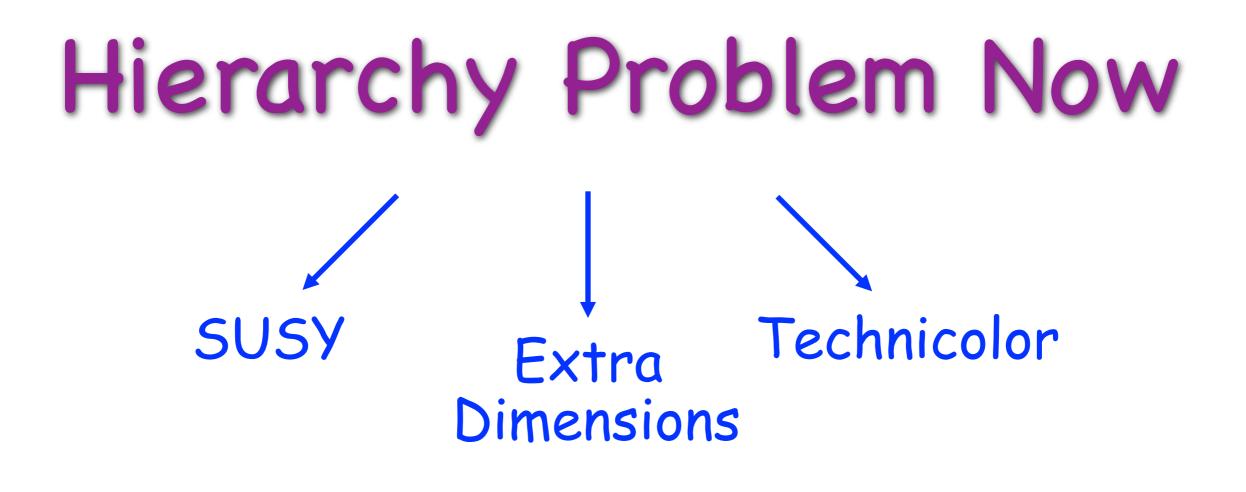
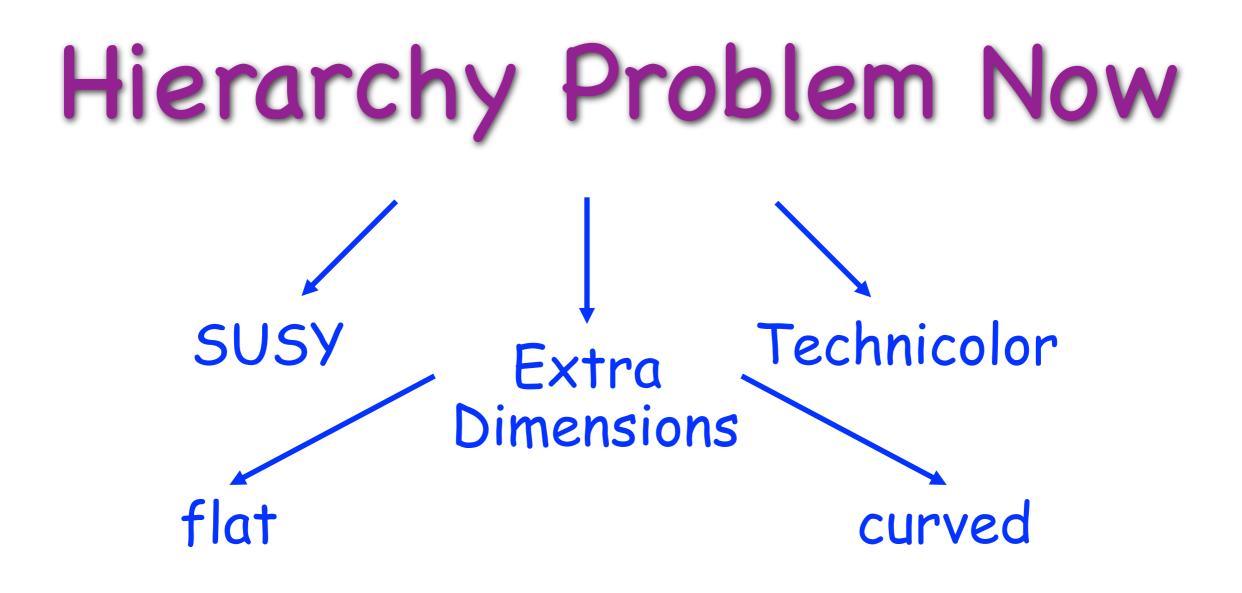
Monopoles, Anomalies, and Electroweak Symmetry Breaking

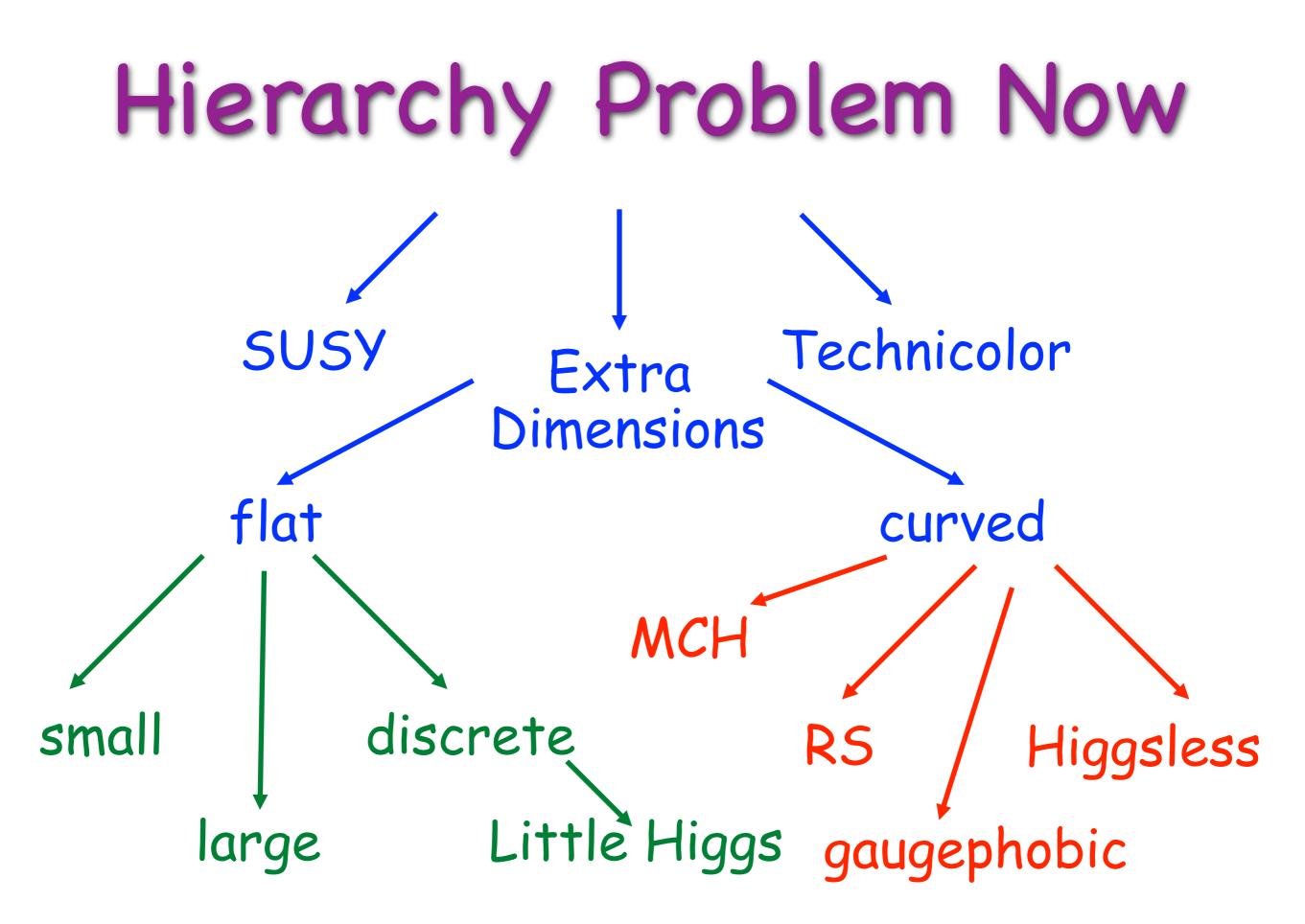
John Terning with Csaba Csaki, Yuri Shirman in progress

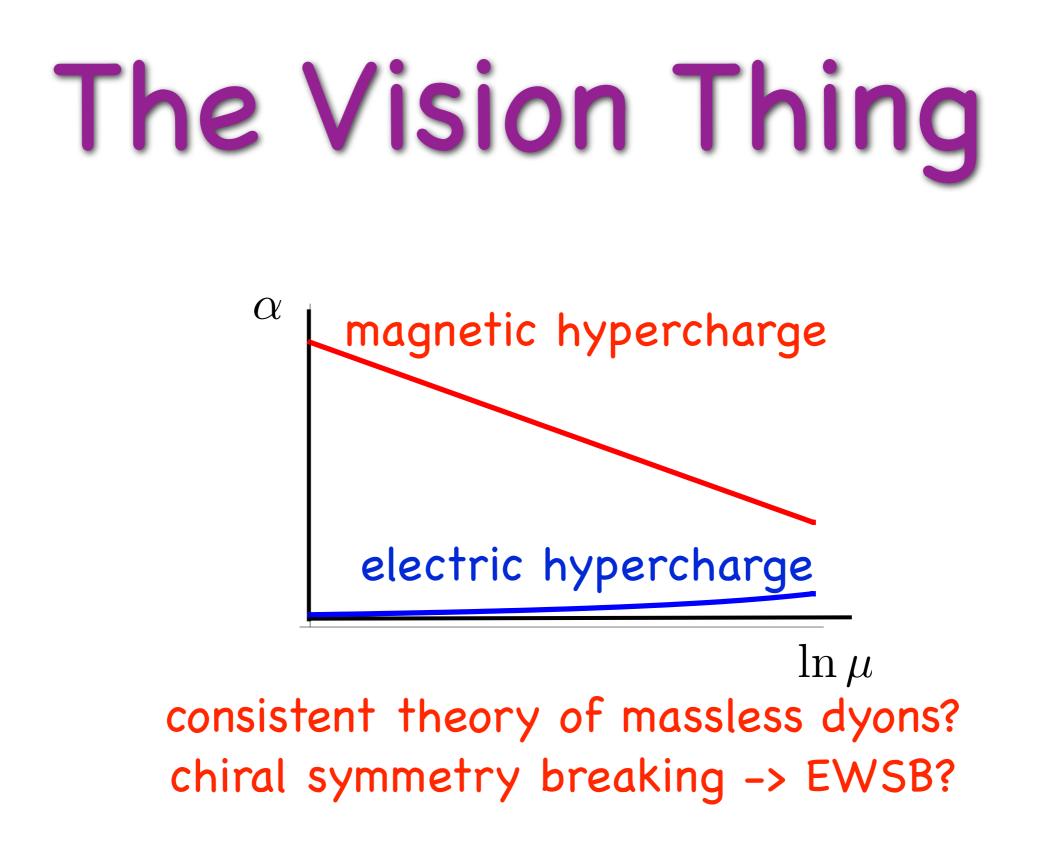
Hierarchy Problem Now

Technicolor

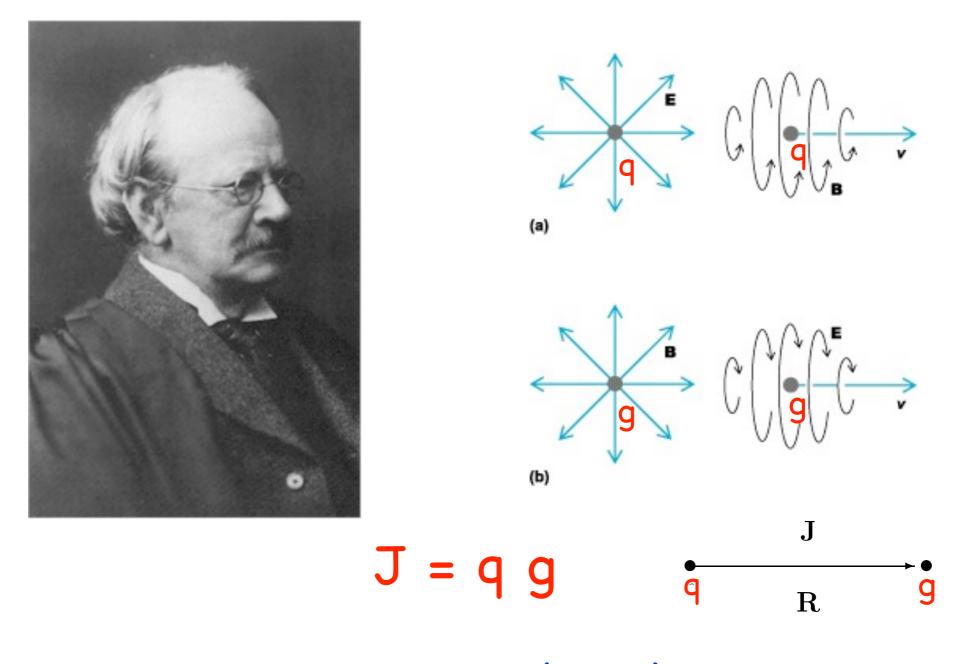




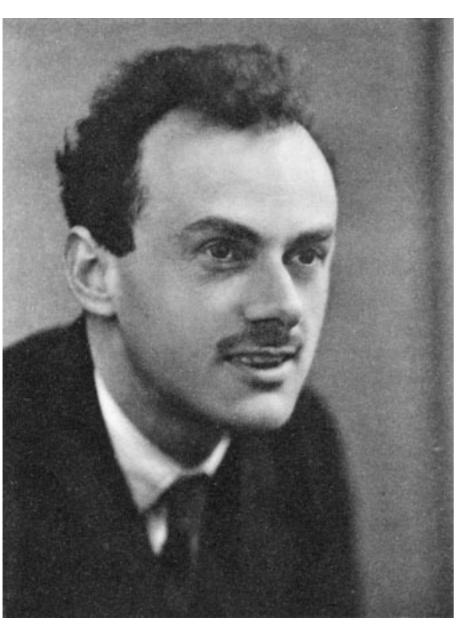


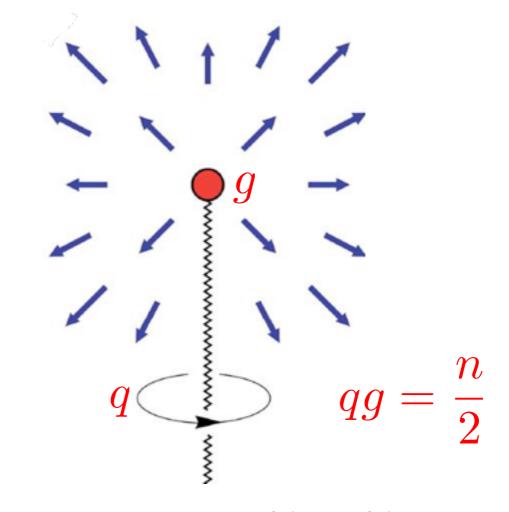


J.J. Thomson



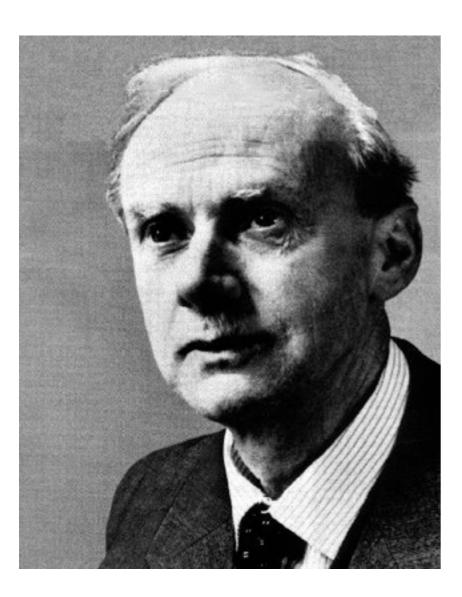
Philos. Mag. 8 (1904) 331





charge quantization

Proc. Roy. Soc. Lond. A133 (1931) 60



Dirac

non-local action?

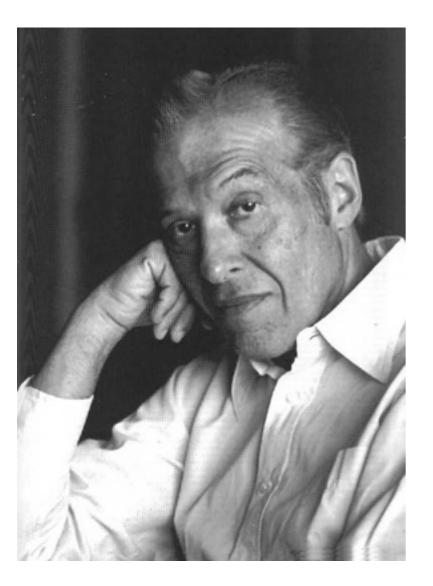
$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + {}^{*}G_{\mu\nu}$$

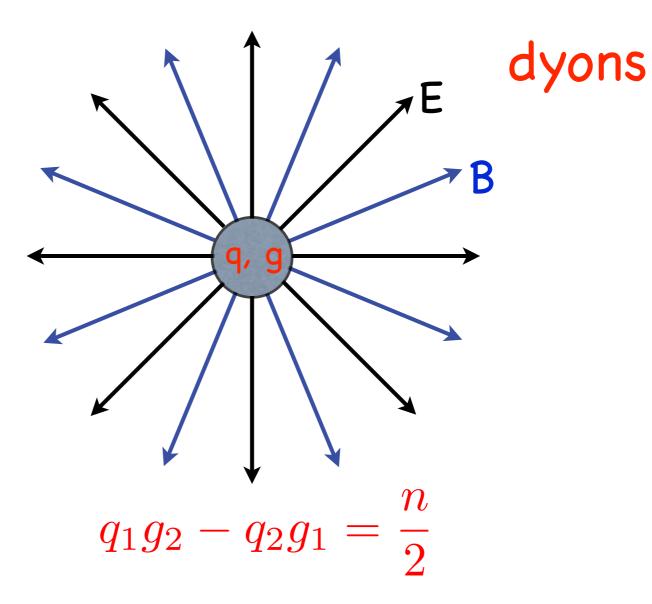
$$G_{\mu\nu}(x) = 4\pi (n \cdot \partial)^{-1} [n_{\mu} * j_{\nu}(x) - n_{\nu} * j_{\mu}(x)]$$

= $\int (dy) [f_{\mu}(x - y) * j_{\nu}(y) - f_{\nu}(x - y) * j_{\mu}(y)]$
 $\partial_{\mu} f^{\mu}(x) = 4\pi \delta(x)$

 $f^{\mu}(x) = 4\pi n^{\mu} \left(n \cdot \partial \right)^{-1} \delta(x)$

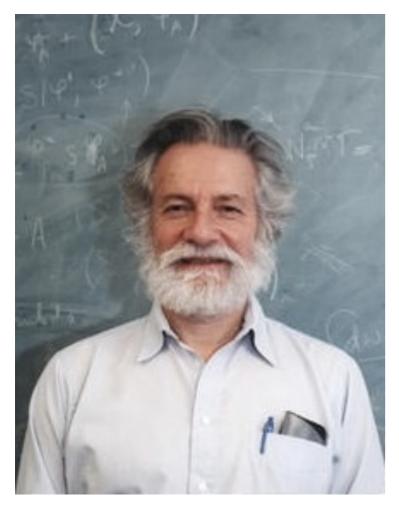
Phys. Rev. 74 (1948) 817





Science 165 (1969) 757

Zwanziger



non-Lorentz invariant, local action?

 $\mathcal{L} = -\frac{1}{2n^2e^2} \left\{ \left[n \cdot (\partial \wedge A) \right] \cdot \left[n \cdot^* (\partial \wedge B) \right] - \left[n \cdot (\partial \wedge B) \right] \cdot \left[n \cdot^* (\partial \wedge A) \right] \right. \\ \left. + \left[n \cdot (\partial \wedge A) \right]^2 + \left[n \cdot (\partial \wedge B) \right]^2 \right\} - J \cdot A - \frac{4\pi}{e^2} K \cdot B.$

$$F = \frac{1}{n^2} \left(\left\{ n \wedge \left[n \cdot (\partial \wedge A) \right] \right\} - \left\{ n \wedge \left[n \cdot (\partial \wedge B) \right] \right\} \right)$$

Phys. Rev. D3 (1971) 880

Witten

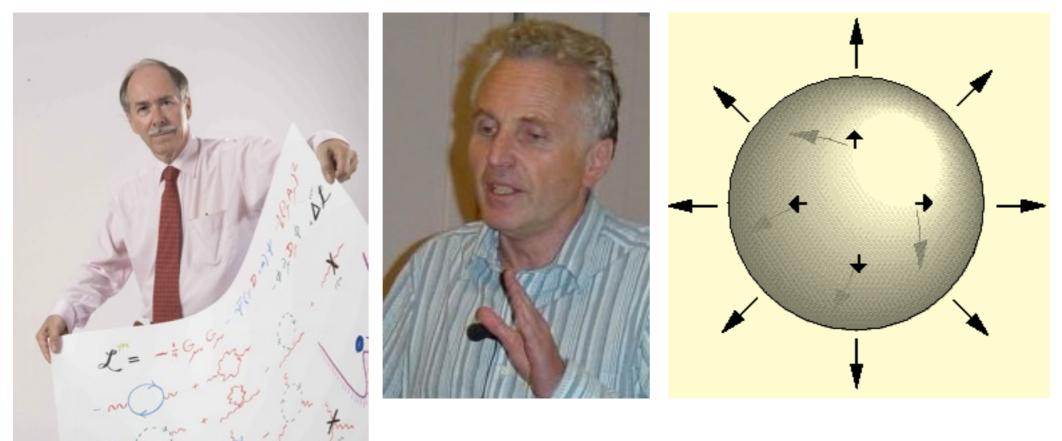
effective charge shifted

$$\mathcal{L}_{\text{free}} = -\frac{1}{4e^2} F^{\mu\nu} F_{\mu\nu} - \frac{\theta}{32\pi^2} F^{\mu\nu} * F_{\mu\nu}$$

$$q_{\text{eff},j} = q_j + g_j \frac{\theta}{2\pi}$$

Phys. Lett. B86 (1979) 283

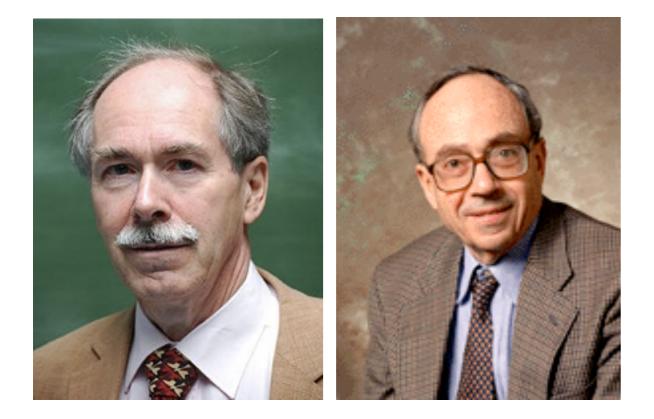
't Hooft-Polyakov



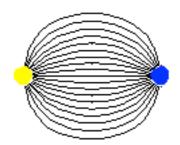
topological monopoles

Nucl. Phys., B79 1974, 276 JETP Lett., 20 1974, 194

't Hooft-Mandelstam

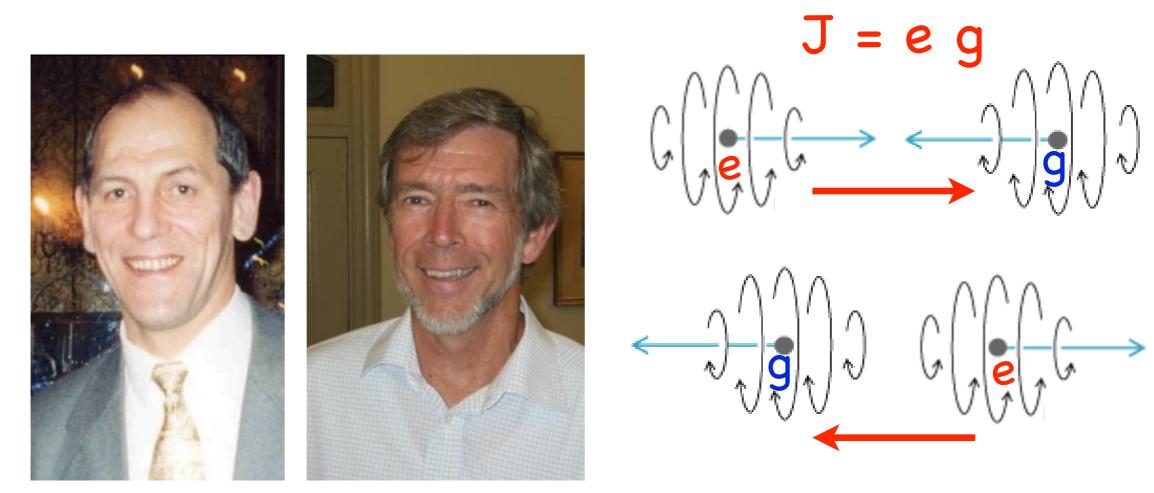


magnetic condensate confines electric charge



High Energy Physics Ed. Zichichi, (1976) 1225 Phys. Rept. 23 (1976) 245

Rubakov-Callan



new unsuppressed contact interactions! JETP Lett. 33 (1981) 644 Phys. Rev. D25 (1982) 2141

Seiberg-Witten

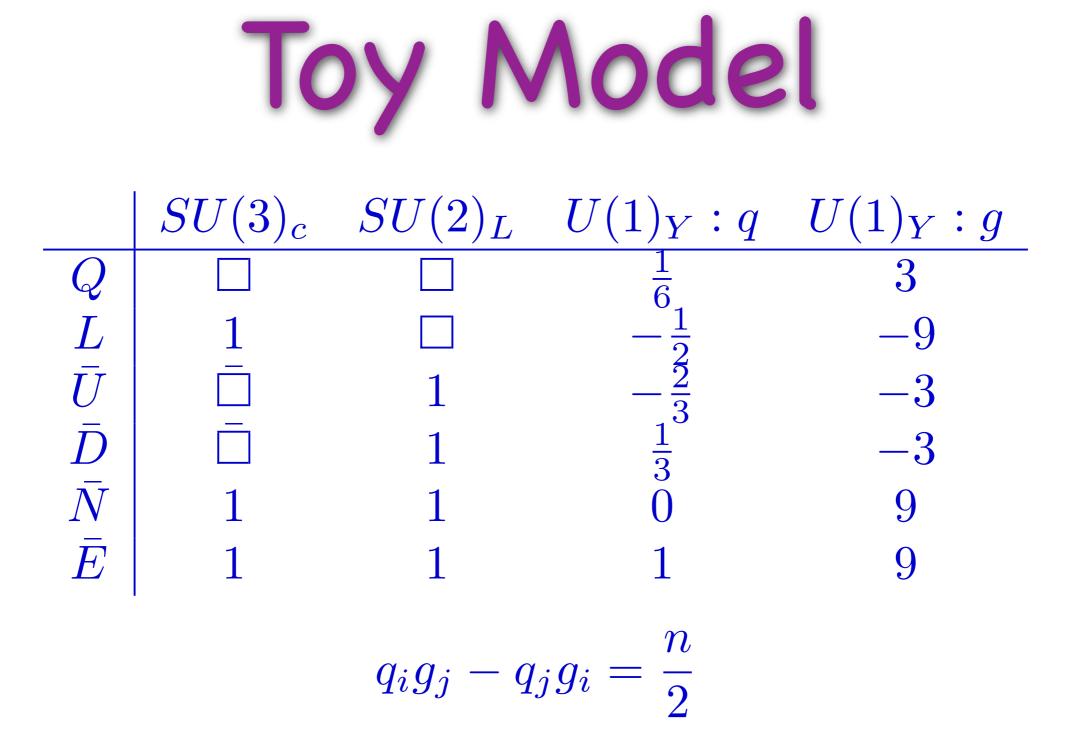
 $\mathcal{N}=2$

massless fermionic monopoles

hep-th/9407087

Argyres-Douglas

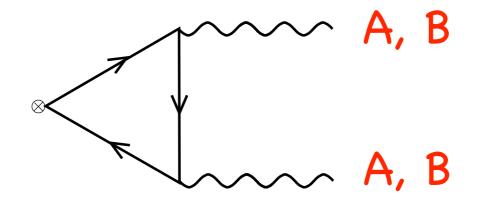
CFT with massless electric and magnetic charges hep-th/9505062



is this anomaly free?

Anomalies

$$\mathcal{L} = -\frac{1}{2n^2e^2} \left\{ \left[n \cdot (\partial \wedge A) \right] \cdot \left[n \cdot^* (\partial \wedge B) \right] - \left[n \cdot (\partial \wedge B) \right] \cdot \left[n \cdot^* (\partial \wedge A) \right] \right. \\ \left. + \left[n \cdot (\partial \wedge A) \right]^2 + \left[n \cdot (\partial \wedge B) \right]^2 \right\} - J \cdot A - \frac{4\pi}{e^2} K \cdot B.$$



E-M Duality

$$\vec{E} \rightarrow \vec{B}$$

 $\vec{B} \rightarrow -\vec{E}$

$${}^{*}F^{\mu\nu} = \frac{1}{2} \epsilon^{\mu\nu\alpha\beta} F_{\alpha\beta}$$
$$F^{\mu\nu} \to {}^{*}F^{\mu\nu}$$

Shift Symmetry $\mathcal{L}_{\text{free}} = -\frac{1}{4e^2} F^{\mu\nu} F_{\mu\nu} - \frac{\theta}{32\pi^2} F^{\mu\nu} * F_{\mu\nu}$

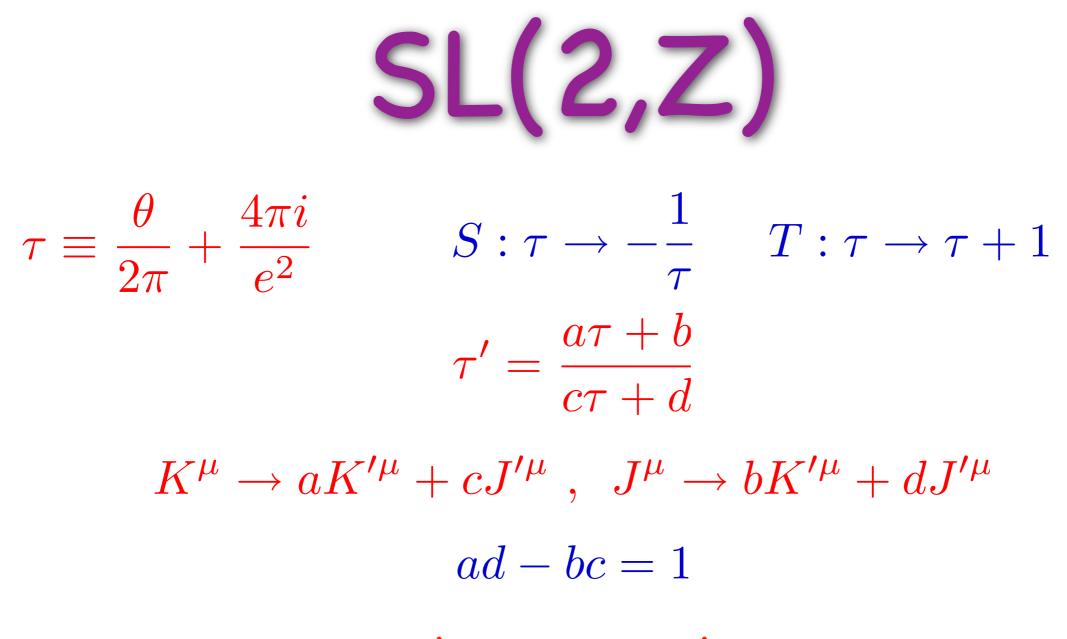
 $\theta \to \theta + 2\pi$

 $\tau \equiv \frac{\theta}{2\pi} + \frac{4\pi i}{e^2}$

E-M Duality $\mathcal{L}_{\text{free}} = -\text{Im} \frac{\tau}{32\pi} (F^{\mu\nu} + i^* F^{\mu\nu})^2$ $\mathcal{L}_c = \frac{1}{4\pi} \int d^4 B_\mu \partial_\nu * F^{\mu\nu}$

$$\tilde{\mathcal{L}} = \operatorname{Im} \frac{1}{32\pi\tau} \left(\tilde{F}^{\mu\nu} + i^* \tilde{F}^{\mu\nu} \right)^2$$

$$\tilde{F}_{\mu\nu} = \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu}$$



not a symmetry

$$\int \mathbf{from} \ \mathbf{SL}(2,\mathbf{Z})$$

$$\frac{d\tau}{d\log\mu} = \beta$$

$$\begin{pmatrix} a & -b \\ -c & d \end{pmatrix} \begin{pmatrix} q \\ g \end{pmatrix} = \begin{pmatrix} n \\ 0 \end{pmatrix} \qquad n = \gcd(q,g)$$

$$c = g/n, d = q/n \qquad aq - bg = n$$

$$\frac{d\tau'}{d\log\mu} = i\frac{n^2}{16\pi^2}$$

$$\frac{d\tau}{d\log\mu} = \frac{i}{16\pi^2}(q + g\tau)^2$$

ß from SL(2,Z)

$$\frac{d\tau}{d\log\mu} = \frac{i}{16\pi^2}(q+g\tau)^2$$

$$\beta_e = \mu \frac{de}{d\mu} = \frac{e^3}{12\pi^2} \sum_j \left[\left(q_j + \frac{\theta}{2\pi} g_j \right)^2 - g_j^2 \frac{16\pi^2}{e^4} \right]$$
$$\beta_\theta = \mu \frac{d\theta}{d\mu} = -\frac{16\pi}{3} \sum_j \left[q_j g_j + \frac{\theta}{2\pi} g_j^2 \right]$$

Argyres, Douglas hep-th/9505062

$$\frac{\mathsf{SL}(2,Z)}{4\pi} \partial_{\mu} \left(F^{\mu\nu} + i^* F^{\mu\nu}\right) = J^{\nu} + \tau K^{\nu}$$

$$K^{\mu} \to aK'^{\mu} + cJ'^{\mu}, \ J^{\mu} \to bK'^{\mu} + dJ'^{\mu}$$

 $(F^{\mu\nu} + i^{*}F^{\mu\nu}) \to \frac{1}{c\tau^{*} + d} (F'^{\mu\nu} + i^{*}F'^{\mu\nu})$

$$\frac{\mathrm{Im}\,(\tau')}{4\pi}\,\partial_{\nu}\,(F'^{\mu\nu} + i^{*}F'^{\mu\nu}) = J'^{\mu} + \tau'K'^{\mu}$$

Zwanziger Generalized

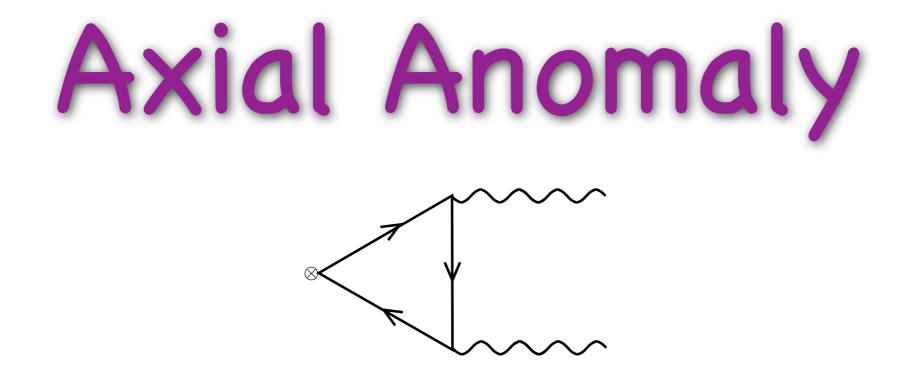
$$\mathcal{L} = -\mathrm{Im} \frac{\tau}{8\pi n^2} \left\{ [n \cdot \partial \wedge (A+iB)] \cdot [n \cdot \partial \wedge (A-iB)] \right\} -\mathrm{Re} \frac{\tau}{8\pi n^2} \left\{ [n \cdot \partial \wedge (A+iB)] \cdot [n \cdot^* \partial \wedge (A-iB)] \right\} +\mathrm{Re} \left[(A-iB) \cdot (J+\tau K) \right]$$

$$F = \frac{1}{n^2} \left(\left\{ n \land [n \land (\partial \land A)] \right\} - * \left\{ n \land [n \land (\partial \land B)] \right\} \right)$$
$$(A + iB) \to \frac{1}{c\tau^* + d} \left(A' + iB' \right)$$

Axial Anomaly from SL(2,Z) $(q,g) \rightarrow (n,0)$ $\partial_{\mu} j^{\mu}_{A}(x) = \frac{n^{2}}{16\pi^{2}} F^{\prime\mu\nu} * F^{\prime}_{\mu\nu}$ $= \frac{n^2}{32\pi^2} \operatorname{Im} \left(F'^{\mu\nu} + i^* F'^{\mu\nu} \right)^2$

Axial Anomaly

$$\begin{aligned} \partial_{\mu} j_{A}^{\mu}(x) &= \frac{n^{2}}{32\pi^{2}} \mathrm{Im} \left(c\tau^{*} + d \right)^{2} \left(F^{\mu\nu} + i^{*} F^{\mu\nu} \right)^{2} \\ &= \frac{1}{16\pi^{2}} \mathrm{Re} \left(q + \tau^{*} g \right)^{2} F^{\mu\nu} F_{\mu\nu} + \frac{1}{16\pi^{2}} \mathrm{Im} \left(q + \tau^{*} g \right)^{2} F^{\mu\nu} F_{\mu\nu} \\ &= \frac{1}{16\pi^{2}} \left\{ \left[\left(q + \frac{\theta}{2\pi} g \right)^{2} - g^{2} \frac{16\pi^{2}}{e^{4}} \right] F^{\mu\nu} F_{\mu\nu} \right. \\ &+ \left[qg + \frac{\theta}{2\pi} g^{2} \right] F^{\mu\nu} F_{\mu\nu} \end{aligned}$$



$$\partial_{\mu} j^{\mu}_{A}(x) = \frac{1}{16\pi^{2}} \left\{ \left[q^{2} - g^{2} \frac{16\pi^{2}}{e^{4}} \right] F^{\mu\nu} * F_{\mu\nu} + qg F^{\mu\nu} F_{\mu\nu} \right\}$$

SU(N)²U(1) Anomaly

 $\mathcal{L}_{\text{anom}} = c \Omega G^{a\mu\nu} * G^a_{\mu\nu}$

 $\Omega = \Omega_A + i\,\Omega_B$

$$\Omega \to \frac{1}{c\tau^* + d} \ \Omega'$$

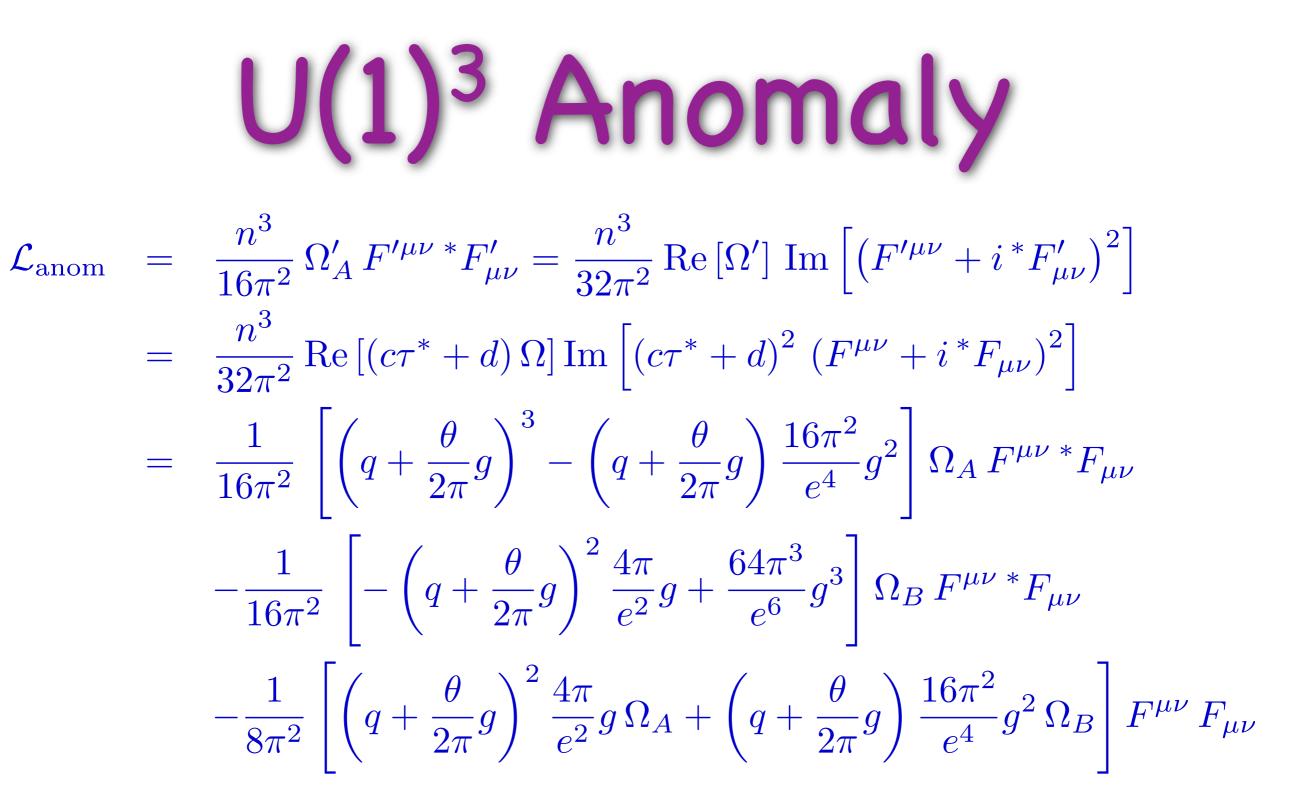
SU(N)²U(1) Anomaly

$$\mathcal{L}_{anom} = \frac{n \operatorname{Tr} T^{a}(r) T^{a}(r)}{16\pi^{2}} \Omega'_{A} G^{a\mu\nu} * G^{a}_{\mu\nu}$$

$$= \frac{n \operatorname{Tr} T^{a}(r) T^{a}(r)}{16\pi^{2}} \operatorname{Re} \Omega' G^{a\mu\nu} * G^{a}_{\mu\nu}$$

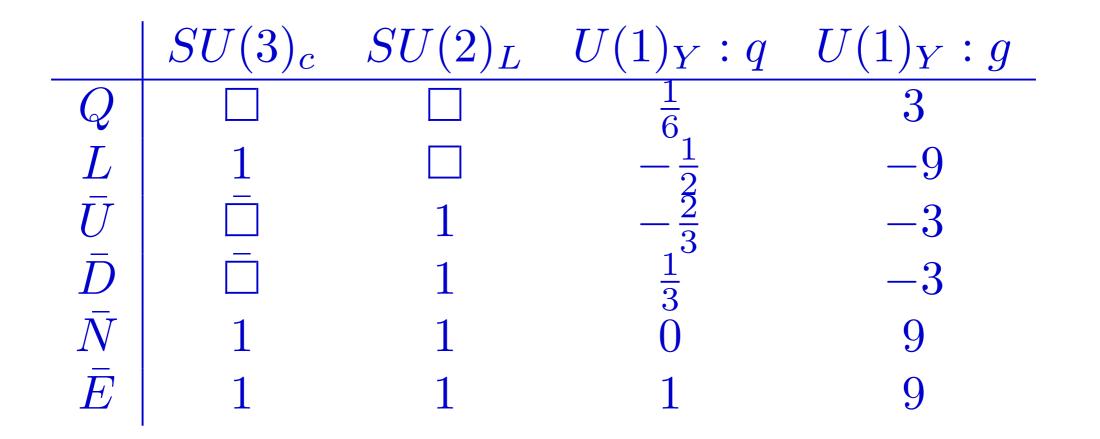
$$= \frac{n T(r)}{16\pi^{2}} \operatorname{Re} (c\tau^{*} + d) \Omega G^{a\mu\nu} * G^{a}_{\mu\nu}$$

$$= \frac{T(r)}{16\pi^{2}} \left[\left(q + \frac{\theta}{2\pi} g \right) \Omega_{A} + g \frac{4\pi}{e^{2}} \Omega_{B} \right] G^{a\mu\nu} * G^{a}_{\mu\nu}$$

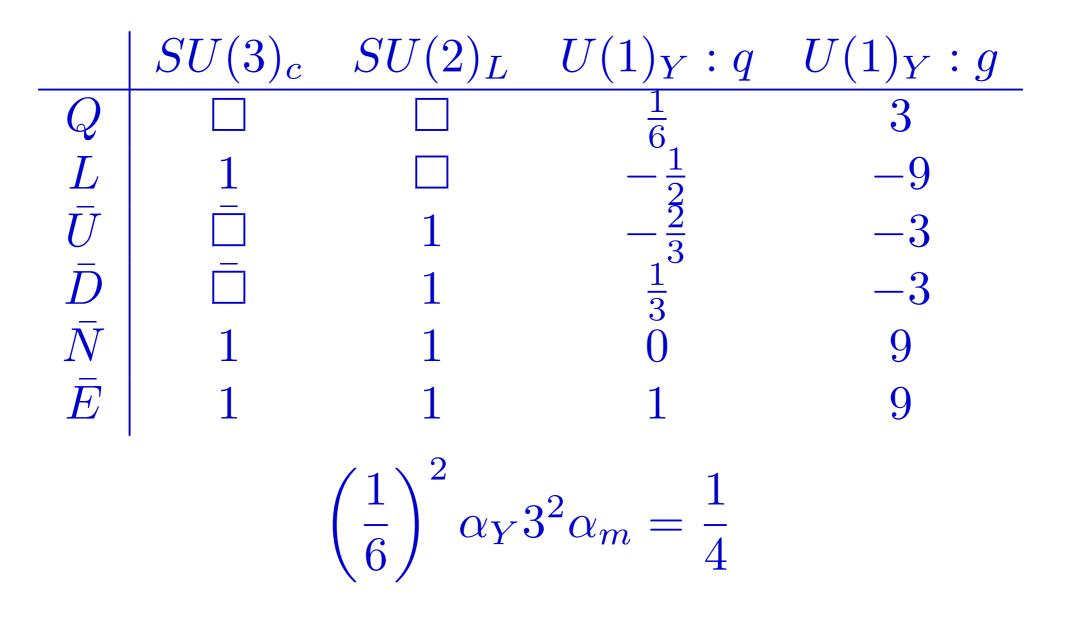


$U(1)^3$ Anomaly $\sum_{j} q_j^3 = 0$ $\sum_{j} q_j g_j^2 = 0$ $\sum_{j} q_j^2 g_j = 0$ $\sum_{j} g_j^3 = 0$

Toy Model

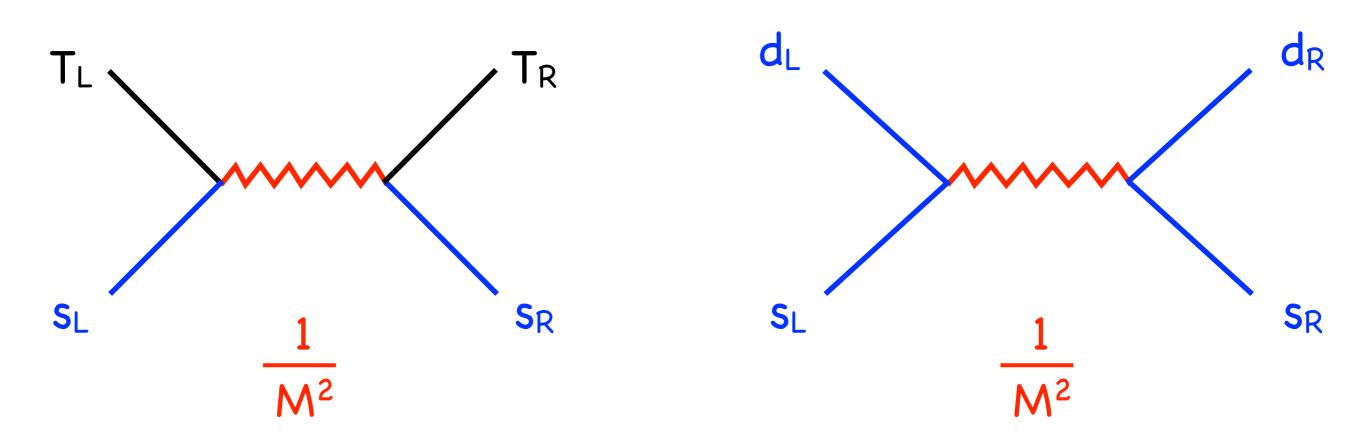


$$\sum_{j} q_{j}^{3} = 0 , \qquad \sum_{j} g_{j}^{3} = 0 , \qquad \sum_{j} g_{j}^{2} q_{j} = 0 , \qquad \sum_{j} q_{j}^{2} g_{j} = 0 , \qquad \sum_{j} q_{j} = 0 , \qquad \sum_{j} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 , \qquad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} T_{r_{j}}^{b$$

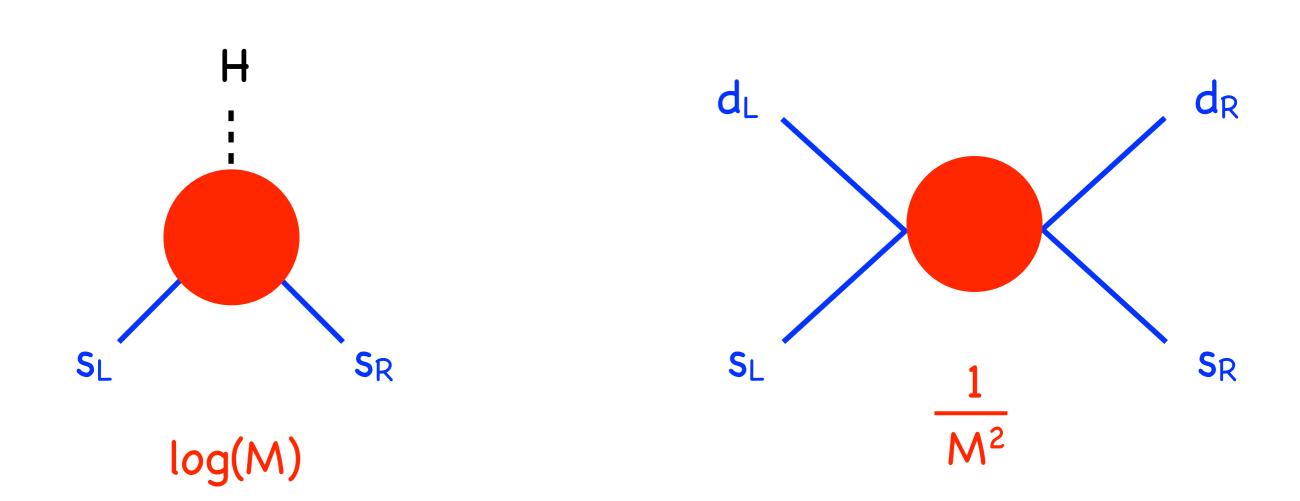


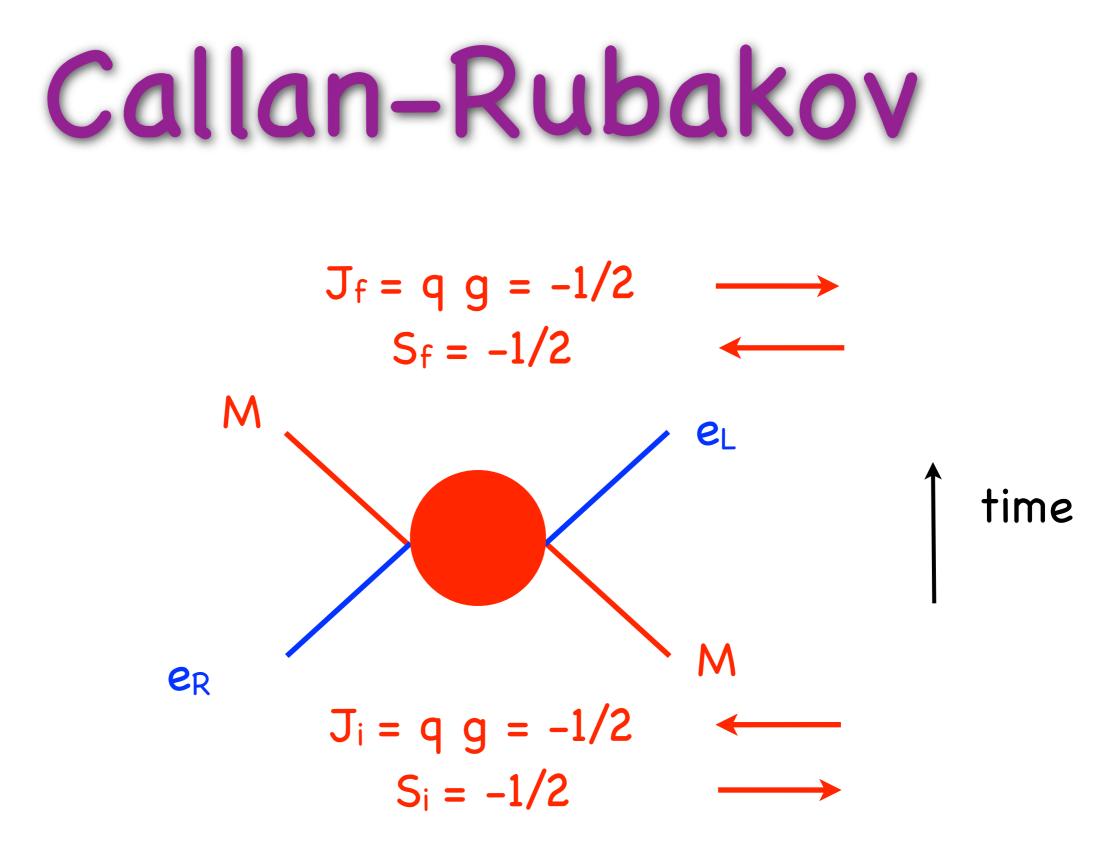
 $\alpha_m \sim 98$

technicolor: fail

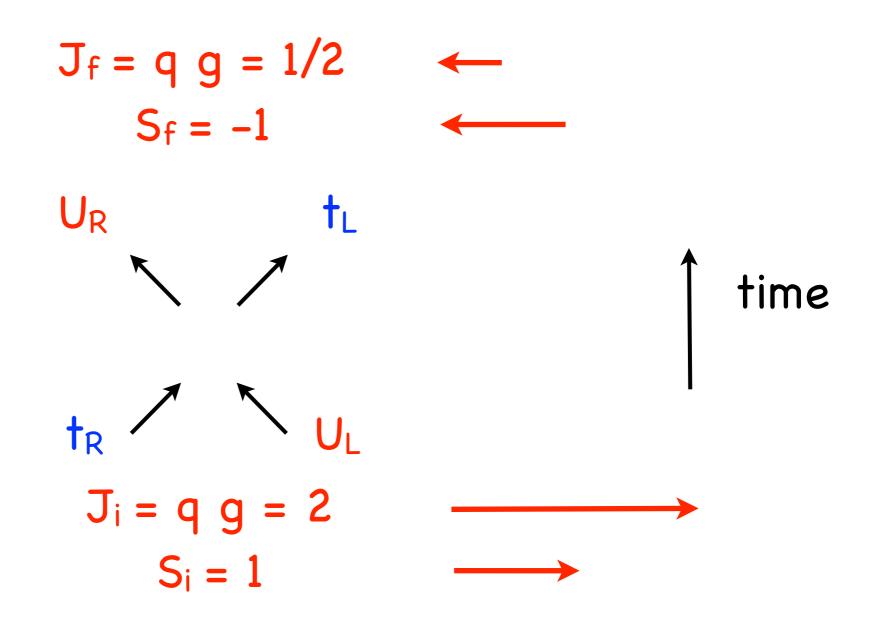


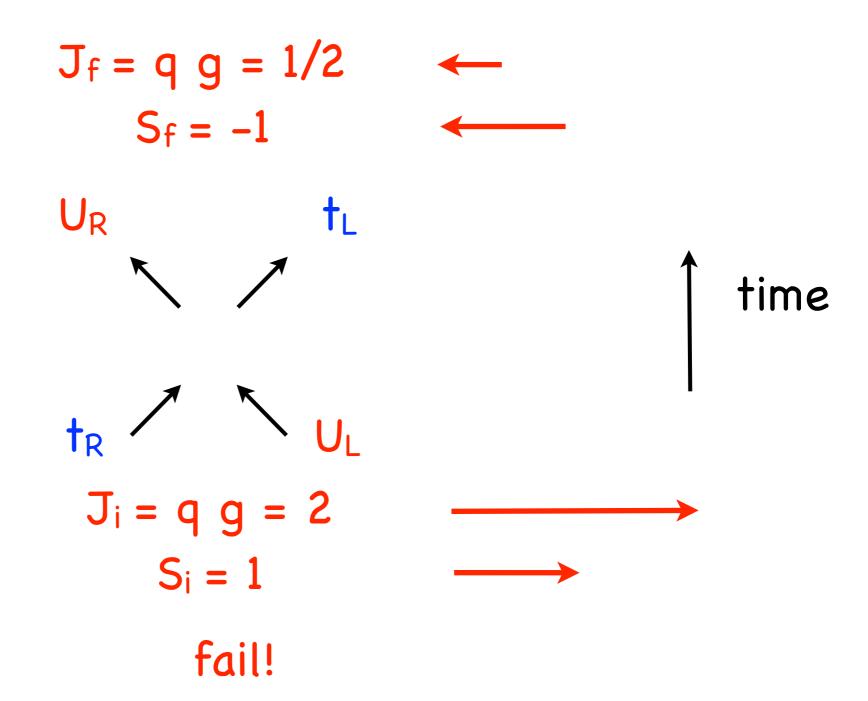
Standard Model

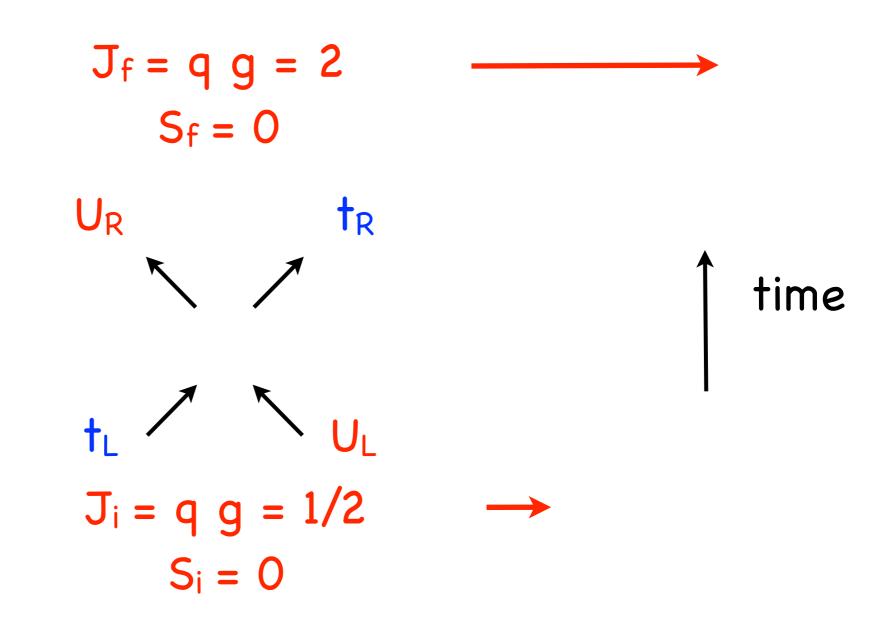


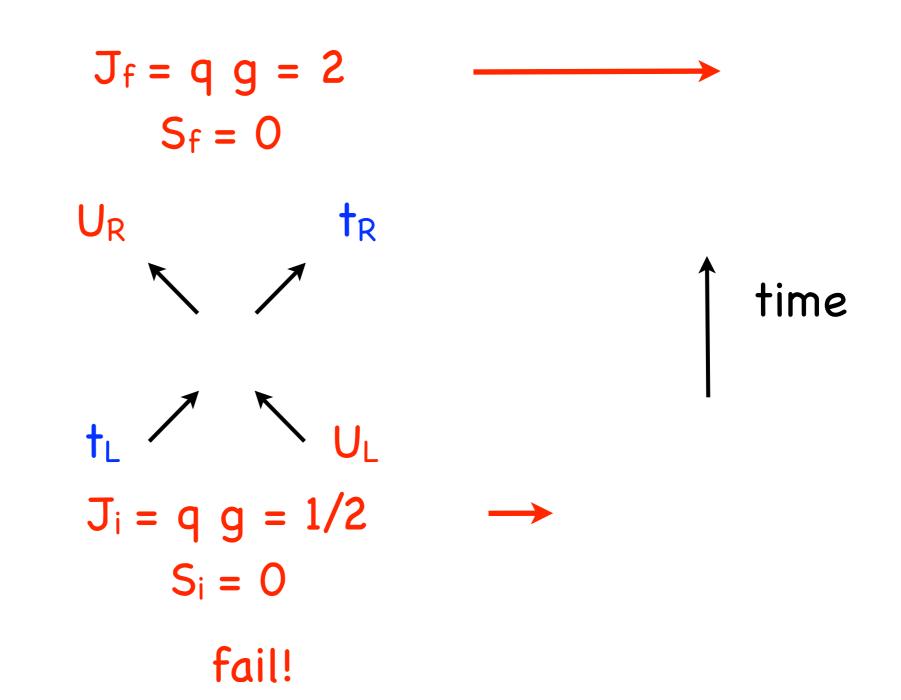


New dimension 4, four particle operator









non-Abelian magnetic charge

 $Q = T^3 + Y$

$$Q_m = T_m^3 + Y_m$$

explicit examples known in GUT models

EWSB is forced to align with the monopole charge

non-Abelian magnetic charge

 $Q = T^3 + Y$

$$e^{2\pi iQ} = e^{2\pi iT^3} e^{2\pi iY}$$
$$= \operatorname{diag}(e^{i\frac{1}{2}2\pi}, e^{-i\frac{1}{2}2\pi})$$
$$= Z$$

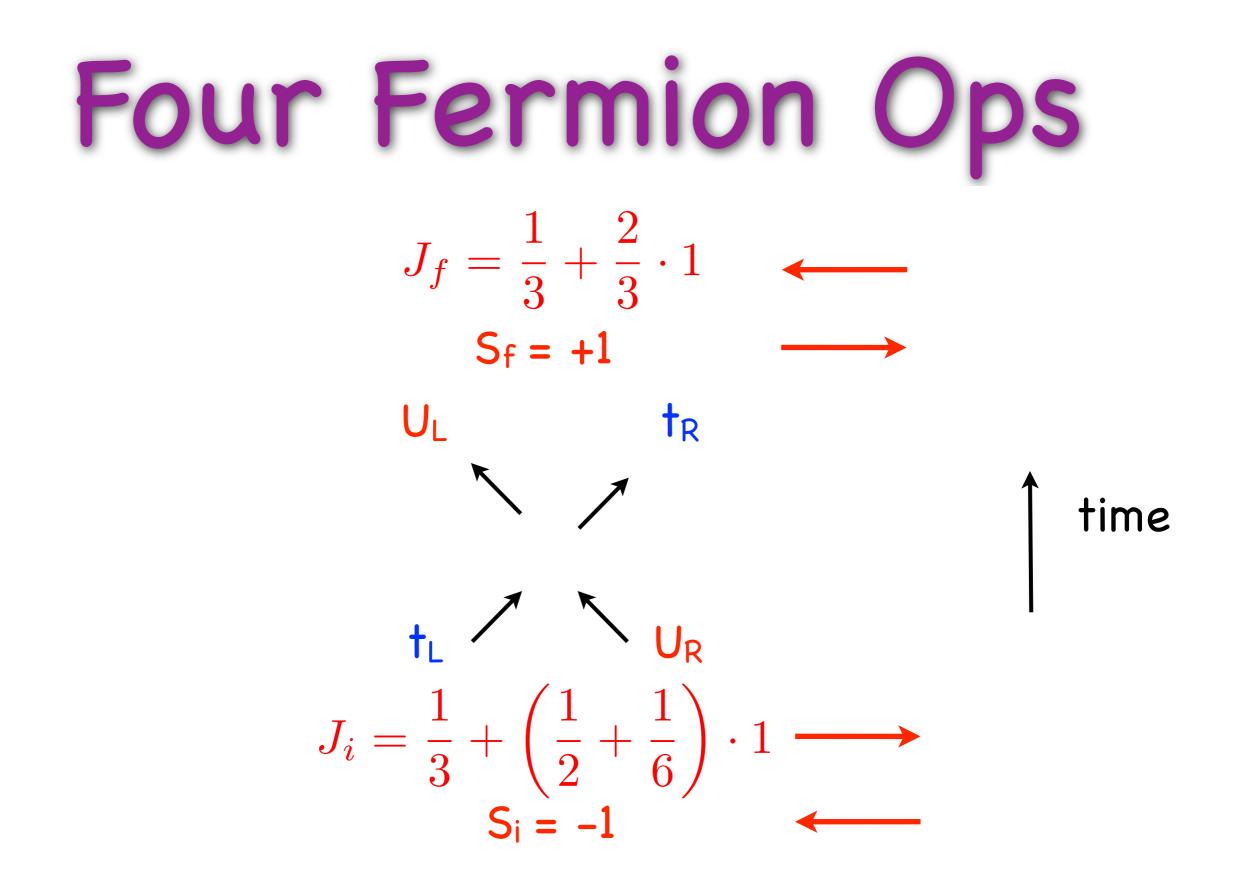
 $(SU(2)_L \times U(1)_Y)/Z_2$

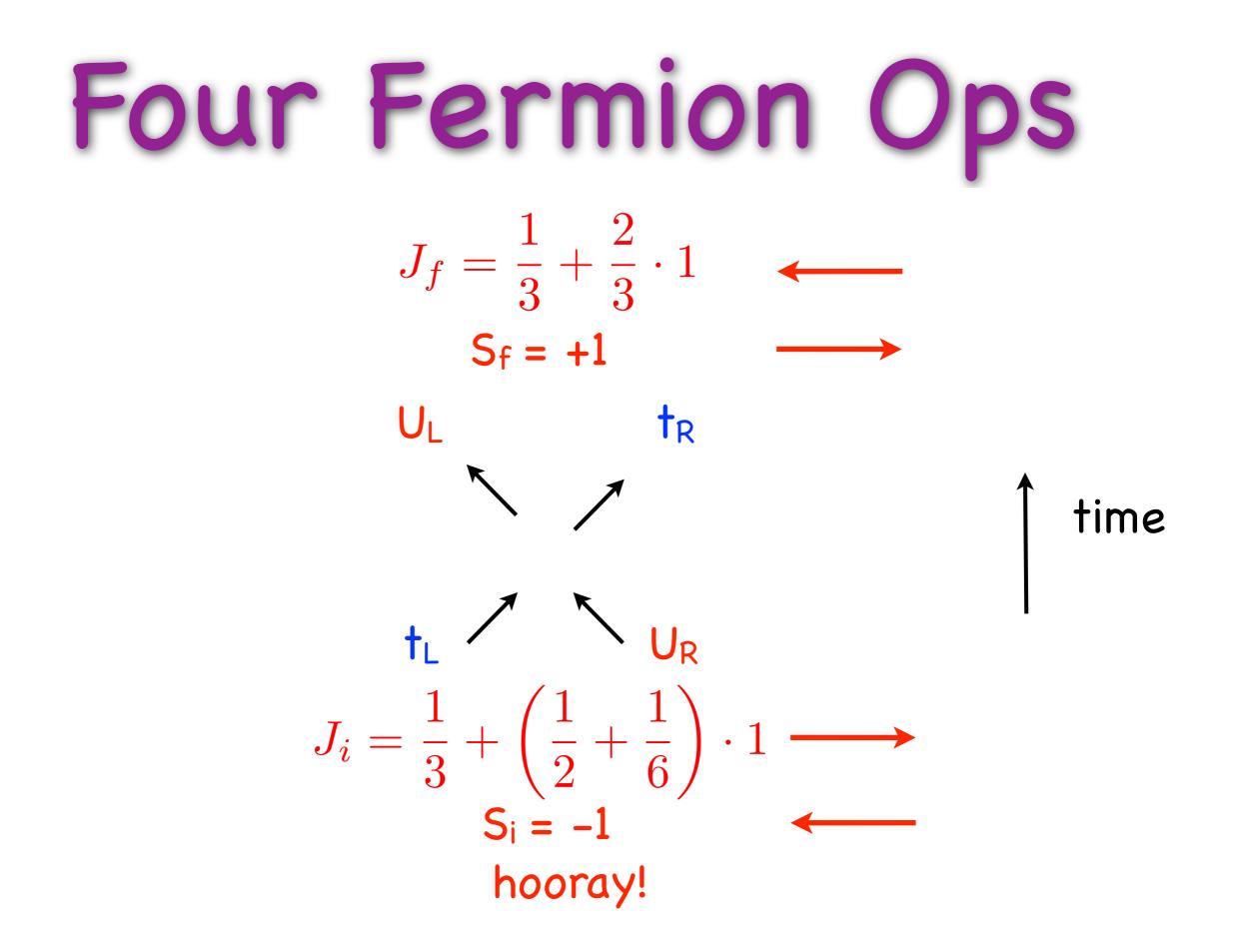
The Model

 $(SU(3)_c \times SU(2)_L \times U(1)_Y)/Z_6$

_		$SU(3)_c$	$U(1)^{el}_{EM}$	$U(1)^{mag}_{EM}$	$U(1)_Y^{el}$	$U(1)_Y^{mag}$
	U_L	\Box^d	$\frac{2}{3}$	1	$\frac{1}{6}$	1
	D_L	\Box^d	$-\frac{1}{3}$	1	$\frac{1}{6}$	1
	N_L	1	0	-3	$-\frac{1}{2}$	-3
	E_L	1	-1	-3	$-\frac{1}{2}$	-3
	U_R	\Box^d	$\frac{2}{3}$	1	$\frac{2}{3}$	1
	D_R	\Box^d	$-\frac{1}{3}$	1	$-\frac{1}{3}$	1
	N_R	1	0	-3	0	-3
	E_R	1	-1	-3	-1	-3

 $\alpha_m = \frac{1}{4\alpha} \approx 32$



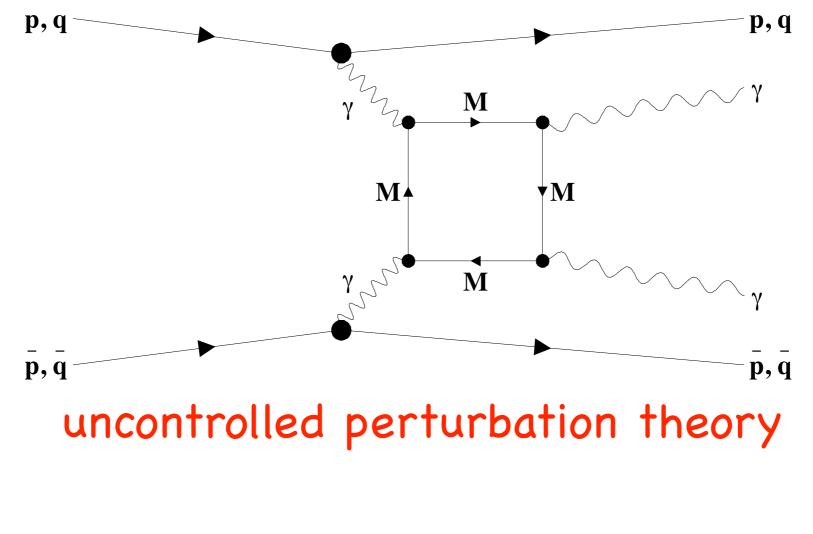


Variations

New U(1): weaker coupling but less elegant

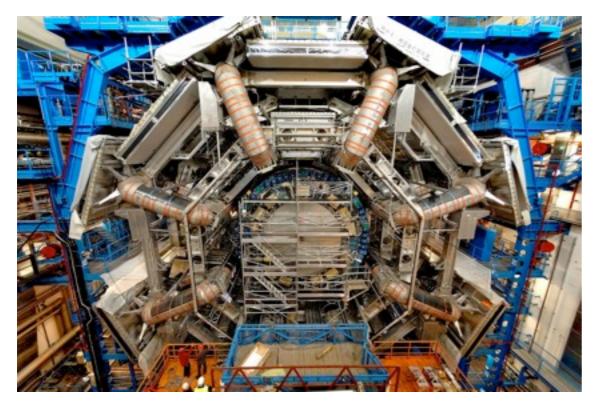
embed in a GUT?

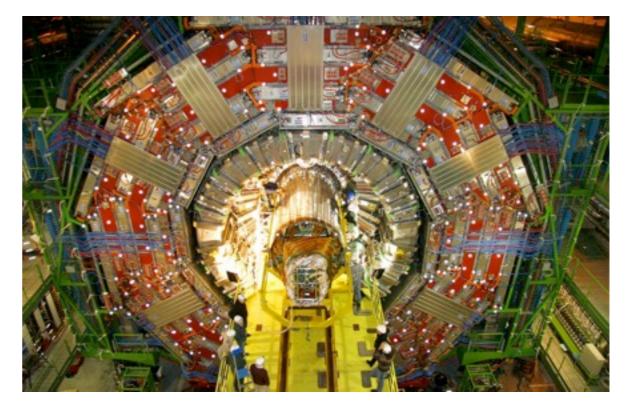
Phenomenology



Ginzburg, Schiller hep-th/9802310

pair production, unconfined, highly ionizing

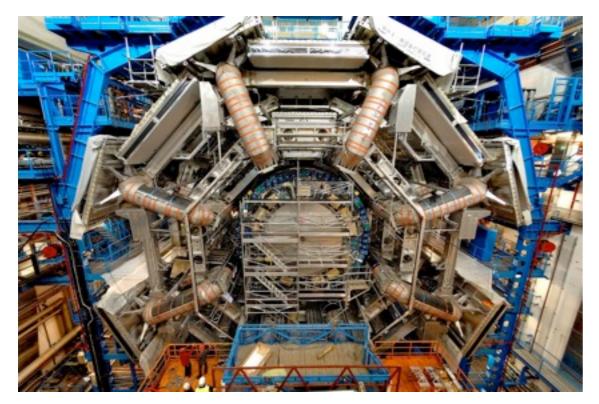


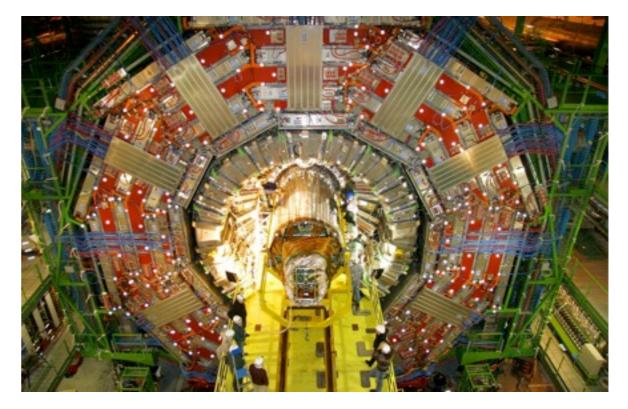


ATLAS has a trigger for monopoles

CMS does not

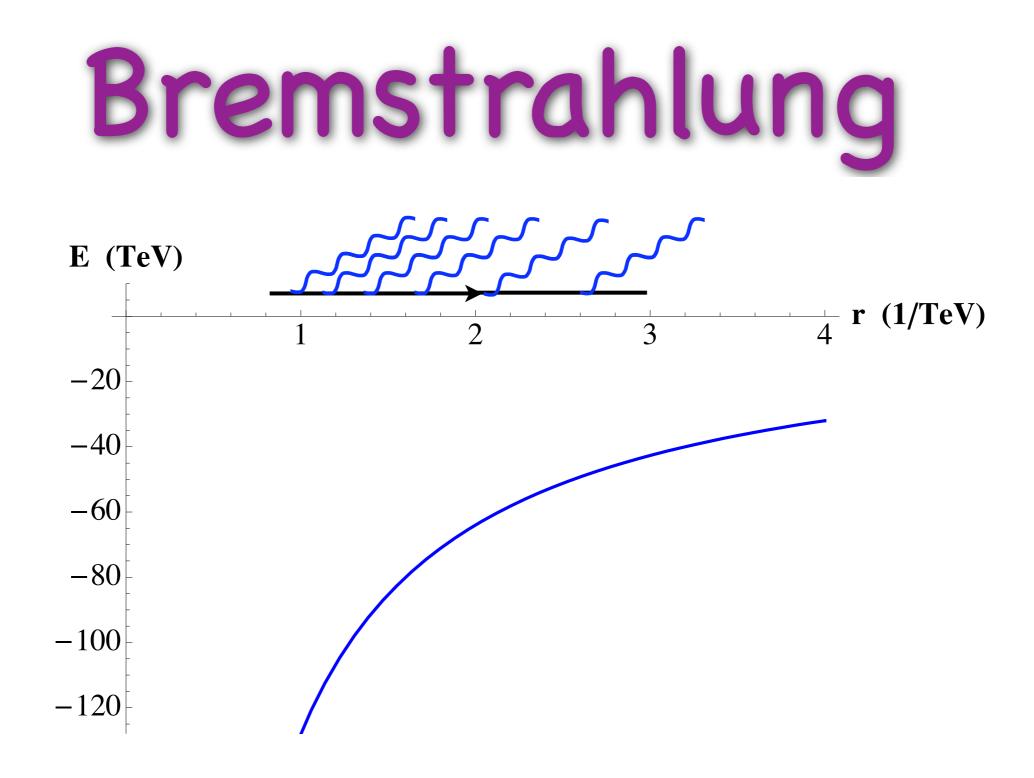
pair production, unconfined, highly ionizing



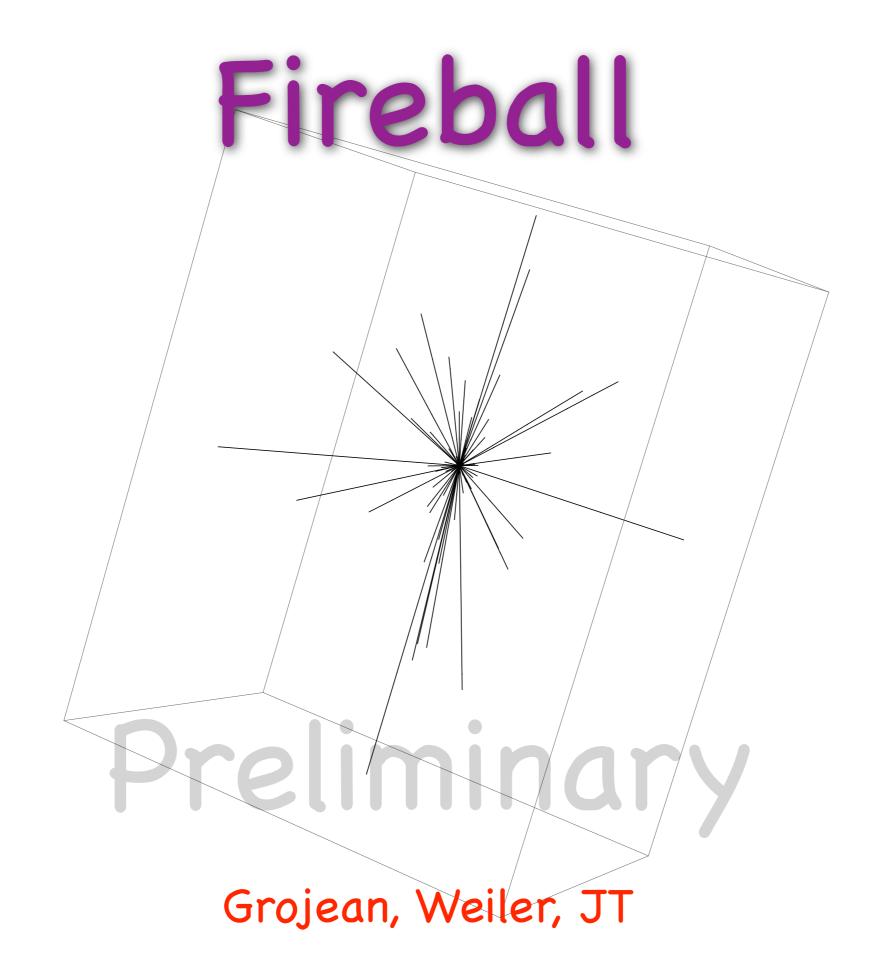


ATLAS has a trigger for monopoles

but it won't work



Grojean, Weiler, JT



Monopoles are still fascinating after all these years

Anomalies for monopoles can be easily calculated

monopoles can break EWS and give the top quark a large mass

the LHC could be very exciting