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Several of us here attended the recent

“IPMU Focus week on Determination of Masses and Spins of New 
Particles at the LHC”     March 16-20

organized by Mihoko Nojiri and Bryan Webber.

The conference agenda and most of the transparencies are posted 
at:  http://www.ipmu.jp/seminars/20090316-focusweek.html

There is clearly an overlap of topics between that meeting and 
this one.  Hsin-Chia asked me to summarize what was discussed.

http://www.ipmu.jp/seminars/20090316-focusweek.html
http://www.ipmu.jp/seminars/20090316-focusweek.html


The talks covered a number of interesting topics.

I group these into four categories:

1.  Talks by “friends of         ” :
 
            Barr, Lester, and Gripaios, Choi and Cho,  Kong,
                        Nojiri, Sakurai, and Takeuchi

2.  Talks on related topics that we will hear at this workshop

    geometrical understanding of equations for kinematic
               endpoints   -    Myeonghun Park
    general theory of spin asymmetries with missing particles
                                -  K. C. Kong
     how MADGRAPH can rule the world (and why 
           that is a Good Thing)   -   Johan Alwall / Claude Duhr
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3.  Talks on other topics in BSM phenomenology,  e.g., 

       Jet angular correlation in Vector Boson Fusion
                  -   Kentaro Mawatari 
    
       How to discover                       with 
                     -   Mariangela Lisanti
 
        An extra-dimension model with the phenomenology of 
              gauge-mediated SUSY  -     Csaba Csaki

       Threshold region for                    -    Hiroshi Yokoya

4.  Experimental summaries from jaded world travellers
               -     (e.g.  Albert de Roeck)

In this summary, I will concentrate on applications of          .

h0 → a0a0 m(a0) < mb

gg → g̃g̃
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To begin, let me place          in a scheme for analyzing the results 
of new physics measurements:

anomalies w. resp. to SM                    precise kinematic endpoints

   OSETs                   max. kinematic region
                                 (UC Davis method)
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utility for low lumi

theoretical precision

method depends on the actual spectrum



Begin with transverse mass           :

The transverse energy of a particle A is

then, if  

Thus, definite the transverse mass of C as

Then                           ;     equality if                  .
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For example, in                         only the (missing) transverse 
momentum of the    is observable.   The transverse mass of the W 
is

In an ideal measurement, this 
cuts off sharply at          .  Even
in practice, this is an excellent 
way to determine the mass 
of the W.

But, what if there are two 
missing particles in the final 
state, as would be 
typical for SUSY ?

W+ → µ+ν

m2
TW = 2ET !ETν − !pT ! · !pTν

mW

CDF

ν



Lester and Summers:

Divide the missing         into two pieces in an arbitrary way.  Define

Some split must be the right one.  For this choice, both values of 
        are lower bounds to the decaying SUSY particle mass.

Example of slepton pair 
production and decay:

pT

m2
T2 = min

pT,miss=p1
T +p2

T

{max
i=1,2

[ m2
T (Ai + pTi) ] }
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The philosophy of           is that there is an advantage in working 
with a quantity that is a rigorous bound.

An example (Barr, Grapaios, and Lester): 

Consider the 2-lepton systems to be A; its mass can be measured.
Consider the 2-neutrino system to be the invisible decay product;
its mass is unknown and varies from event to event.

Rainwater and Zeppenfeld had proposed a similar analysis in 
which          is estimated by         in the same event.   Setting 
                 works better, producing a sharper endpoint and a 
better estimate of        .

h0 →WW ∗ → !+!−νν

m2
T = m2

!! + m2
νν + 2(E!!Eνν + !pT !! · !pTνν)

≥ mT (m2
νν = 0)

mνν
mνν = 0

m!!

mh
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We have seen that, when we do not know the mass of the invisible 
particle, we can usefully consider          or           as a function of 
the unknown mass.  

An important property is that           is monotonically increasing as 
a function of the unknown mass.

Here is an application:  (Cho, Choi, Kim, and Park):

                           with the 3-body decay

mT

mT2
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g̃ → qqNgg → g̃g̃



Consider the decay configurations:

The best solution for 
       has a large value 
of the momentum;
         is relatively 
insensitive to the 
assumed value of        

The best solution for 
         has 
         varies linearly with 
the assumed value of 

pT1

pT1 = 0pT1
mT2 mT2

mN

mN

But, at the true value of        ,           should equal the gluino 
mass regardless of the kinematic configuration, 
as long as                  .

mN mT2

ηqq = ηN



This means that there will be a crossover, with one configuration 
giving a stronger lower bound for small        and the other for 
large        .

The resulting lower bounds, as a function of        , have a kink at 
the correct value!

mN

mN

mN

Barr, Gripaios, Lesteroriginal Cho et al.



It is also possible to combine          constraints with other 
kinematic constraints in the problem    (Barr)

e.g. the                           decay cascade

The usual endpoint constraint gives the mass splitting between
       and        . 

The          constraint gives a 
lower bound on              which 
is a function of             .

Combining these, we obtain 
upper and lower bounds 
on              and             .   

N
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Use of the          vectors (Cho, Choi, Kim, Park):

Having determined the masses, use the solution for       , with 
       equal to the       of the visible decay products, as an 
estimator of the missing momentum 3-vector.

This is called          - assisted on-shell  (MAOS) reconstruction.

The MAOS vectors can be used to construct production and decay 
angles for spin determination.

The method can be improved systematically:  The MAOS 
momentum is more accurate if we select events closer to the 
          endpoint.

pT1
ηN η

mT2

mT2

mT2



SUSY                              UED
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Several significant problems remain, even for the conceptual 
parton-level analyses that I am discussing.

First, if there are many final-state jets, there is a combinatoric 
ambiguity in associating them to parents.  This is especially true if 
the production of SUSY particles contains associated production of
             with, e.g.,                      .

Nojiri and her students have been exploring methods to deal with 
this problem:   hemisphere         ,    subsystem         .    (Burns, 
Kong, Matchev, and Park have also explored these ideas.)

q̃ + g̃ q̃ → q + g̃
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Find two hard objects in the event  (e.g. the two leading-     jets).
Use these as the basis of a division into hemispheres (Moortgat 
and Pape).   Sort other objects in the event into one hemisphere 
or the other according to, e.g., distance from the two reference 
vectors in the            plane.

For hemisphere         ,  assign the jets in each hemisphere to one 
parent particle and use the two sets of jets to define         .

For subsystem         relevant to              associated production,
throw out the hardest jet in the event and associate the 
remaining jets into two groups by hemisphere.

mT2
mT2
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(η, φ)

q̃ + g̃



Nojiri, Sakurai, Shimizu, and Takeuchi

subsystem

computed/true
(parton level)
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Another important problem is initial- and final-state QCD 
radiation.  We idealize that a SUSY production event contains only 
the jets from SUSY particle decays.

But, at a hadron collider, we can have as many jets as we want by 
going to lower and lower      .   Often, the extra jets come to us 
when we do not want them !

With Alwall, Hiramatsu, and Shimizu, Nojiri has been studying this 
question by generating SUSY pair + 1 jet events using MADGRAPH.

pT



model with gg → g̃g̃

select events 
with exactly 4 jets

all events passing SUSY cuts



A better strategy:

Look at the 5 highest       jets in the event.

Remove one jet.  Associate the others in pairs.  
Compute         .

Take the minimum of the          values obtained.  
This should have an endpoint at             .   The 
excluded jet is likely to be an ISR jet.

pT

mT2
m(g̃)
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MADGRAPH                        MADGRAPH + PYTHIA + ACERDet



There is an interesting sanity check on this idea:

An initial-state gluon comes from initial-state quark splitting.
If the gluino mass is large, we need a hard initial-state gluon.  
This would come from radiation from a valence quark.  Many of 
these radiations occur at relative high       .

The recoil quark would then show up in the event, as an extra 
jet at high     .

pT

pT

η
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Conclusion:

            is a powerful object to add to our kinematic toolbox.

It is useful as a preformed method, 
                        but more useful as a way of thinking.

The vectors that solve the          constraint can themselves be 
useful in kinematic analyses.

More uses of          are out there.   Can you find a new one ?mT2
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