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Three Pictures of High Energy 
Lepton-Proton Collisions

Infinite momentum frame

Simple Virtual Photon Probes Complex Evolved Proton 

Proton Rest Frame

Color Dipole of  Virtual Photon Scatters on a Static Proton 

Parton Model

Color�Dipole Model

Frame-Independent
Light�Front 

HamiltonianTheory

Collision of Light-Front Wavefunctions  
of  Virtual Photon and Proton 

77
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P+

��⊥

−��⊥

P+

Universal 
Frame-Independent 

Light Front 
virtual photon and 

proton Wavefunctions 

xa
��⊥ + �k⊥a

ΨB(xb,�k⊥b)

a ⊥ ⊥aa ⊥ ⊥a

Ψ∗
γ(xa,�k⊥a)

LF time of first interaction
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Diffractive Dissociation of Pion  
into Quark Jets

Measure Light-Front Wavefunction of Pion

Minimal momentum transfer to nucleus
Nucleus left Intact!

E791 Ashery et al.

79

M ∝ ∂2

∂2k⊥
ψπ(x, k⊥)

79
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80

Key Ingredients in Ashery Experiment

Two-gluon exchange gives imaginary amplitude
proportional to energy, constant diffractive cross sections

M ∝ i s α2
s bπ⊥ bN⊥

σ ∝ α4
s (bπ⊥)2 (bN⊥)2

π
q

q̄

N N Target left intact

Di�raction, Rapidity gap

80
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E791 FNAL Diffractive DiJet 

Two-gluon exchange measures the second derivative of the pion
light-front wavefunction

π
q

q̄

N N

M ∝ ∂2

∂2k⊥
ψπ(x, k⊥)

 Gunion, Frankfurt, Mueller, Strikman, sjb
Frankfurt, Miller, Strikman

81
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dσ

dk2
t

∝ |αs(k2
t )xNG(u, k2

t )|2
∣∣∣∣ ∂2

∂k2
t
ψ(u, kt )

∣∣∣∣
2

82

gluons 
measure 
size of 
color 
dipole

tx

x

1�x
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Key Ingredients in  E791 Experiment

Small color-dipole moment pion not absorbed; 
interacts with each nucleon coherently 

QCD COLOR Transparency

π
q

q̄

N

Target left intact

Brodsky Mueller
Frankfurt Miller Strikman

Di�raction, Rapidity gap

MA = A MN

dσ
dt (πA→ qq̄A′) = A2 dσ

dt (πN → qq̄N ′) F2
A(t)

83

A′
A
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Nuclear coherence
Nuclear coherence

F2
A(q2⊥) ∼ e−

1
3R

2
Aq

2
⊥

84
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A-Dependence results: σ ∝ Aα

kt range (GeV/c) α α (CT)

1.25 < kt < 1.5 1.64 +0.06 -0.12 1.25

1.5 < kt < 2.0 1.52 ± 0.12 1.45

2.0 < kt < 2.5 1.55 ± 0.16 1.60

α (Incoh.) = 0.70 ± 0.1

85

Measure pion LFWF in diffractive dijet production 
Confirmation of color transparency 

Mueller, sjb; Bertsch et al; 
Frankfurt, Miller, Strikman

Conventional Glauber Theory Ruled 
Out ! 

Factor of 7

Ashery E791 
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Color Transparency

• Fundamental test of gauge theory in hadron physics

• Small color dipole moments interact weakly in nuclei

• Complete coherence at high energies

• Clear Demonstration of CT from Di�ractive Di�Jets

Bertsch, Gunion, Goldhaber, sjb

A. H. Mueller,  sjb
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High Transverse 
momentum  dependence 

consistent with PQCD, 
ERBL Evolution

87

Two Componentsdσ
dkT

kT (GeV)

Gaussian

k−6.5
T

k−6.5
T

E791 Di�ractive Di�Jet transverse momentum distribution

Gaussian component 
at small kT similar 

to AdS/CFT LFWF
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88

�A → JetJetA′

��
qq̄(x,�k⊥)

x

Di�ractive Dissociation of a 
Pion into Dijets

• E791 Fermilab Experiment 
Ashery et al

• 500 GeV pions collide on 
nuclei keeping it intact

• Measure momentum of two 
jets

• Study momentum distributions
of pion LF wavefunction

88
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Fig. 22. The u distribution of diffractive dijets from the platinum target for 1.25 ≤ kt ≤ 1.5 GeV/c (left) and for
1.5 ≤ kt ≤ 2.5 GeV/c (right). The solid line is a fit to a combination of the asymptotic and CZ distribution amplitudes.
The dashed line shows the contribution from the asymptotic function and the dotted line that of the CZ function.

uu dis
2 5 G V
x

89

x x

CZZZ

asymptmpt

Ashery E791 

Narrowing of x distribution at high jet transverse momentum 

89
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Possibly two components: 
Perturbative �ERBL	 + Nonperturbative �AdS/CFT	

Narrowing of x distribution at high jet transverse momentum 

x

90

x

CZ

asympt

Ashery
 E791 

xx
xx x

+Bnonpert(k2
⊥)

√
x(1 − x)φ(x) = Apert(k2

⊥)x(1 − x)

90
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φasymptotic ∝ x(1− x)

φ(x,Q0) ∝
√
x(1− x)

AdS/CFT : Increases PQCD leading twist prediction for

Fπ(Q2) by factor 16/9

F��Q2��	
0

1

dx
��x �	
0

1

dy
��y �
16�CF�V�QV�

�1�x ��1�y �Q2

Lepage, sjb C. Ji, A. Pang, D. Robertson, sjb

Normalized to fπ

Choi,   Ji
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Diffractive Dissociation of 
Proton into Quark Jets

Measure Light-Front Wavefunction of 
Proton

Minimal momentum transfer to nucleus
Nucleus left Intact!

x3,�k⊥3

92

Frankfurt, Miller, 
Strikman

p 

92
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p
u

Electromagnetic Tri-Jet Excitation of Proton

d

u

e−
e−

u

Coulomb Exchange analogous to di�ractive excitation 

∂
∂k⊥

Ψp
n=3(xi,�k⊥i, λi)

Measure light-front
wavefunction of 

proton

ep → e jet jet jet

γ∗

Need Forward 
Small Angle 

Detection

93
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J. J. Aubert et al. [European Muon Collaboration], “Pro-
duction Of Charmed Particles In 250-Gev Mu+ - Iron In-
teractions,” Nucl. Phys. B 213, 31 (1983).

First Evidence for 
Intrinsic Charm

Measurement of Charm 
Structure  Function 

DGLAP / Photon�Gluon Fusion: factor of 30 too sma�

94

factor of 30 !
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• EMC data: c(x,Q2) > 30×DGLAP

Q2 = 75 GeV2, x = 0.42

• High xF pp→ J/ψX

• High xF pp→ J/ψJ/ψX

• High xF pp→ ΛcX

• High xF pp→ ΛbX

• High xF pp→ Ξ(ccd)X (SELEX)

95

IC Structure Function: Critical Test of QCD

95
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|uudcc̄> Fluctuation in Proton

QCD: Probability
∼�2

QCD

M2
Q

|e+e−�+�− > Fluctuation in Positronium
QED: Probability ∼(me�)4

M4
�

Distribution peaks at equal rapidity (velocity)
Therefore heavy particles carry the largest mo-

mentum fractions

cc̄ in Color Octet

High x charm!

OPE derivation - M.Polyakov et al.

Hoyer, Peterson, Sakai, sjb

96

x̂i =
m⊥i∑n
j m⊥j

< p|G
3
μν

m2
Q

|p > vs. < p|F
4
μν

m4
�

|p >
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Intrinsic Heavy-Quark Fock States

• Rigorous prediction of QCD, OPE

• Color�Octet Color�Octet Fock State! 

• Probability

• Large E�ect at high x

• Greatly increases kinematics of colliders  such as Higgs production
�Kopeliovich, Schmidt, So�er, sjb�

• Severely underestimated in conventional parameterizations of 
heavy quark distributions �Pumplin, Tung�

• Many empirical tests  

PQQ̄ ∝ 1
M2
Q

Pcc̄/p � 1%PQQ̄QQ̄ ∼ α2
sPQQ̄

Hoyer, Peterson, Sakai, sjb
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Leading Hadron Production 
from Intrinsic Charm

Coalescence of Comoving Charm and Valence Quarks
Produce J/�, �c and other Charm Hadrons at High xF

PX X

98
98
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SELEX �c
+ Studies – pT Dependence

(Vogt, Brodsky and Hoyer, 

Nucl. Phys. B383,683 (1992))

• �c
+ production by �- vs xF

shows harder spectrum at low pT - 

consistent with an intrinsic charm 

picture.

99
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Production of a Double-Charm Baryon

X

SELEX  high xF < xF >= 0.33

100
100
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Production of Two 
Charmonia at High xF

X

101

c
c̄
c
c̄

X

101
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NA3 Data

�A → J/�J/�X

All events have xFψψ > 0.4 !veventntss

102

Excludes `color drag� model

102
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p
u

Excitation of  Intrinsic Heavy Quarks in Proton

N
d

u

u

Amplitude maximal at small invariant mass, equal rapidity

b

b̄

xi ∼ m⊥i∑n
j m⊥j

xb ∼ 0.4

xb̄ ∼ 0.4

Produce forward, high xF

Υ(bb̄),Λb(bud), B+(b̄u), B0(b̄d)

high xF tt̄

103

h

p
g
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PRL 84, 3256 (2000); PRL 72, 2542 (1994)

���������������
	���
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Remarkably Strong Nuclear 
Dependence for Fast Charmonium

M. Leitch

 Violation of factorization in charm hadroproduction.
P. Hoyer, M. Vanttinen (Helsinki U.) ,  U. Sukhatme (Illinois U., Chicago) . HU-TFT-90-14, May 1990. 7pp. 

 Published in Phys.Lett.B246:217-220,1990

Violation of PQCD Factorization!

104

dσ
dxF

(pA→ J/ψX)

104
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J/G nuclear dependence vrs rapidity, xAu, xF

PHENIX compared to lower energy measurements

Klein,Vogt, PRL 91:142301,2003
Kopeliovich, NP A696:669,2001 

E866: PRL 84, 3256 (2000)

NA3: ZP C20, 101 (1983)

M.Leitch

105

Huge 
“absorption” 

effect  at 
large xF

dσ
dxF

(pA→ J/ψX)
Violates PQCD 
factorization!

l t

Hoyer, Sukhatme, Vanttinen
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A1 component

Conventional PQCD 
subprocesses

J. Badier et al, NA3

Two Components

xF

dσ
dxF

(pA→ J/ψX) = A1 dσ1
dxF

+A2/3dσ2/3
dxF

dσ1
dxF

dσ1
dxF

(πA→ J/ψX)

106

Identify with  Fusion

106
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pA→ J/ψX

A2/3 component

πA→ J/ψX

Excess beyond  conventional PQCD subprocesses

J. Badier et al, NA3
dσ
dxF

(pA→ J/ψX) = A1 dσ1
dxF

+A2/3dσ2/3
dxF

107

Identify with IC
High xF

Remarkably Flat 
Distribution

107



Novel QCD PhysicsUC Davis 
January 13, 2009 Stan Brodsky

Scattering on front-face nucleon produces color-singlet     pairucle cc̄

u

108

Octet-Octet IC Fock State

Color-Opaque IC Fock state
interacts on nuclear front surface  

dσ
dxF

(pA→ J/ψX) = A2/3 × dσ
dxF

(pN → J/ψX)

J/ψ

p

c

c̄

No absorption of 
small color-singletolo

Kopeliovich, Schmidt, 
So�er, sjb

A
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u

109

Octet-Octet IC Fock State

Color-Opaque IC Fock state interacts on nuclear front surface

p
c

c̄

A

Λc(cud)

dσ

dxF
(pA → ΛcX) = Aα(xF ) dσ

dxF
(pN → ΛcX)

u

u

dddd

1/3 < α(xF ) < 2/3 at high xF

Reconciles ISR and Fixed Target Measurements!
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• IC Explains Anomalous α(xF ) not α(x2)

dependence of pA→ J/ψX

(Mueller, Gunion, Tang, SJB)

• Color Octet IC Explains A2/3 behavior at

high xF (NA3, Fermilab)

(Kopeliovitch, Schmidt, Soffer, SJB)

• IC Explains J/ψ → ρπ puzzle

(Karliner, SJB)

• IC leads to new effects in B decay

(Gardner, SJB)

Color Opaqueness

Higgs production at xF = 0.8

110
110
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c

Hoyer, Peterson, SJB

Measure c(x) in Deep Inelastic 
Lepton-Proton Scattering

111
111
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Why is Intrinsic Charm Important for Flavor Physics?

• New perspective on fundamental nonperturbative hadron structure

• Charm structure function at high x

• Dominates high xF charm and charmonium production

• Hadroproduction of new heavy quark states such as ccu, ccd at high xF

• Intrinsic charm �� long distance contribution to penguin mechanisms for 
weak decay 

• Novel Nuclear E�ects from color structure of IC, Heavy Ion Collisions

• New mechanisms for high xF Higgs hadroproduction

• Dynamics of b production: LHCb 

• Fixed target program at LHC:  produce bbb states

112



Diffractive Higgs production from intrinsic heavy flavors in the proton

Stanley J. Brodsky,1,* Boris Kopeliovich,2,† Ivan Schmidt,2,‡ and Jacques Soffer3,x
1

PHYSICAL REVIEW D 73, 113005 (2006)

Higgs Hadroproduction at Large Feynman x

Stanley J. Brodsky∗a, Alfred Scharff Goldhaber†a,b, Boris Z. Kopeliovich‡c,d, Ivan Schmidt§c

To be published in Nuclear Physics B
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FIG. 3. The distribution of produced Higgs particles over the
fraction of the proton beam momentum. The dotted, dashed, and
solid curves correspond to Higgs production from nonperturba-
tive IC (� � 1), perturbative IC (� � 0), and IT, respectively.

Non-Perturbative IC

Perturbative IC

117



 

FIG. 4. The cross section of the reaction pp! Hp� p as a
function of the Higgs mass. Contributions of IC (dashed line), IB
(dotted line), and IT (solid line).
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H
pt̄

u

g

Higgs Hadroproduction at High xF 
from Intrinsic Heavy Quarks

d

t

p’ u

d
u

p

Goldhaber, Kopeliovich, Schmidt, SJB
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Figure 2: The cross section of inclusive Higgs production in f b, coming 
from the non-perturbative intrinsic charm distribution, at LHC (�s = 
14 TeV) energies. For comparison we show also an estimate of the cross 

section for gluon-gluon fusion. 
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 (GeV/c)Tp
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R
at

io
  

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
proton/pion

0

Particle ratio changes with centrality! 
S. S. Adler et al. PHENIX Collaboration Phys. Rev. Lett. 91, 172301 (2003).

Au+Au 0-10%
Au+Au 20-30%
Au+Au 60-92%

 = 53 GeV, ISRsp+p, 
, gluon jets, DELPHI-e+e
, quark jets, DELPHI-e+e

Peripheral 

Central 

Protons less absorbed  
in nuclear co�isions than pions 
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p
u

u

n = 4

nactive =  4

n= 2nactive �  4

pp → HX at high pT

NNNNNNNNNNNNNNNNNNNNNNNovelNNNNNNNNNNNN
u

p

H

Color Opaque

 Proton created from 
jet fragmentation

123
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Crucial Test of Leading -Twist QCD:
Scaling at fixed xT

E dσ
d3p

(pN → πX) = F (xT ,θCM)

p
neff
T

Parton model:    ne�  = 4

As fundamental as Bjorken scaling  in DIS

Conformal scaling: ne�  =  2 nactive � 4

xT =
2pT√

s

124
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5 10 15 20
pT  �GeV�

4.25
4.5

4.75
5

5.25
5.5

5.75
6
neff

QCD prediction: Modification of power  fall-off due to 
DGLAP evolution and the Running Coupling

Pirner, Raufeisen, sjb

E dσ
d3p

(pN → πX) = F (xT ,θCM)

p
neff
T

Key test of PQCD:   power-law fall-off at fixed xT

ne� � 4 to 5

xT =
2pT√

s

125
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pu

ne� = 4

nactive =  4

ne� = 2nactive �  4

u

p
gu → γu

pp → γX

E dσ
d3p

(pp → γX) = F (θcm,xT )
p4T
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19 =20-1800GeVs collisions pp+

=20-200GeVsp+p collisions 

=1800GeVs pD0 p+

=1800GeVs pCDF p+

=630GeVs pUA2 p+
=630GeVs pUA1 p+

=546GeVs pUA1 p+

=24.3GeVs pUA6 p+

=200GeVsPHENIX-Run3 p+p 

=63GeVsR806 p+p 

=63GeVsR110 p+p 
=38.7GeVsE706 p+p 

=31.5GeVsE706 p+p 

=24.3GeVsUA6 p+p 

=23.75GeVsNA24 p+p 

=22.96GeVsWA70 p+p 

n=5

√
snE dσ

d3p
(pp → γX) at fixed xT

Scaling of direct 
photon 

production 
consistent with 

PQCD

Tannenbaum
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Scaling 
inconsistent with 

PQCD

10 6

10 8

10 10

10 12

10 14

10 16

10 18

10 20

10 22
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3  E

 d
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/d
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m
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(G
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/c
)2 ] CDF

UA1

ISR

PHENIX  200 GeV

   53 GeV
   23 GeV

 900 GeV
 500 GeV
 200 GeV

 1800 GeV
  630 GeV

h++ h-

2

√
s6.3 × E dσ

d3p
(pp → H±X) at fixed xT

128

Tannenbaum

128



Novel QCD PhysicsUC Davis 
January 13, 2009 Stan Brodsky

π

J. W. Cronin,  SSI 1974

E
dσ

d3p
(pp → HX) =

F (xT , θcm = π/2)
pn

T

xT = 2pT /
√

s

xT = 2pT /
√

s

Clear evidence 
for higher-twist
contributions

129
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 0  0.01  0.02  0.03  0.04  0.05

n e
ff

xT

0-5%
60-92%

E dσ
d3p

(pN → pX) = F (xT ,θCM)

p
neff
T

FIG. 3: Protons produced in AuAu collisions at RHIC do not exhibit clear scaling properties in the

available pT range. Shown are data for central (0− 5%) and for peripheral (60− 90%) collisions.

Continuous rise of neff with xT .

130

RHIC

Leading twist:

ne�  = 4 444444444444
��
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p

u u

d

Baryon can be made directly within hard subprocess

nactive =  6

g g

φp(x1, x2, x3) ∝ Λ2
QCD

Collision can produce 3
collinear quarks 

Coalescence
within hard 
subprocess

Bjorken
Blankenbecler, Gunion, sjb

Berger, sjb 
Hoyer, et al: Semi�Exclusive

ne� = 8

ne� = 2nactive �  4

uu → pd̄

Small color-singlet
Color Transparent

Minimal same-side energy
d

b⊥ � 1/pT
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p

u u

d

Baryon made directly within hard subprocess

nactive =  6

ne� = 8

ne� = 2nactive �  4

uu → pd̄

Small color-singlet
Color Transparent

Minimal same-side energy

g g

d

b⊥ � 1/pT

QGP

b⊥ � 1 fm
Formation Time 

proportional to Energy
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Proton power changes with centrality !
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Proton production dominated by 
color-transparent direct high neff subprocesses

Power-law exponent n(xT ) for �0 and h spectra in central and peripheral Au+Au collisions at
√

sNN = 130 and 200 GeV

S. S. Adler, et al., PHENIX Collaboration, Phys. Rev. C 69, 034910 (2004) [nucl-ex/0308006].
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Proton power changes with centrality !
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Particle ratio changes with centrality! 
S. S. Adler et al. PHENIX Collaboration Phys. Rev. Lett. 91, 172301 (2003).

Au+Au 0-10%
Au+Au 20-30%
Au+Au 60-92%

 = 53 GeV, ISRsp+p, 
, gluon jets, DELPHI-e+e
, quark jets, DELPHI-e+e

Peripheral 

Central 

Protons less absorbed  
in nuclear co�isions than pions 

because of  dominan�
color transparent higher twist process

136
136



Novel QCD PhysicsUC Davis 
January 13, 2009 Stan Brodsky

partN
0 50 100 150 200 250 300 350

yi
el

d
/t

ri
g

g
er

0

0.02

0.04

0.06

0.08

0.1

 < 4.0 GeV/c
T

trigger: 2.5 < p

 < 2.5 GeV/c
T

associated: 1.8 < p

meson-meson, near side
baryon-meson, near side
meson-meson, away side
baryon-meson, away side

 proton 
trigger:

# same-side 
particles 

decreases with 
centrality
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Proton production more dominated by 
color�transparent direct high�ne�  subprocesses

Anne Sickles
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Paul Sorensen
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u

Lambda can be made directly within hard subprocess

nactive =  6

g g

139

Coalescence
within hard 
subprocess

ne� = 8

ne� = 2nactive �  4

Small color-singlet
Color Transparent

Minimal same-side energy

Λ

s̄

s
d

ud → Λs̄

s̄ produced on 
away side
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Baryon Anomaly:  Evidence for Direct, 
Higher-Twist Subprocesses

• Explains anomalous power behavior at �xed xT

• Protons more likely to come from direct higher�twist 
subprocess than pions

• Protons less absorbed than pions in central nuclear 
collisions because of color transparency

• Predicts increasing proton to pion ratio in central collisions

• Proton power ne�  increases with centrality since leading 
twist contribution absorbed

• Fewer same�side hadrons for proton trigger at high 
centrality

• Exclusive�inclusive connection at xT = 1
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• Clash of DGLAP and BFKL with unitarity: saturation phenomena;  o��shell 
e�ects at high x

• Heavy quark distributions do not derive exclusively from DGLAP or gluon 
splitting �� component intrinsic to hadron wavefunction:                                 
Intrinsic c�x,Q	, b�x,Q	, t�x,Q	: 

• Hidden�Color of Nuclear Wavefunction

• Antishadowing is quark speci�c!

• Polarized u�x	 and d�x	 at large x; duality

• Virtual Compton scattering : DVCS, DVMS, GPDs; J=0 �xed pole re�ects 
elementary source of electromagnetic current

• Initial�and Final�State Interactions: leading twist SSA, DDIS

• Direct Higher�Twist Processes; Color Transparency

141

Novel Aspects of QCD in ep scattering
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142

limNC → 0 at fixed α = CFαs, n� = nF/CF

QCD → Abelian Gauge Theory

Huet, sjb

Analytic Feature of SU(Nc) Gauge Theory

Scale-Setting procedure for QCD 
must be applicable to QED

142



• Renormalization scale “unphysical”:  No optimal 
physical scale

• Can ignore possibility of multiple physical scales

• Accuracy of PQCD prediction can be judged by taking 
arbitrary guess                        

• with an arbitrary range           

• Factorization scale should be taken equal to 
renormalization scale

Conventional wisdom  in QCD concerning 
scale setting

These assumptions are untrue in QED 
and thus they cannot be true for QCD!

Q/2 < μR < 2Q

μF = μR

μR = Q
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Electron-Electron Scattering in QED

t u

α(t) = α(0)
1−Π(t)

Gell Mann�Low E�ective Charge
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• No renormalization scale ambiguity!   

• Two separate physical scales: t, u = photon virtuality  

• Gauge Invariant.  Dressed photon propagator

• Sums all vacuum polarization, non-zero beta terms into running coupling.

• If one chooses a different scale, one can sum an infinite number of graphs -- but always 
recover same result!  

• Number of active leptons correctly set 

• Analytic: reproduces correct behavior at lepton mass thresholds

• No renormalization scale ambiguity!   

• Two separate physical scales.  

• Gauge Invariant.  Dressed photon propagator

• Sums all vacuum polarization, non-zero beta terms into running coupling.

• If one chooses a different scale, one must sum an infinite number of graphs -- but then 
recover same result!  

• Number of active leptons correctly set 

• Analytic: reproduces correct behavior at lepton mass thresholds

Electron-Electron Scattering in QED
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Another Example in QED: Muonic Atoms

Z

e+e−
μ−

V (q2) = −ZαQED(q2)

q2

αQED(q2) =
αQED(0)

1−Π(q2)

Scale is unique:  Tested to ppm

μ2
R ≡ q2

q

Gyulassy: Higher Order VP verified to

0.1% precision in μ Pb
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+e−

e+

γ∗

Q

Q̄

Example of Multiple BLM Scales

Angular distributions of massive quarks and leptons close to threshold.

Hoang, Kuhn, Teubner, sjb
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√
s∗ � 0.52Q

[1 + αR(s∗)
π ][1 − αg1(q

2)
π ] = 1

Generalized Crewther Relatio�

Conformal relation true to all orders in 
perturbation theory

No radiative corrections to axial anomaly
Nonconformal terms set relative scales �BLM�

Analytic matching at quark thresholds
No renormalization scale ambiguity!

Lu, Kataev, Gabadadze, Sjb
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Novel Aspects of QCD 

• Heavy quark distributions do not derive exclusively 
from DGLAP or gluon splitting �� component 
intrinsic to hadron wavefunction: Higgs at high xF

• Initial and �nal�state interactions are not power 
suppressed in  hard QCD reactions

• LFWFS are universal, but measured nuclear parton 
distributions are not universal �� antishadowing  is 
�avor dependent

• Hadroproduction at large transverse momentum
does not derive exclusively from 2 to 2 scattering 
subprocesses 

149
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• DDIS and Sivers E�ect: Breakdown of Leading�Twist Factorization

• Physics of Hard Pomeron

• Measure Fundamental Hadron Wavefunction via Di�jet and Tri�jet 
Fragmentation

• Origin of Leading Twist Shadowing

• Non�Universal Antishadowing

• Heavy quark structure functions at high x

• Higgs production at large xF

• Hadroproduction of new heavy quark states such as ccu, ccd at high xF

• Novel Nuclear E�ects from color structure of IC

• Fixed target program at LHC:  produce bbb states

• Direct Hadroproduction at high pT
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String Theory

AdS/CFT

g

SSS//////////////////////////////////////////C

Semi-Classical QCD / Wave EquationsSemi-Classical QCD / Wave EquationsD ///////

Mapping of  Poincare’ and 
Conformal SO(4,2) symmetries of 3

+1 space 
to  AdS5 space

Integrable!

Boost Invariant 3+1 Light-Front Wave Equations

D /

Boost Invariant 3+1 Light-Front Wave Equationsgh

Hadron Spectra, Wavefunctions, Dynamics

gggggggggggggggggggggggggggggggggggggghh

ve

S//CS/C

AdS/QCD
Conformal behavior at short 

distances
+ Confinement at large 

distance

Counting rules for Hard 
Exclusive Scattering
Regge Trajectories

Holography

J =0,1,1/2,3/2 plus L

Goal: First Approximant to QCD

QCD at the Amplitude Level
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• Quarks and Gluons:                                                            
Fundamental constituents of hadrons and nuclei

• Quantum Chromodynamics (QCD)

• New Insights from higher space�time dimensions:  AdS/QCD

• Light-Front Holography

• Hadronization at the Amplitude Level

• Light Front Wavefunctions:     analogous to the 
Schrodinger wavefunctions of atomic physics

152

Ψn(xi,�k⊥i, λi)
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