Phenomenology at the end of the Alphabet

Theory Landscape
Experimental Landscape

ESS, Phys. Rept. 539, 243 (2006)

Eric Swanson

- we seek to deepen our understanding of the emergent phenomena associated with nonperturbative field theory (confinement, chiral symmetry breaking, topological excitations, gluonic degrees of freedom)
- can we repeat the successes in building quantum mechanics via atomic spectroscopy and QCD via hadronic spectroscopy in the gluonic sector?

Theory Landscape

quark gluon

colour

Tiny and Strong

The "strong force" holds together particles in the nuclei of atoms. Without that binding force, there could be no atoms.

Each proton and neutron is made up of three **quarks** linked by **gluons.**

As the distance between two quarks increases, the attractive force between them grows — the opposite of gravity. This makes it impossible to pull out a single quark.

Three scientists won the Nobel Prize for formulas predicting how quarks would behave in nuclei that were smashed together with tremendous energy.

Later experiments confirmed their theories. The spray of particles from colliding nuclei, left, behaved as predicted.

Sources: Dr. Gordon L. Kane, University of Michigan; Dr. S. James Gates, University of Maryland; The Nobel Foundation

The New York Times

meson

hybrid

G. Bali et al., PRD71, 114513 (05)

molecule

tetraquark

glueball

SU(3) Glueball Spectrum

constituent quark model

 $V_{SI}(r) = -\frac{3}{4}\frac{\alpha_s}{r} + br$

$$V_{SD}(r) = \left(\frac{\sigma_q}{4m_q^2} + \frac{\sigma_{\bar{q}}}{4m_{\bar{q}}^2}\right) \cdot \mathbf{L} \left(\frac{1}{r} \frac{dV_{conf}}{dr} + \frac{2}{r} \frac{dV_1}{dr}\right) + \left(\frac{\sigma_{\bar{q}} + \sigma_q}{2m_q m_{\bar{q}}}\right) \cdot \mathbf{L} \left(\frac{1}{r} \frac{dV_2}{dr}\right) + \frac{1}{12m_q m_{\bar{q}}} \left(3\sigma_q \cdot \hat{\mathbf{r}} \sigma_{\bar{q}} \cdot \hat{\mathbf{r}} - \sigma_q \cdot \sigma_{\bar{q}}\right) V_3 + \frac{1}{12m_q m_{\bar{q}}} \sigma_q \cdot \sigma_{\bar{q}} V_4 + \frac{1}{2} \left[\left(\frac{\sigma_q}{m_q^2} - \frac{\sigma_{\bar{q}}}{m_{\bar{q}}^2}\right) \cdot \mathbf{L} + \left(\frac{\sigma_q - \sigma_{\bar{q}}}{m_q m_{\bar{q}}}\right) \cdot \mathbf{L} \right] V_5.$$

$$(1)$$

Eichten & Feinberg

constituent quark model

Gupta & Radford, PRD33, 777 (86)

constituent quark model

$$V_{1}(m_{q}, m_{\bar{q}}, r) = -br - C_{F} \frac{1}{2r} \frac{\alpha_{s}^{2}}{\pi} \left(C_{F} - C_{A} \left(\ln \left[(m_{q}m_{\bar{q}})^{1/2}r \right] + \gamma_{E} \right) \right) \right)$$

$$V_{2}(m_{q}, m_{\bar{q}}, r) = -\frac{1}{r} C_{F} \alpha_{s} \left[1 + \frac{\alpha_{s}}{\pi} \left[\frac{b_{0}}{2} [\ln (\mu r) + \gamma_{E}] + \frac{5}{12} b_{0} - \frac{2}{3} C_{A} + \frac{1}{2} \left(C_{F} - C_{A} \left(\ln \left[(m_{q}m_{\bar{q}})^{1/2}r \right] + \gamma_{E} \right) \right) \right) \right] \right]$$

$$V_{3}(m_{q}, m_{\bar{q}}, r) = \frac{3}{r^{3}} C_{F} \alpha_{s} \left[1 + \frac{\alpha_{s}}{\pi} \left[\frac{b_{0}}{2} [\ln (\mu r) + \gamma_{E} - \frac{4}{3}] + \frac{5}{12} b_{0} - \frac{2}{3} C_{A} + \frac{1}{2} \left(C_{A} + 2C_{F} - 2C_{A} \left(\ln \left[(m_{q}m_{\bar{q}})^{1/2}r \right] + \gamma_{E} - \frac{4}{3} \right) \right) \right] \right]$$

$$V_{4}(m_{q}, m_{\bar{q}}, r) = \frac{32\alpha_{s}\sigma^{3}e^{-\sigma^{2}r^{2}}}{3\sqrt{\pi}}$$

$$V_{5}(m_{q}, m_{\bar{q}}, r) = \frac{1}{4r^{3}}C_{F}C_{A} \frac{\alpha_{s}^{2}}{\pi} \ln \frac{m_{\bar{q}}}{m_{q}} \qquad (1)$$

Charmonium Vectors --Constituent Quark Model

Charmonium Vectors --Constituent Quark Model

JLab lattice results

Dudek, Roberts, Thomas, 0902.2241

level	mass / MeV	suggested state	model assignment
0	3106(2)	J/ψ	$1 {}^3S_1$
1	3746(18)	$\psi'(3686)$	$2{}^3S_1$
2	3846(12)	ψ_3	lat. artifact
3	3864(19)	$\psi^{\prime\prime}(3770)$	$1 {}^{3}D_{1}$
4	4283(77)	$\psi(`4040')$	$3{}^3S_1$
5	4400(60)	Y?	hybrid

JLab lattice results

Dudek, Roberts, Thomas, 0902.2241

sink level	suggested transition	$a_t \hat{E}_1(0)$	$egin{array}{l} eta/{ m MeV}\ \lambda/{ m GeV^{-2}} \end{array}$	$\Gamma_{\rm lat}/{ m keV}$	$\Gamma_{\rm expt}/{\rm keV}$
0	$\chi_{c0} ightarrow J/\psi\gamma$	0.127(2)	409(12) 1.14(5)	199(6)	131(14)
1	$\psi' ightarrow \chi_{c0} \gamma$	0.092(19)	164(55) 0[fixed]	26(11)	30(2)
3	$\psi^{\prime\prime} ightarrow \chi_{c0} \gamma$	0.265(33)	324(77) 0.58(56)	265(66)	199(26)
5	$Y_{ m hyb.} ightarrow \chi_{c0} \gamma$	0.00(3)	linear fit	$\lesssim 20$	-

sink level	suggested transition	$\hat{V}(0)$	$\frac{\beta/{\rm MeV}}{\lambda/{\rm GeV}^{-2}}$	$\Gamma_{ m lat}/ m keV$	$\Gamma_{\rm expt}/{\rm keV}$	
0	$J/\psi ightarrow \eta_c \gamma$	1.89(3)	513(7) 0[fixed]	2.51(8)	1.85(29)	
1	$\psi' ightarrow \eta_c \gamma$	0.062(64)	$530(110) \\ 4(6)$	0.4(8)	$0.95(16) \\ 1.37(20)$	
3	$\psi^{\prime\prime} ightarrow \eta_c \gamma$	0.27(15)	367(55) -1.25(30)	10(11)	-	
5	$Y_{ m hyb.} ightarrow \eta_c \gamma$	0.28(6)	250(200) 0[fixed]	42(18)	-	

JLab lattice results

Dudek & Edwards, hep-ph/0607140

T. Pedlar [CLEO], Moriond, 2009

*]()-4

$$\frac{Bf(J/\psi \to \gamma \eta)}{Bf(J/\psi \to \gamma \eta')} = \frac{11.01 \pm 0.29 \pm 0.22}{52.4 \pm 1.2 \pm 1.1} = 0.21 \pm 0.04$$

$$\frac{Bf(\psi(2S) \to \gamma\eta)}{Bf(\psi(2S) \to \gamma\eta')} = \frac{<0.02}{1.19 \pm 0.08 \pm 0.03} < 0.018$$

why the difference? Speculate that it is due to interference with hybrids?

T. Pedlar [CLEO], Moriond, 2009 PRL101, 101801 (2008)

$BF(J/\psi \to \gamma\gamma\gamma) = (1.17 \pm 0.3 \pm 0.1) \cdot 10^{-5}$

agrees with LO pQCD, but NLO is negative

T. Pedlar [CLEO], Moriond, 2009

$$\frac{\Gamma(h \to gg\gamma)}{\Gamma(h \to ggg)} = \frac{38}{5}Q^2 \frac{\alpha}{\alpha_s} [1 + (2.2 \pm 0.8)\frac{\alpha_s}{\pi}]$$

State	Ratio (<i>bb</i>) [PRD74 012003 (2006)]	Ratio (<i>cc</i> ̄)
3S	$(2.72 \pm 0.06 \pm 0.32 \pm 0.37)\%$	-
2S	$(3.18 \pm 0.04 \pm 0.22 \pm 0.41)\%$	$(6.5 \pm 2.5)\%$ (PRELIMINARY)
1S	$(2.70 \pm 0.01 \pm 0.13 \pm 0.24)\%$	$(13.7 \pm 1.7)\%$ [PRD78 032012 (2008)]

Table 1: Cross Sections (fb) for $e^+e^- \rightarrow J/\psi H$ at $\sqrt{s} = 10.6$					
Н	η_c	χ_{c0}	η_c'		
BaBar	$17.6 \pm 2.8 \pm 2.1$	$10.3 \pm 2.5 \pm 1.8$	$16.4 \pm 3.7 \pm 3.0$		
Belle	$25.6 \pm 2.8 \pm 3.4$	$6.4\pm1.7\pm1.0$	$16.5 \pm 3.0 \pm 2.4$		
BL	2.31 ± 1.09	2.28 ± 1.03	0.96 ± 0.45		
LHC	5.5	6.9	3.7		
Bondar	~ 33				
BLL	26.7		26.6		

$$R = \frac{\Gamma(\chi_{c2} \to \gamma\gamma)}{\Gamma(\chi_{c0} \to \gamma\gamma)} = \frac{4}{15}(1 - 1.76\alpha_s) = 0.12 \ (\alpha_s = 0.32)$$

W. Bardeen et al. PRD18, 3998 (78)

 $R = \frac{0.66 \pm 0.07 \pm 0.04 \pm 0.05 \text{ keV}}{2.36 \pm 0.35 \pm 0.11 \pm 0.19 \text{ keV}} = 0.278 \pm 0.050 \pm 0.018 \pm 0.031 \text{ CLEO, PRD78, 091501} (2008)$

note:
$$4/15 = 0.27!$$

$$R = \frac{\Gamma(\chi_{c2} \to \gamma\gamma)}{\Gamma(\chi_{c0} \to \gamma\gamma)} = \frac{4}{15}(1 - 1.76\alpha_s)$$

NRQ

W. Bardeen et al. PRD18, 3998 (78)

and the

Bodwin, Braaten, Lepage, PRD51, 1125 (95)

N. Brambilla et al., hep-ph/0604190

pCQM

bs

Ackleh, Barnes, & Close, PRD46, 2257 (92)

Lakhina & Swanson, PRD74, 014012 (06)

 e^+e^- widths

van Royen and Weisskopf

$$\Gamma({}^{3}S_{1} \to e^{+}e^{-}) = 16\alpha_{s}^{2}Q^{2}\frac{|\psi(0)|^{2}}{M^{2}}$$

$$\Gamma(^{3}D_{1} \to e^{+}e^{-}) = 50\alpha_{s}^{2}Q^{2}\frac{|\psi''(0)|^{2}}{M^{2}m_{c}^{4}}$$

state	qn	thy (keV)	expt (keV)
J/ψ	$1^{3}S_{1}$	12	5.40(17)
ψ'	$2^{3}S_{1}$	5	2.12(12)] mixing?
$\psi(3770)$	$1^{3}D_{1}$	0.06	0.26(4) f many:
$\psi(4040)$	$3^{3}S_{1}$	3.5	0.75(15)
$\psi(4159)$	$2^{3}D_{1}$	0.1	0.77(23)
$\psi(4415)$	$4^{3}S_{1}$	2.6	0.47(10)

the pi-rho puzzle

 $Q_h \equiv \frac{Bf(\psi' \to h)}{Bf(J/\psi \to h)} = \frac{Bf(\psi' \to e^+e^-)}{Bf(J/\psi \to e^+e^-)} \approx 12.7\%$

Appelquist and Politzer, PRL34, 43 (75)

Mo et al., hep-ph/0611214

Experimental Landscape

a word on the nb

our formerly comfortable world (cf. 1932 e,p,n)

	(expt) re	f params (m	odes signal	comments
*	Y(4350)	Z(4430)	$Z_1(4051)$	X(3872)
***	hep-ex/0610057 [30]	arXiv:0708.1790 [32]	PRD78, 072004 (08)	hep-ex/0309032 [349]
	X(4160)	Y(4260)	Y(4660)	
	arXiv:0708.3812 [13]	hep-ex/0506081 [161]	arXiv:0709.3699 [24]	
	Y(4140)	Y(3940)	X(3940)	h_c
*	0903.2229	hep-ex/0408126 [115]	hep-ex/0408126 [77]	hep-ex/0505073 [58]
	Y(4008)	X(4630)	Z(3940)	η_c'
*	arXiv:0707.2541 [22]	PRL101, 172001 (08)	hep-ex/0507033 [19]	hep-ex/0312058 [128]
	*	** robus	****	$\star \star \star \star$

	(expt) re	f params m	odes signal	comments
****	Y(4350) $J^{PC} = 1^{}$ $M = 4361 \pm 13$ $\Gamma = 74 \pm 18$	Z(4430) $J^{PC} =?^{??}$ $M = 4433 \pm 5$ $\Gamma = 45 \pm 25$ 6.5σ	$\begin{aligned} & Z_1(4051) \\ M &= 4051 \pm 20 \pm 30 \\ \Gamma &= 82 \pm 20 \pm 40 \\ M &= 4248 \pm 30 \pm 80 \\ \Gamma &= 177 \pm 50 \pm 100 \end{aligned}$	$\begin{array}{c} X(3872) \\ J^{\rm PC} = 1^{++} \\ M = 3871.4 \pm 0.6 \\ \Gamma < 2.3 \\ > 10 \sigma \end{array}$
***	$\begin{array}{c} X(4160) \\ {\rm J}^{\rm PC} = {\rm J}^{P+} \\ {\rm M} = 4156 \pm 29 \\ {\rm \Gamma} = 139 \pm 100 \\ 5.1 \sigma \end{array}$	Y(4260) $J^{PC} = 1^{}$ $M = 4264 \pm 12$ $\Gamma = 83 \pm 22$	Y(4660) $J^{PC} = 1^{}$ $M = 4664 \pm 12$ $\Gamma = 48 \pm 15$	
*	Y(4140) $M = 4143 \pm 2.9 \pm 1.2$ $\Gamma = 11.7 \pm 8$ 3.8σ	$egin{aligned} & Y(3940) \ & J^{ m PC} = J^{P+} \ & M = 3943 \pm 17 \ & \Gamma = 87 \pm 34 \ & 8\sigma \end{aligned}$	$egin{aligned} X(3940) \ J^{ m PC} &= J^{P+} \ M &= 3942 \pm 9 \ \Gamma &= 37 \pm 17 \ 5 \sigma \end{aligned}$	$\begin{array}{c} h_c \\ J^{PC} = 1^{++} \\ M = 3525.28 \pm 0.19 \pm 0.12 \\ \Gamma \approx 0 \\ > 5\sigma \end{array}$
*	Y(4008) $J^{PC} = 1^{}$ $M = 4008 \pm 60$ $\Gamma = 226 \pm 90$	$\begin{array}{c} X(4630) \\ J^{PC} =?^{??} \\ M = 4634 \pm 8 \pm 7 \\ \Gamma = 92 \pm 30 \pm 15 \\ 8.2 \ \sigma \end{array}$	$egin{aligned} & Z(3940) \ & J^{ m PC} = 2^{++} \ & { m M} = 3929 \pm 5 \ & \Gamma = 20 \pm 10 \ & 5.5 \sigma \end{aligned}$	η'_{c} $J^{PC} = 0^{-+}$ $M = 3654 \pm 6 \pm 8$ $\Gamma = 15 \pm 20$
		* * robus	stness	

	(expt) re	f params (m	odes signal	comments
-	Y(4350)	Z(4430)	$Z_1(4051)$	X(3872)
	$e^+e^- \to \gamma_{\rm ISR} \psi' \pi^+ \pi^-$	$\begin{array}{c} B \to KZ \\ Z \to \pi^{\pm} \psi' \end{array}$	$\begin{array}{c} B \to KZ_1 \\ Z_1 \to \chi_{c1} \pi^{\pm} \end{array}$	$B \to KX; \ p\bar{p}$ $X \to \pi^{+}\pi^{-}J/\psi$ $X \to \pi^{+}\pi^{-}\pi^{0}J/\psi$ $X \to \gamma J/\psi; \ X \to \gamma \psi(2S)$ $X(3875) \to D^{0}\bar{D}^{0}\pi^{0}$
	X(4160)	Y(4260)	Y(4660)	
	$e^+e^- \to J/\psi X$ $X \to D^*\bar{D}^*$	$e^+e^- \to \gamma_{\rm ISR} J/\psi \pi^+\pi^-$	$e^+e^- \to \gamma_{\rm ISR} \psi' \pi^+ \pi^-$	
	Y(4140)	Y(3940)	X(3940)	h_c
**	$p\bar{p} \to B \to J/\psi\phi K$	$B \to KY$ $Y \to \omega J/\psi$	$e^+e^- \rightarrow J/\psi X(3940)$ $X(3940) \rightarrow D\bar{D}^*$	$\psi' ightarrow \pi^0 h_c \ h_c ightarrow \gamma \eta_c$
	Y(4008)	X(4630)	Z(3940)	η_c'
*	$e^+e^- \to \gamma_{\rm ISR} J/\psi \pi^+\pi^-$	$e^+e^- \to \Lambda_c^+ \Lambda_c^-$	$\gamma\gamma ightarrow Dar{D}$	$\begin{array}{c} \gamma\gamma \to \eta_c' \\ \eta_c' \to K_S^0 K^{\pm} \pi^{\mp} \end{array}$
	*	** robus	***	****

	(expt) re	f params (m	odes signal	comments
	Y(4350)	Z(4430)	$Z_1(4051)$	X(3872)
	?	tetraquark D*D1 molecule threshold effect artefact	tetraquark hadrocharmonium artefact	DD* molecule threshold effect <u>tetraquark</u>
	X(4160)	Y(4260)	Y(4660)	
	?	hybrid (ccg) threshold effect	radial hybrid (ccg) 5S vector f ₀ ψ' <u>molecule</u>	
	Y(4140)	Y(3940)	X(3940)	h_c
*	tetraquark artefact	threshold effect	χ_{cJ}'	tests long range spin dynamics
	Y(4008)	X(4630)	Z(3940)	η_c'
	?	threshold effect	χ'_{c2} sets scale for 2P states (inverted?)	tests O(1/m ²) dynamics
	*	* * robus	tness	****

X(3872)

The X(3872) in 1992

Figure 6.12 $\psi\pi\pi$ mass spectrum, standard cuts, negative beam.

A single peak above background does not fit the observed signal well. A second peak above the ψ was added to the fit to improve this. The fit parameters are shown on the following page:

6-705

Tom LeCompte, Northwestern thesis E705 at FNAL

X(3872) ...

Tornqvist, 0308277 Close & Page, PLB578, 119 (04) ESS, PLB588, 189 (2004) Molecular State (fast version)

- Model X as a $D\overline{D}^*$ state with admixture of $\omega \psi$ and $\rho \psi$
- microscopic model = oπe + quark dynamics;
 project onto continuum channels.
- find only one bound state with $J^{PC} = I^{++}$
- X decays via ρψ to ππψ and ωψ to πππψ with comparable strength (isospin violation is natural in this model)

$\hat{\chi}_{c1}$ decay widths

weak binding \rightarrow use free space decay widths to estimate dissociation decay modes

$D^{0*} D^{0*} D^{-*} D^{-*} D^{-*} \rho \rho \omega \omega \rho \omega$

$B_E ({\rm MeV})$	$D^0 \bar{D}^0 \pi^0$	$D^0 \bar{D}^0 \gamma$	$D^+D^-\pi^0$	$(D^+ \bar{D}^0 \pi^- + c.c)/\sqrt{2}$	$D^+D^-\gamma$	$\pi^+ \pi^- J/\psi$	$\pi^+\pi^-\gamma J/\psi$	$\pi^+\pi^-\pi^0 J/\psi$	$\pi^0 \gamma J/\psi$
0.7	67	38	5.1	4.7	0.2	1290	12.9	720	70
1.0	66	36	6.4	5.8	0.3	1215	12.1	820	80
2.0	57	32	9.5	8.6	0.4	975	9.8	1040	100
3.8	52	28	12.5	11.4	0.6	690	6.9	1190	115
6.1	46	26	15.0	13.6	0.7	450	4.5	1270	120
9.0	43	24	16.9	15.3	0.8	285	2.9	1280	125
12.7	38	22	18.5	16.7	0.9	180	1.8	1240	120

$$\frac{\Gamma(\hat{\chi} \to \pi \pi \pi J/\psi)}{\Gamma(\hat{\chi} \to \pi \pi J/\psi)} = 0.56$$

dipion spectrum

CDF note 05-03-24

 $X \to 3\pi J/\psi$

$$\frac{\Gamma(X \to \omega J/\psi)}{\Gamma(X \to \pi^+ \pi^- J/\psi)} = 1.0(4)(3)$$

Abe et al [Belle], hep-ex/0505037

new from BaBar...

Aubert et al., 0809.0042

$$\frac{Bf(X \to \gamma \psi(2S))}{Bf(X \to \gamma J/\psi)} = 3.5(1.0)$$

 $a_{\chi} = \sqrt{2} Z_{00}^{1/2} \int d^3k \, \psi_X(k) \mathcal{A}(-k)$

state	$E_B (MeV)$	a (fm)	Z_{00}	$a_{\chi} \ ({\rm MeV})$	prob
χ_{c1}	0.1	14.4	93%	94	5%
	0.5	6.4	83%	120	10%
χ'_{c1}	0.1	14.4	93%	60	100%
	0.5	6.4	83%	80	> 100%

Other Molecules

ESS, probably will never complete....

I=0 $D^*\bar{D}^*$ states

no MM mixtures

state	J^{PC}	channels	mass (MeV)	E_B
$D^*\bar{D}^*$	0++	${}^{1}S_{0}, {}^{5}D_{0}$	4019	1.0
$B\bar{B}^*$	0^{-+}	${}^{3}P_{0}$	10543	61
$B\bar{B}^*$	1^{++}	${}^{3}S_{1}, {}^{3}D_{1}$	10561	43
$B^*\bar{B}^*$	0^{++}	${}^{1}S_{0}, {}^{5}D_{0}$	10579	71
$B^*\bar{B}^*$	0^{-+}	${}^{3}P_{0}$	10588	62
$B^*\bar{B}^*$	1^{+-}	${}^{3}S_{1}, {}^{3}D_{1}$	10606	44
$B^*\bar{B}^*$	2^{++}	${}^{1}D_{2}, {}^{5}S_{2}, {}^{5}D_{2}, {}^{5}G_{2}$	10600	50

interest

Z+(4430) ...

S.-K Choi et al. [Belle] 0708.1790

 $B \to K \pi^+ \psi'$

• not seen in $B \to K \pi^+ J/\psi$

- $D^*D_1(2420)$ threshold effect
- $D^*D_1(2420)$ molecule $(J^P = (2,1,0)^-)$
- $[\bar{c}\bar{u}][cd]$ <u>tetraquark</u> radial excitation ($J^{P}=I^{+}$)

• search for the Z in $\gamma p \rightarrow \psi' \pi^+ n$ Liu, Zhao, Close, arXiv:0802.2648

• NOT seen by BaBar

Mokhtar, 0810.1073

Mokhtar, 0810.1073

Interpretations

Llanes-Estrada, hep-ph/0507035

- no available <u>vector</u> (4S=4415, 2D=4159)
- vector hybrid [at 4200-4400]?

S-L Zhu, hep-ph/0507025

Close & Page, hep-ph/0507199

 the first vector S-wave open charm channel is at 4285 (DD₁) or 4309 (DD₁): a cusp? a molecule?

Y(3940)

• too light for a ccg hybrid (@ 4200-4400)

 D*D* molecule? (0++ at 4020, but pulled down by coupling to DD and coupling to cc)

Interpretations

• possible 2P cc states

$n^{(2S+1)}L_J$	mass	width		
$2^{3}P_{2}$	3979	80	$\rightarrow D^* \bar{D},$	$D\bar{D}$
$2^{3}P_{1}$	3953	165	$\rightarrow D^* \bar{D}$	V
$2^{3}P_{0}$	3916	30	$\rightarrow D\bar{D}_{-}$	
$2^{1}P_{1}$	3956	87	$\rightarrow D^* \bar{D}$	

T. Barnes, S. Godfrey, ESS, hep-ph/0505002

but Y coupling to $\omega \psi$?

X(3940)...

$$e^+e^- \to \psi X(3940) \to \psi D\bar{D}^*$$

$$X \stackrel{?}{=} \chi'_{c1}, \chi'_{c2}$$

But $e^+e^- \rightarrow \psi \chi_{c1}$ is not seen.

Possibly the η_c'' ? But M_{CQM} = 4064...

interest

Y(4660)

X.-L. Wang et al. [Belle] PRL99, 142002 (2007)

Y(4008)

C.-Z. Yuan et al. [Belle] PRL99, 182004 (2007)

interest

BaBar, hep-ex/0610057 Shuwei Ye, QWG06

 $e^+e^- \to \psi(2S)\pi^+\pi^-$

$M = 4324 \pm 24$ $\Gamma = 172 \pm 33$

interest

X(4160)

I. Adachi et al. [Belle] 0708.3812

$$e^+e^- \to J/\psi D^*\bar{D}^*$$

$$M = 4156 \pm 29$$

$$\Gamma = 139^{+113}_{-65}$$

CharmoniumVectors

CharmoniumVectors

$Z^{+}(4430)$ citations

Paper 1 to 32 of 32

1) The two-body open charm decays of \$Z^+(4430)\$.

Xiang Liu, Bo Zhang, Shi-Lin Zhu . Mar 2008. 6pp. <u>Temporary entry</u> e-Print: **arXiv:0803.4270** [hep-ph]

2) Z+(4430) as a D(1)-prime D* (D(1) D*) molecular state.

Xiang Liu (Peking U. & Coimbra U.), Yan-Rui Liu (Beijing, Inst. High Energy Phys.), Wei-Zhen Deng, Shi-Lin Zhu (Peking U.). Mar 2008. 13pp.

e-Print: arXiv:0803.1295 [hep-ph]

<u>3)</u> D(s)D* molecule as an axial meson.

<u>Su Houng Lee (Yonsei U.)</u>, <u>Marina Nielsen</u> (<u>Sao Paulo U.</u>), <u>Ulrich Wiedner</u> (<u>Ruhr U., Bochum</u>). Mar 2008. 5pp. e-Print: **arXiv:0803.1168** [hep-ph]

4) Dynamics study of Z+(4430) and X(3872) in molecular picture.

Xiang Liu (Peking U. & Coimbra U.), Yan-Rui Liu (Beijing, Inst. High Energy Phys.), Wei-Zhen Deng (Peking U.). Feb 2008. 6pp. Contributed to Workshop on Scalar Mesons and Related Topics Honoring 70th Birthday of Michael Scadron (SCADRON 70), Lisbon, Portugal, 11-16 Feb 2008.

e-Print: arXiv:0802.3157 [hep-ph]

5) Search for tetraquark candidate Z(4430) in meson photoproduction.

Xiao-Hai Liu (Beijing, Inst. High Energy Phys.), Qiang Zhao (Beijing, Inst. High Energy Phys. & Surrey U.), Frank E. Close (Oxford U., Theor. Phys.). Feb 2008. 16pp. e-Print: arXiv:0802.2648 [hep-ph]

<u>6</u>) How Resonances can synchronise with Thresholds.

D.V. Bugg (Queen Mary, U. of London) . Feb 2008. 19pp. Replaces 0709.1254. e-Print: **arXiv:0802.0934** [hep-ph]

7) Possibility of Exotic States in the Upsilon system.

Marek Karliner (Tel Aviv U.), Harry J. Lipkin (Tel Aviv U. & Weizmann Inst. & Argonne). TAUP-2869-07, WIS-03-08-FEB-DPP, ANL-HEP-PR-08-7, Feb 2008. 5pp. e-Print: arXiv:0802.0649 [hep-ph]

8) The Exotic XYZ Charmonium-like Mesons.

Stephen Godfrey (Ottawa Carleton Inst. Phys. & Carleton U.), Stephen L. Olsen (Beijing, Inst. High Energy Phys. & Hawaii U.). Jan 2008. 28pp. Submitted to Ann.Rev.Nucl.Part.Phys.

Diquarks and the New Charmonia

 $M([cq]_S) = 1933$

 $M([cq]_V) = 1933$

Maiani, Piccinini, Polosa, Riquer; PRD71, 014028 (2005) Bigi, Maiani, Piccinini, Polosa, Riquer; PRD72, 114016 (2005) Maiani, Riquer, Piccinini, Polosa; PRD72, 031502 (2005) Maiani, Polosa, Riquer; PRL99, 182003 (2007) Maiani, Polosa, Riquer; arXiv:0708.3997

Assume a spin-spin interaction

$$|0^{++}\rangle = |[cq]_S[\bar{c}\bar{q}]_S; J = 0\rangle$$
(1)

$$|0^{++'}\rangle = |[cq]_V[\bar{c}\bar{q}]_V; J = 0\rangle$$
(2)

$$|1^{++}\rangle = \frac{1}{\sqrt{2}} \left(|[cq]_S[\bar{c}\bar{q}]_V; J=1\rangle + |[cq]_V[\bar{c}\bar{q}]_S; J=1\rangle \right)$$
(3)

$$|1^{+-}\rangle = \frac{1}{\sqrt{2}} \left(|[cq]_S[\bar{c}\bar{q}]_V; J=1\rangle - |[cq]_V[\bar{c}\bar{q}]_S; J=1\rangle \right)$$
(4)

$$|1^{+-\prime}\rangle = |[cq]_V[\bar{c}\bar{q}]_V; J = 1\rangle$$
(5)

$$|2^{++}\rangle = |[cq]_V[\bar{c}\bar{q}]_V; J = 2\rangle \tag{6}$$

beyond the SM

• CP violation in J/ ψ decays

- lepton flavour violation in J/ ψ decays Bf $(J/\psi \rightarrow \mu\tau) < 2.0 \cdot 10^{-6}$ Bf $(J/\psi \rightarrow e\tau) < 8.3 \cdot 10^{-6}$ Bf $(J/\psi \rightarrow e\mu) < 1.1 \cdot 10^{-6}$
- effects of a light pseudoscalar Higgs in ↑ decays
- nonstandard Higgs-mediated leptonic decays of Υ

Future Opportunities

- SuperB at KEK (has received some funding, not approved yet, Japanese govt is seeking outside funding for detectors)
- PANDA at FAIR at GSI (multibillion dollar upgrade to GSI)
- LHCb: B physics at the LHC
- ATLAS and CMS: have hadronic research programmes
- JLAB 12 GeV upgrade (next month!, cost=\$300M)
- BESIII upgrade
- Belle (ongoing)

Conclusions

- [the D_s spectrum and] the X's (Y's, Z's,...) "challenge our understanding of QCD"
- new states are charmonia, artefacts, threshold enhancements, hybrids, multiquarks,?...
- the constituent quark model must fail somewhere.
 Are we seeing it?
- Can an effective EFT approach be constructed?

+ ÆRIC MEC HEHT GEWYRCAN

K. Abe [Belle], hep-ex/0507033 T. Lesiak, H05

seen in
$$\gamma\gamma \to DD$$

С

M=3931(4)
$$\Gamma = 20(8)$$

ompare to M= 3972/3979 3931

$$\Gamma = 80$$
 47
 $Bf(D\bar{D}) = 50\%$ 70%
 $\Gamma(\chi'_{c2} \to \gamma \psi') = 250(5) \text{ keV}$

T. Barnes, S. Godfrey, ESS, hep-ph/0505002

 χ'_{c2}

3638(4) $\Gamma = 19(10)$ [3594(12)]

 $J/\psi - \eta_c = 117$

[108/123] T. Barnes, S. Godfrey, ESS, hep-ph/0505002

$\psi' - \eta'_c = 48$

CLEO, PRL92, 142001 (04)

CBALL, PRL48, 70 (82)

[42/53]

T. Barnes, S. Godfrey, ESS, hep-ph/0505002

 η_c'

$$\begin{array}{c}3524(1)\\1c\\3525.28(36)\\3518\end{array}$$

CLEO, hep-ex/0505073 CLEO, PRL101, 182003

T. Barnes, S. Godfrey, ESS, hep-ph/0505002

$$\chi_{cog} = \frac{1}{9}(\chi_{c0} + 3\chi_{c1} + 5\chi_{c2}) = 3525.36$$

This tests the Dirac structure of the confining potential

Y(4140)

b)

Aaltonen et al. [CDF] arXiv:0903.2229

$$p\bar{p} \to B \to YK \to J/\psi\phi K$$

$$M = 4143.0 \pm 2.9 \pm 1.2$$

$$\Gamma = 11.7^{+8.3}_{-5.0} \pm 3.7$$

$$\sigma = 3.8$$

suspect FSI, but anomalously narrow(?!)

1.4 1.5

 ΔM (GeV/c²)

Candidates/10 Me/

0

1.2

1.1

1.3

 $Z_1(4051)$

 $Z_1(4248)$

R. Mizuk et al. [Belle] PRD78, 072004 (08)

 $\bar{B}^0 \to K^- Z_1 \quad Z_1 \to \chi_{c1} \pi^+$ $M = 4051 \pm 14^{+20}_{-41}$ $\Gamma = 82^{+21+47}_{-17-22}$

 $> 5\sigma$

Home News Image Bank

A communication resource from the world's particle physics laboratories

About Interactions.org
Image Bank
Video Channel
Notice Board
Blog Watch
Resources
Policy and Funding
Physics and Society
Education
Universities / Institutes
Future
Contact Us

Workspaces

>> News Wire

Sign up for our newswire and receive the latest press releases from particle physics labs around the world.

Energy Accelerator Research organization (KEK) in Tsukuba, Japan, the "Belle collaboration"*1, has

announced the discovery of three new exotic sub-atomic particles, labeled as Z_1, Z_2 and Y_b. The Z_1 and Z_2 states have unit electric charge, by which these particles are clearly distinguished from normal quarkantiquark mesons, and thus can be identified as particles consisting of four quarks. The Y_b structure may be the first clear example of an exotic hybrid particle, which contains the bottom guark and its anti-particle (an anti-bottom guark) as in a conventional meson but with an excited gluon as well.

X(4630)

a classic final state interaction enhancement

