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The problem of matching of parton showers to QCD matrix 
elements is a very important one for LHC physics.  

It is not possible to obtain reliable predictions for BSM 
background processes such as W + jets and tt + jets from 
parton shower Monte Carlos alone.

Peter Skands has introduced the idea of matching in some 
detail.  In this talk, I will describe some progress in my 
approach to this subject.  So far, my method gives a 
working code only for the simplest case, the final-state 
shower in                  .h0 → ng



There are two basic approaches to matching:

    Additive:

Use matrix elements in a particular (hard scattering) region of 
phase space; use parton showers in the rest of phase space.

e.g.  method of CKKW (Catani-Krauss-Kuhn-Webber):
 use matrix elements when partons momentum transfers are 
greater than      ; use parton showers when the momentum 
transfers are less.

    Multiplicative:

Use partons showers in all of phase space, but reweight events 
to take matrix elements into account.

Q2
0



All of the codes actually used now by experimenters to 
analyze data are of the additive type:

     W, Z, t + jets, with matrix elements up to 4-jet emission

              ALPGEN, MADEVENT, SHERPA, HELAC

                 (see the talk of F. Maltoni)
                
    correction of parton showers to incorporate exact 1-loop
        calculations 

          MC@NLO    Frixione, Webber, Nason
          POWHEG    Frixione, Nason, Oleari

Any codes matched to PYTHIA or HERWIG are necessarily 
additive, because these showers do not cover all of phase 
space.



For concreteness, concentrate on the simplest case:

         the shower in 

Begin by writing -- using                  QCD tree amplitudes only: 

After the 2 gluon term, all contributions to the sum are infinite.

This is corrected by inclusion of loop amplitudes. These combine 
with tree amplitudes to cancel infrared divergences. The finite 
terms left over give             corrections (e.g. ‘K-factors’).

However, QCD loop amplitudes are difficult to compute and, in a 
Monte Carlo, expensive to evaluate. 

h0 → ng

h0 → ng

O(αs)

Prob(n) =
∫

dΠn|M(h→ ng)|2



A parton shower deals with this in the following way:

Let      be an ordering variable among the parton emissions, e.g.   
                                                           (‘virtuality ordering’).  
Each emission is assigned a definite value of        .

Then let

for one emission. This is the Sudakov integral.  The probability 
that there is no emission between      and         is 

Including these probabilities or Sudakov factors, the total 
probability of a Higgs decay  becomes

With appropriate choice of                    ,

t
t = log(m2

h/sij), sij = (ki + kj)2
t

S(tn, tn+1) =
∫ tn+1

tn

dΠ |m(→ g)|2

tn tn+1

exp[−S(tn, tn+1)]

∑

n

Prob(n) = 1S(ti, ti+1)

Prob(n) =
∫

dΠn|M(h→ ng)|2
∏

i

e−S(ti,ti+1)



This method incorporates the most important effects of loop 
diagrams, though it does not capture the K-factors and other 
finite radiative corrections.

In a parton shower, the full emission amplitude is taken to 
factorize by stages. At each stage, one takes the emission 
amplitude to be the Altarelli-Parisi splitting function.  This is 
correct in the collinear limit (only).

My goal here is to apply a formula

where                        is the exact QCD tree amplitude to as high 
a level as my computer has the strength to compute it.

[Caution:  Here, ‘exact’ =  leading order in        only.]

Prob(n) =
∫

dΠn|M(h→ ng)|2
∏

i

e−S(ti,ti+1)

M(h→ ng)

Nc



Bauer, Tackmann, and Thaler have emphasized that, to use the 
multiplicative method, it is necessary for the parton shower to 
exactly cover phase space.  Here is my solution to this problem.
To be most effective, I should preferentially generate points in 
phase space in the soft and collinear regions.  

An effective trick has been introduced by Draggiotis, van 
Hameren, and Kleiss as the basis of their SARGE algorithm

Start with two back-to-back lightlike vectors.   Add a third 
lightlike vector

Then boost and rescale to the original CM frame and energy.  

p3 = ξ1p1 + ξ2p2 + p⊥



To add the fourth vector, pick two neighbors, boost these 
back-to-back, add a vector as before, and then boost the 
entire system back to the CM frame.

Effectively, the entire event recoils when a new vector is 
added.



The logarthmic integral over the parameters reproduces massless 
phase space

Applying this operation repeatedly, we build up phase space with 
all of the QCD denominators for emission of final-state radiation
that are found in the exact, leading-        amplitudes.   

∫
d3p3

(2π)22p3

2p1 · p2

2p1 · p3 2p3 · p2
=

1
(4π)2

∫
dξ1

ξ1

∫
dξ2

ξ2

∫
dφ

2π

∫
dΠn

1
2p1 · p2 2p2 · p3 · · · 2pn · p1

=
1

8πQ4

∏

i

[
1

(4π)2

∫
dξ1i

ξ1i

∫
dξ2i

ξ2i

∫
dφ

2π

]

Nc



This is an exact formula for massless phase space with QCD 
denominators, but only if we integrate over every point in 
phase space exactly once.

Draggiotis, van Hameren, and Kleiss suggested adding the 
vectors 1, 2, 3 in fixed (color) order.  This requires very large 
values for the     to reproduce some phase space 
configurations.

An alternative approach is to choose arbitrarily at each step 
one interval in which to insert a new vector.  We call the set of 
such choices a chamber.   It is then necessary to define the 
limits of each chamber so that the full set of chambers tiles 
phase space.

ξi



Here is a useful definition of a chamber:

Let the nth vector be inserted between 1 and 2.  Then allow 
all values of                 such that

           is the smallest invariant mass of two neighbors,
       and

Reversing the inequality defines a 
second chamber in which n is radiated
on the left side of 1.

These prescriptions put reasonable
upper limits on the        integrals.

The ordering of virtualities        is 
similar to the ordering in a parton shower.   In fact, we can 
identify       with the evolution variable of a parton shower.

s1n

sn2 < s13

s1n
sn2

s31

sij

ξ1j

ξ1, ξ2, φ

sij



Here is the proof that this method tiles phase space:

Just go backward.  For an n-gluon configuration,

pick the smallest           to be the emission chamber, and choose 
the smaller of the            on the two sides to complete the dipole.  
Proceding in this way, each point in phase space gives a unique 
path back to the 2-gluon state.

s1n
sn2

s31

si,i+1
si,i+1



s1n
sn2

s31

We can look at the emission in the chamber 

between 1 and 2, on the side of 1

as an emission from the gluon 1
in the antenna (in the sense of Skands, 
Weinzierl, et al.) of gluons 1 and 2.

At each stage in the shower, I choose an antenna and 
an emission side at random.

The correspondence to Altarelli-Parisi is 

and  

(1− z) =
1

(1 + ξ1 + ξ2)
∫

dξ2

ξ2

∫
dξ1

ξ1
≈

∫
dQ2

Q2

∫
dz

z(1− z)



So, using the SARGE meaure and choosing all weights = 1 
corresponds to the formula

with

This is very convenient, because it is an exact result in QCD that

In addition, each antenna automatically has color-coherence it its 
emission

This is the more correct expression of the physics implemented in 
PYTHIA and HERWIG by angular ordering.

Prob(n) =
∫

dΠn|M(h→ ng)|2
∏

i

e−S(ti,ti+1)

|M(h→ ng)|2 =
m8

h

s12s23 · · · sn1

M(h → g+
1 g+

2 · · · g+
n ) =

m4
h

〈12〉〈23〉 · · · 〈n1〉

∫
dΠ

1
s12s23

Dixon, Glover, 
Khoze



For a simple parton shower, I choose for the numerators of the 
splitting functions:

for                                              respectively.  Note that, in the 
last of these functions, the numerator cancels the collinear 
singularity.

We could also use more complicated weights. In particular, the  
prescription

reweights the emissions to the probabilities given by exact tree-
level matrix elements.  We can use this prescription as long as 
our computer has the strength to compute the matrix elements.

w =
|M(h→ ng)|2/|M(h→ (n− 1)g)|2

(2p1 · p2)/(2p1 · pn)(2pn · p2)

1 ,
1

(1 + ξ1 + ξ2)4
,

ξ4
1

(1 + ξ1 + ξ2)4
,

ξ4
2

(1 + ξ1 + ξ2)4

+→ (++,−+,+−,−−)



To generate QCD tree amplitudes, I use the Britto-Cachazo-Feng 
recursion formula for on-shell, color-ordered  amplitudes:

The BCF formula recursively breaks amplitudes down (numerically, 
on the fly) to the simpler exact results for                       and 
           all + or all - gluons.

iM(1 · · ·n) =
∑

splits

iM(b + 1 · · · î · · · a− 1 − Q̂)

· 1
sa···b

· iM(a · · · ĵ · · · b Q̂)

h0 → 2g, 3g,
h0 →



Now look at some results from the simulation:

All results refer to a Higgs of mass 1000 GeV, showered to an 
infrared cutoff scale of 2 GeV.  Since we are doing shower 
physics, not Higgs physics, I use the effective interaction

 
without apology.

First, the simple shower without matching.   This runs at 

                     4 events / msec

on my MacBook.  

δL =
αs

12πv
h FµνFµν







VINCIA









Now add matching to matrix elements.

There is a small problem here.  For the PYTHIA rejection 
algorithm to work properly, we must choose g(t) to bound all 
possible weights.  But, large weights can appear !

One large weight  W means that typical branches are selected 
with probability   1/W .  This dramatically slows the process.





In the formula

       never gets bigger than about 1.5.  However, some A’s are very 
small, and, in a series of emissions, a large A can follow a small A.  
This leads to large weights                     .  

The problem occurs because the chamber prescription above 
sometimes emits a high-energy gluon between two lower-energy 
gluons.

A better prescription is: 
This also tiles phase space precisely.

|A|2

|An/An−1|2

z1 < z3 or (s12 + s14) < (s32 + s34)

M =
Am4

h

〈12〉〈23〉 · · · 〈n1〉
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With this change, here is the speed of event generation 
     (msec/event)

pure shower:     0.42 

     matching to   4 gluons        6 gluons      8 gluons

                             2.1               6.4               78.

     Here are some results of these simulations.
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(detail of the previous plot)



Conclusions:

This is a proof of principle for a new way to incorporate exact 
matrix elements into a parton shower.  Only the simplest 
situation has been implemented so far.  

The method generalizes to processes with massive particles in 
the final state and to processes with initial state radiation.  
However, these generators are not yet running  (so you should 
still be skeptical). 

Still, there is promise that this method might develop into an 
interesting tool for modeling multijet QCD processes.


