∼=
1

[2(V (!q)− E)]
1
4

[
β+e

1
!

R s ds
√

2(V (!q)−E) + β−e−
1
!

R s ds
√

2(V (!q)−E)
]
,



•N-dimensional QM has been reduced to one-
dimensional QM along a tunnelling highway

•The tunnelling highway is the combination of 
classical paths and MPEPs involved in the 
tunnelling process.

•Classical paths and MPEPs must be connected 
to one another at classical turning points (E=V)
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Tunnelling in QFT

Consider the standard theory of a scalar field, φ(t;x), evolving in time through
a spatial volume,V, under the infuence of a potential, V (φ). This is described
by the action

S =
∫

dt

∫

V
dx

[
1
2
φ̇2 − 1

2
φ′2 − V (φ)

]

We can think of the field φ(t;x) as describing a quantum mechanical system in
infinite-dimensional space, like so

{φ(t, x), x ∈ V} = {φ(t, x1), φ(t, x2), . . .}.
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Tunnelling in QFT

Consider the standard theory of a scalar field, φ(t;x), evolving in time through
a spatial volume,V, under the infuence of a potential, V (φ). This is described
by the action

S =
∫

dt

∫

V
dx

[
1
2
φ̇2 − 1

2
φ′2 − V (φ)

]

We can think of the field φ(t;x) as describing a quantum mechanical system in
infinite-dimensional space, like so

{φ(t, x), x ∈ V} = {φ(t, x1), φ(t, x2), . . .}.

Wavefunction, ψ[φ] is a functional acting on an appropriately chosen ”configu-
ration space”.

The ”configuration space” is taken to be the space of real valued functions on
V, satisfying some boundary condition on ∂V.

The norm,|ψ[φ]|2, therefore measures the probability density for a given config-
uration φ

Generalised Schrodinger equation
[
−!2

2

∫

V
dx

δ2

δφ(x)2
+ U [φ]

]
ψ[φ] = Eψ[φ]

Generalised potential

U [φ] =
∫

V
dx

[
1
2
φ′2 + V (φ)

]



Classical Paths and MPEPs

“Configuration space” is split into 
classically allowed regions with 
E>U,  and classically forbidden 
regions with E<U

In classically allowed 
region, wavefunction is 
peaked along classical 
paths (well known)

In classically forbidden 
region, wavefunction is 
peaked along “Most 
probable escape 
paths” (MPEPs)



A CP Φ(λ;x) is defined at each point x ∈ V, and is parametrised in configuration
space by λ. It satisfies

d2Φ
dλ2

− d2Φ
dx2

+ V ′(Φ) = 0,

where λ plays the role of real time, and is related to the proper distance along
the curve

ds =
√

2(E − U [φ])dλ

In semi classical approx, wavefunction is dominated by its value close to the
MPEP

ψ[φ] ∼=
1

[2(E − U [φ])]
1
4

[
α+e

i
!

R s ds
√

2(E−U [φ]) + α−e−
i
!

R s ds
√

2(E−U [φ])
]
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i
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Classical Paths and MPEPs
A MPEP Φ(λ;x) is defined at each point x ∈ V, and is parametrised in config-
uration space by λ. It satisfies

d2Φ
dλ2

+
d2Φ
dx2

− V ′(Φ) = 0,

where λ plays the role of imaginary time, and is related to the proper distance
along the curve

ds =
√

2(U [φ]− E)dλ

In semi classical approx, wavefunction is dominated by its value close to the
MPEP

ψ[φ] ∼=
1

[2(U [φ]− E)]
1
4

[
β+e

1
!

R s ds
√

2(U [φ]−E) + β−e−
1
!

R s ds
√

2(U [φ]−E)
]
,
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What is required for resonant 
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• Can reduce the problem to QM along a 
tunnelling highway in configuration space

• Effective potential along the highway is U[φ] as 
opposed to V(φ) 

• For resonance to occur, need double barrier 
along the highway

• Highway must contain two MPEPs (barriers) 
separated by a classical path (central well). 

• Classical path in central well must correspond to 
a “bound state” solution oscillating between two 
stationary points, and picking up a quantum 
phase of (n+1/2)π

V (φ)

φ1
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V (φ)

φ1

A

B

C

An oscillon?

Note: field does NOT tunnel from 
A to B and then B to C. It tunnels 
directly from A to C, only using B 
as a springboard!

False vacuum 
(φ=0) 
everywhere 

Bounce
Bubble of φ=φ1  
in φ=0 

Decay of the homogeneous false 
vacuum



“Bound state” Φ(t, x) must satisfy the following:

Vacuum decay via resonant 
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What have we shown?

• We have shown how QFT can be reduced 
to QM along the “tunnelling highway.”

• For analogue of resonant tunnelling to 
occur, highway must contain a suitable 
oscillating solution or “bound state”

• For decay of the homogeneous false 
vacuum, this solution must satisfy 5 well 
motivated conditions

• No such solution exists

The homogeneous false vacuum 
cannot decay via resonant tunnelling 

in standard scalar QFT
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No resonant tunnelling in the 
landscape?

• Go beyond WKB.
• Consider non standard scalar field theories
• Include gravity.
• Consider gauge theories.
• Other enhanced tunnelling mechanisms.
• Relax one of our five conditions on the “bound state”

• Allow non-vanishing momenta at transition points.
• Alter spatial boundary conditions (eg Hawking-Moss).
• Consider decay of an inhomogeneous initial state

1=“classical solution other than false vacuum”
2=“zero energy”
3=“asymptotes to false vacuum”  
4=“stationary at t1 and t2”
5=“Bohr-Sommerfeld quantisation condition”

2=“zero energy”
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Decay of an inhomogeneous 
state
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Consider a theory with two false vacua, A and B, 
and one true vacuum C. Take al states to be 
asymptotically B

C
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Initial state is an 
inhomogeneous 
mixture of A and B

(Expanding) bubble of C in B

resonant?

 initial state

 
  intermediate

bound state

   final state

An oscillon?

Bubble of A in B 

Bubble of C in B
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“Bound state” Φ(t, x) must satisfy the following:

1. it is a solution to the classical field equations, other than the false vacuum
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No go theorem no longer applies, and 
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Bound states

are oscillons!



Exact solutions exist for following action

L = −1
2
(∂φ)2 − 1

2
φ2(1− ln(φ2))

For states that asymptote to φ = 0, resonant tunnelling occurs from bubbles of
φ < 0 to bubbles of φ > 0 for a discrete range of energies.
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Resonant tunnelling in the 
landscape?

• Far from generic in QFT; examples we have found are very 
contrived

• Liable to be spoiled by gravity (Hubble damping, gravitational 
collapse).

• Liable to be spoiled by finite temperature
• In the spirit of the landscape, even the most contrived set-up 

may be realised. Have we really gained anything?
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Thanks!


