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First “understood” data
Won’t be well understood

will have some handle on detector response to jets from 
earliest studies 

won’t have sophisticated jet corrections (partonic jets), 
just raw/uncorrected jets

primitive flavor tagging (enrichment)

observables that are available will be strongly correlated 
by both physics and systematics

want to keep these errors to a minimum

bad time for a global analysis



ET(miss) + jets @ LHC
j1

X1

j2
X2

ET/

ET/

NP

New Physics + Parity
SUSY: R-parity (baryon #)

Little Higgs: T-parity (cust. SU(2))

Universal Extra Dim.: KK-parity

Parities keep protons from decaying, prevent gross 
violation of flavor constraints, keep MW consistent 

with exp., and (if exact) provide dark matter



Starting point

There is a 5 sigma excess in a MET+jets 
search with 100pb-1 

We don’t utilize any other potential 
search channels (i.e. that don’t trigger 
on MET)

Goal: design an analysis efficient for 
model discrimination and robust 
considering limitations of early data



What will be in early data sets?
(CMSPTDR)

Study of SUSY benchmark scenarios

series of cleanup/analysis/bkgd rej. cuts on ET trigger sample

up to 25% eff. on signal

for σ~5pb, > 5σ discovery in 100pb-1!

we adopt very similar analysis path (bkgds are done)

New:  we go beyond the benchmarks (even non-SUSY) and 
refine/develop the analysis for efficiency in model 
discrimination
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Table 1. Cumulative selection efficiency after each requirement in the Emiss
T + multijets analysis path for a low mass

SUSY signal and the major Standard Model backgrounds (EWK refers to W/Z,WW/ZZ/ZW ), see [10,11]).

Cut/Sample Signal tt̄ Z(→ νν̄)+ jets EWK + jets

All (%) 100 100 100 100

Trigger 92 40 99 57

Emiss
T > 200 GeV 54 0.57 54 0.9

PV 53.8 0.56 53 0.9

Nj ≥3 39 0.36 4 0.1

|ηj1
d | ≥ 1.7 34 0.30 3 0.07

EEMF ≥ 0.175 34 0.30 3 0.07

ECHF ≥ 0.1 33.5 0.29 3 0.06

QCD angular 26 0.17 2.5 0.04

Isolead trk = 0 23 0.09 2.3 0.02

EMF (j1),
EMF (j2) ≥ 0.9 22 0.086 2.2 0.02

ET,1 > 180 GeV,
ET,2 > 110 GeV 14 0.015 0.5 0.003

HT > 500 GeV 13 0.01 0.4 0.002

events remaining per 1000 pb−1

6319 54 48 33

– The Muon20 trigger requires an energetic muon
that is not necessarily isolated. The trigger is 88%
efficient for muons with pT = 20 GeV, asymptoting
to 95% as seen in Figure 4.

After applying the selection requirements, these
four triggers define four potential discovery data sets.
In our simulation the DiJet, TriJet, and Muon20 data
sets, after the inclusive missing energy analysis path
is applied, are all subsets of the MET sample, apart
from one or two events per 1000 pb−1 3. Thus the
MET is the largest, most inclusive sample. We perform
one complete analysis based on the MET trigger. The
other three triggers are then treated as defining three
more boxes, i.e. experimentally well-defined subsets of
the MET discovery data set. The simplest physics ob-
servables are the counts of events in each box.

2.3 Backgrounds and systematics

In the CMS study the total number of Standard Model
background events remaining after all selections is 245
per 1000 pb−1 for an Emiss

T trigger sample. The error
on this estimate is dominated by i) the uncertainty
in how well the detector simulation software simulates

3 A perfectly designed trigger table will give rise to over-
laps among datasets from different trigger paths due to
both physics and slow/non-sharp trigger efficiency turn-
ons (resolution).
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Fig. 1. The Emiss
T trigger efficiency.

the response of the actual CMS detector, and ii) the
uncertainty on how well the Standard Model event
generators emulate QCD, top production, and W/Z
plus jets production. Detailed studies of the real LHC
data will be required in order to produce reliable esti-
mates of these uncertainties.

Prior to data we assign conservative error bars on
these background projections. We have checked that,

focuses on 2 WIMP final 
states (Njets ≥2)

QCD pileup, radiation often 
gives a third jet

efficient for signal, strong 
reduction of background



Models
Little Higgs

produce heavy T-odd quarks

decay to lightest T-odd particle
(neutral vector boson)

Hierarchy problem saved by 
global symmetries

cancellations with same spin

SUSY

produce squarks + gluinos

decay to lightest R-odd particle
(neutralino)

Hierarchy problem saved by spin 
statistics and SUSY coupling 

relations

cancellations with opp. spin
Lookalikes:  Same # events in MET analysis path



Our Toolkit

Models
(Theory)

Hard Process
2 → 2 (N)
(MG/ME)

Showering and hadronization
(PYTHIA)

Detector Simulation
(PGSCMS)

Analysis
binning, histograms

plots
(ExRootAnalysis)

on shell decays
(BRI/DGE)

Ours

Ours

Madgraph/MadEvent
Great tool for BSM

easy to put in a new model
keeps spin correlations



Observables
Want to focus on robust objects

shapes, distributions, too sensitive to systematics, 
poor simulation, etc.

not good for moment of discovery

Large bins bring this problem under better control

“Boxes” - Hide the distributions

Ratios of counts in diff. boxes

lower systematics since many are common to all 
boxes - cancel out



Simplest Boxes
MET

Muon20 DiJet

TriJet



Observables:  Ratios

systematics cancel effectively 

from about 20% down to about 5%

luminosity uncertainty - completely

pdf uncertainty - partially

higher order corrections - partially



Flavor Enrichment

tau enrichment

for each jet, .375 cone, 
count tracks > 2 GeV, if 
only one, and > 15 GeV, call 
tau

b enrichment

if muon within .2 of jet 
axis, call b
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appropriate endpoints at mT2 = mp, and notice the
onset of tails above the endpoints. The dotted lines
in the figure guide the eye to where the distributions
cut off for data samples of 100 pb−1 and 1000 pb−1.
Obviously for 100 pb−1 we are not close to populating
the endpoints.

However it is clear that even for 100 pb−1 there are
significant differences between the mT2 distributions of
the two models. These differences only become larger
if we use the same input mass for the LSP. Thus mT2

is at least as interesting for look-alike discrimination
as the more traditional kinematic variables discussed
above. Furthermore, even if we are not close to popu-
lating the endpoint, it might be possible to extract a
direct estimate of mp by fitting or extrapolating the
distributions.

For our study we define five bins and four new in-
clusive counts from mT2:

– N(mT2-300) the number of events after selection
with mT2 > 300 GeV/c2,

– N(mT2-400) the number of events after selection
with mT2 > 400 GeV/c2,

– N(mT2-500) the number of events after selection
with mT2 > 500 GeV/c2.

– N(mT2-600) the number of events after selection
with mT2 > 600 GeV/c2.

When comparing a model M1, playing the role of
the data, with a model M2, playing the role of the
model to test, we will use the mass of the WIMP in
model M2 as the input mass in calculating mT2 for
both models.

5.6 Flavor enrichment

In order to have some model discrimination based on
the τ or b content, we need simple algorithms to create
subsamples enriched with b quarks and τ ’s. We refer to
these algorithms as “tagging”, despite the fact that the
tagging efficiencies and the purity of the subsamples
are rather poor.

Without attempting any detailed optimizations, we
have designed two very simple tagging algorithms. We
expect these algorithms to be robust, since they only
require a knowledge of uncorrected high ET jets, high
PT muons, and basic counting of high PT tracks inside
jets.

τ enrichment: For each jet we define a 0.375 cone
centered around the jet axis. Inside this cone we count
all reconstructed charged tracks with pT > 2 GeV/c.
If only one such track is found, and if this track has
pT > 15 GeV/c, we tag the jet as a τ jet.

The τ algorithm is based on single-prong hadronic
τ decays, which as their name implies produce a sin-
gle charged track. In addition, leptonic decays of a
τ to an electron and two neutrinos can be tagged,
since some fraction of electrons reconstruct as jets.
Soft tracks with pT ≤ 2 GeV/c are not counted, a
fact that makes the algorithm much more robust. The
pT > 15 GeV/c requirement on the single track re-
duces the background from non-τ jets. Increasing the

cone size decreases the efficiency to tag genuine τ ’s,
because stray tracks are more likely to be inside the
cone; decreasing the cone size increases the fake rate.
A genuine optimization of this algorithm can only be
done with the real data.

Table 17 shows the results of applying our τ tag-
ging algorithm to simulations of the Group 1 models
LM2p, LM5, LM8, CS4d and CS6. The efficiency, de-
fined as the number of τ tags divided by the number of
generator-level τ ’s that end up reconstructed as jets,
varies between 12% and 21%. The efficiency is lowest
for models LM8 and CS4d, models where τ ’s come en-
tirely from W and Z decays. The efficiency is highest
for model LM2p, which has a large final state multi-
plicity of τ ’s from decays of charginos, second neutrali-
nos and staus.

The purity, defined as the fraction of τ tagged jets
that actually correspond to generator-level τ ’s, is quite
low for models LM8 and CS4d, and is only 8% for
model CS6, which contains very few τ ’s. We obtain a
reasonably high purity of 55% for LM2p, the model
with by far the largest τ multiplicity.

We conclude that it is possible to obtain signifi-
cantly enriched samples of τ ’s from our simple algo-
rithm, but only for models that do have a high multi-
plicity of energetic τ ’s to begin with. From the counts
in Table 17, it is clear that this tagging method is not
viable with 100 pb−1 of integrated luminosity.

Table 17. Results of our τ tagging algorithm applied to
the Group 1 models LM2p, LM5, LM8, CS4d and CS6.
Counts are rescaled to 1000 pb−1 from 100,000 events per
model. The listing for τ jets counts generator level τ ’s that
are reconstructed as jets in events that pass our selection.

LM2p LM5 LM8 CS4d CS6

τ jets per fb−1 409 144 171 112 34

tags per fb−1 157 110 122 102 59

correct
tags per fb−1 86 25 21 14 5

efficiency 21% 18% 12% 13% 16%

purity 55% 23% 17% 14% 8%

b enrichment: For each jet we search for a recon-
structed muon inside the jet (recall that our muons
have pT > 20 GeV/c and |η| < 2.4). If a muon is
found within ∆R < 0.2 of the jet axis we tag it as a b
jet.

This b algorithm is based on tagging muons from
semileptonic B decays inside the b jet. This is inspired
by the “soft muon” tagging that was used in the top
quark discovery at the Tevatron [78,79]. In our case
“soft” is a misnomer, since in fact we only count re-
constructed muons with pT > 20 GeV/c. This require-
ment makes the tagging algorithm more robust, but
reduces the efficiency.

Table 18 shows the results of applying our b tagging
algorithm to simulations of the Group 1 models LM2p,
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LM5, LM8, CS4d and CS6. The tagging efficiency is
defined as the number of b tags divided by the num-
ber of generator-level b’s that are within ∆R < 0.3 of
the center of a reconstructed jet. Although all of these
models have a high multiplicity of generator-level b’s,
the tagging efficiency is poor: only about 5% for all
models. However the purity of the samples is rather
good: above 70% for every model except CS6.

We conclude that it is possible to obtain signifi-
cantly enriched samples of b’s from our simple algo-
rithm, but with low efficiency. From the counts in Ta-
ble 18, it is clear that this tagging method is not viable
with 100 pb−1 of integrated luminosity, but should be-
come useful as we approach 1000 pb−1.

In our study, discrimination based on τ ’s and b’s
is obtained from ratios that involve the following two
inclusive counts:

– N(τ -tag), the number of events after selection hav-
ing at least one τ tag.

– N(b-tag), the number of events after selection hav-
ing at least one soft muon b tag.

Table 18. Results of our b tagging algorithm applied to
the Group 1 models LM2p, LM5, LM8, CS4d and CS6.
Counts are rescaled to 1000 pb−1 from 100,000 events per
model. The listing for b jets counts generator level b quarks
matched to reconstructed jets that pass our selection.

LM2p LM5 LM8 CS4d CS6

b jets per fb−1 1547 1693 2481 1596 748

tags per fb−1 115 112 148 105 106

correct
tags per fb−1 82 81 112 75 41

efficiency 5% 5% 5% 5% 5%

purity 72% 72% 75% 71% 39%

6 The look-alike analysis

The look-alike analysis proceeds in four steps:
1. We choose one of the models to play the part

of the data. We run the inclusive Emiss
T +jets analy-

sis on the MET trigger and verify that the predicted
yield establishes an excess (at > 5σ) above the SM
background with 100 pb−1. We call the number of
events selected in this way the observed yield Ndata.
In what follows, we assume that a subtraction of the
residual Standard Model background has already been
performed. We assume large signal over background
ratios for the models considered so that the statisti-
cal error on the background has a small impact on the
total error.

2. We identify a set of models giving a predicted
yield N compatible with Ndata. The compatibility is

established if the difference in the two counts is less
than twice the total error, i.e if the pull

|Ndata − N |
σ(N)

(7)

is smaller that two. In the formula σ(N) represents
the error associated to the expected number of events
N . We calculate it as the sum in quadrature of several
contributions:

– A Poissonian error which takes into account the
statistical fluctuations associated to the event pro-
duction (statistical component of the experimental
error).

– An error associated to the detector effects (system-
atic component of the experimental error).

– Theoretical error on the predicted number of events
N (including a statistical and a systematic compo-
nent).

We discuss the origin of each contribution below.
3. For each additional observable N i previously

listed, we consider the value on the data (N i
data) and

the predicted value N i
j for the model j. We calculate

the pull as in eqn. 7 and we identify the variable with
the largest pull as the best discriminating counting
variable. We ignore all the variables for which both the
model and the data give a yield below a fixed threshold
Nmin. We use Nmin = 10, i.e. we require a minimum
yield that is more than three times its Poisson error√

N i; for the data this corresponds to excluding at 3σ
the possibility that the observed yield is generated by
a fluctuation of the background.

4. We form ratios of some of the observables used
above and we repeat the procedure of step 3. Since part
of the uncertainties cancel out in the ratio, these vari-
ables allow a better discrimination than the counting
variables. In addition, provided that the two variables
defining the ratio are above the threshold Nmin, the ra-
tios of two correlated variables (such as N(4j)/N(3j))
are less sensitive to the statistical fluctuations. Details
on the calculation of the errors on the ratios are given
below.

In each of the four trigger boxes we define the fol-
lowing ratios of correlated inclusive counts:

– r(nj)(3j), with n=4,5
– r(MET320)
– r(MET420)
– r(MET520)
– r(HT900)
– r(Meff1400)
– r(M1400)
– r(M1800)
– r(Hemj) with j=1,2,3
– r(2µ-nj)(1µ-nj) with n=3,4
– r(τ -tag)
– r(b-tag)
– r(mT2-300) with the theory LSP mass
– r(mT2-400) with the theory LSP mass
– r(mT2-500) with the theory LSP mass
– r(mT2-600) with the theory LSP mass

Very low level “tagging”



Our Ratios
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LM5, LM8, CS4d and CS6. The tagging efficiency is
defined as the number of b tags divided by the num-
ber of generator-level b’s that are within ∆R < 0.3 of
the center of a reconstructed jet. Although all of these
models have a high multiplicity of generator-level b’s,
the tagging efficiency is poor: only about 5% for all
models. However the purity of the samples is rather
good: above 70% for every model except CS6.

We conclude that it is possible to obtain signifi-
cantly enriched samples of b’s from our simple algo-
rithm, but with low efficiency. From the counts in Ta-
ble 18, it is clear that this tagging method is not viable
with 100 pb−1 of integrated luminosity, but should be-
come useful as we approach 1000 pb−1.

In our study, discrimination based on τ ’s and b’s
is obtained from ratios that involve the following two
inclusive counts:

– N(τ -tag), the number of events after selection hav-
ing at least one τ tag.

– N(b-tag), the number of events after selection hav-
ing at least one soft muon b tag.

Table 18. Results of our b tagging algorithm applied to
the Group 1 models LM2p, LM5, LM8, CS4d and CS6.
Counts are rescaled to 1000 pb−1 from 100,000 events per
model. The listing for b jets counts generator level b quarks
matched to reconstructed jets that pass our selection.

LM2p LM5 LM8 CS4d CS6

b jets per fb−1 1547 1693 2481 1596 748

tags per fb−1 115 112 148 105 106

correct
tags per fb−1 82 81 112 75 41

efficiency 5% 5% 5% 5% 5%

purity 72% 72% 75% 71% 39%

6 The look-alike analysis

The look-alike analysis proceeds in four steps:
1. We choose one of the models to play the part

of the data. We run the inclusive Emiss
T +jets analy-

sis on the MET trigger and verify that the predicted
yield establishes an excess (at > 5σ) above the SM
background with 100 pb−1. We call the number of
events selected in this way the observed yield Ndata.
In what follows, we assume that a subtraction of the
residual Standard Model background has already been
performed. We assume large signal over background
ratios for the models considered so that the statisti-
cal error on the background has a small impact on the
total error.

2. We identify a set of models giving a predicted
yield N compatible with Ndata. The compatibility is

established if the difference in the two counts is less
than twice the total error, i.e if the pull

|Ndata − N |
σ(N)

(7)

is smaller that two. In the formula σ(N) represents
the error associated to the expected number of events
N . We calculate it as the sum in quadrature of several
contributions:

– A Poissonian error which takes into account the
statistical fluctuations associated to the event pro-
duction (statistical component of the experimental
error).

– An error associated to the detector effects (system-
atic component of the experimental error).

– Theoretical error on the predicted number of events
N (including a statistical and a systematic compo-
nent).

We discuss the origin of each contribution below.
3. For each additional observable N i previously

listed, we consider the value on the data (N i
data) and

the predicted value N i
j for the model j. We calculate

the pull as in eqn. 7 and we identify the variable with
the largest pull as the best discriminating counting
variable. We ignore all the variables for which both the
model and the data give a yield below a fixed threshold
Nmin. We use Nmin = 10, i.e. we require a minimum
yield that is more than three times its Poisson error√

N i; for the data this corresponds to excluding at 3σ
the possibility that the observed yield is generated by
a fluctuation of the background.

4. We form ratios of some of the observables used
above and we repeat the procedure of step 3. Since part
of the uncertainties cancel out in the ratio, these vari-
ables allow a better discrimination than the counting
variables. In addition, provided that the two variables
defining the ratio are above the threshold Nmin, the ra-
tios of two correlated variables (such as N(4j)/N(3j))
are less sensitive to the statistical fluctuations. Details
on the calculation of the errors on the ratios are given
below.

In each of the four trigger boxes we define the fol-
lowing ratios of correlated inclusive counts:

– r(nj)(3j), with n=4,5
– r(MET320)
– r(MET420)
– r(MET520)
– r(HT900)
– r(Meff1400)
– r(M1400)
– r(M1800)
– r(Hemj) with j=1,2,3
– r(2µ-nj)(1µ-nj) with n=3,4
– r(τ -tag)
– r(b-tag)
– r(mT2-300) with the theory LSP mass
– r(mT2-400) with the theory LSP mass
– r(mT2-500) with the theory LSP mass
– r(mT2-600) with the theory LSP mass
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– r(mT2-400/300) with the theory LSP mass
– r(mT2-500/300) with the theory LSP mass
– r(mT2-600/300) with the theory LSP mass
– r(nt-cα) for n=10,20,30,40 and α = 30◦,45◦, 60◦,

75◦, 90◦

– r(ntdiff-cα) for for n=10,20,30,40 and α = 30◦, 45◦,
60◦, 75◦, 90◦

We also use the ratios of the counts in the DiJet, TriJet
and Muon20 boxes to the count in the MET box:

– r(DiJet)
– r(TriJet)
– r(Muon20)

As mentioned previously, it turns out that the DiJet,
TriJet and Muon20 boxes are subsamples of the MET
box to an excellent approximation, thus these ratios
are also ratios of inclusive counts.

Finally we iterate and perform the transpose com-
parisons (the model that was considered as data takes
the role of the model).

6.1 Theoretical uncertainty

We take into account several sources of uncertainty.
First of all, there is an error associated to the knowl-
edge of the parton probability density functions (pdfs)
that are used to generate the event samples. In or-
der to evaluate this error, we produce and analyze all
samples with three different sets of pdfs: CTEQ5L [80],
CTEQ6M [80], and MRST2004nlo [81] or MRST2002nlo [81]
for Group 1 and Group 2 respectively. We quote as cen-
tral value the average of the three values; for the pdf
uncertainty we crudely estimate it by taking half the
spread of the three values. This uncertainty, as we will
show, has important effects on the results.

An additional error is given by the relative QCD
scale uncertainty when we compare different look-alike
models. This is an overall systematic on the relative
cross sections that we take to be 5%. It is actually
larger than this in our study, at least for the Group
2 models where we use LO cross sections, but we are
assuming some improvement by the time of the real
discovery.

There is an additional uncertainty for each observ-
able from the missing higher order matrix elements.
It is not included in the analysis shown here. It could
be included crudely by running Pythia with different
values of the ISR scale controlled by MSTP(68), simi-
lar to how we evaluate the pdf uncertainties. A better
way is to include, for the signals, the higher order ma-
trix elements for the emission of extra hard jets. The
ideal approach would be a full NLO generator for the
signals.

The sum in quadrature of all these effects gives the
systematic error associated to the theoretical predic-
tion. In the case of ratios, the error on the cross section
cancels out. In a similar way, the correlated error on
the pdfs cancels out by calculating the ratios for the
three sets of pdfs and then averaging them.

In the case of mSUGRA models, the result of the
simulation also depends on which RGE evolution code

we use9 to go from the parameters at the high scale to
the SUSY spectrum at the Terascale. Rather than in-
cluding an error associated to such differences we take
one of the codes (Isajet v7.69 or SuSpect v2.3) as
part of the definition of the theory model we are con-
sidering.

The theory predictions are also affected by a statis-
tical error, related to the fact that the value of each ob-
servable is evaluated on a sample of limited size. Gen-
erating the same sample with a different Monte Carlo
seed one obtains differences on the predicted values of
the observable. The differences, related to statistical
fluctuations, are smaller for larger generated data sets.
Considering that each number of events N j

i for observ-
able i and model j can be written as N j

i = εj
i ×σj and

that the error on σj is already accounted for in the
systematic contribution to the theoretical error, the
efficiency εj

i has an associated binomial error:

σ(εi) =

√

εj
i × (1 − εj

i )

NGEN
(8)

where NGEN is the size of the generated sample be-
fore any selection requirement. This error can be made
negligible by generating data sets with large values of
NGEN. We include the contribution of the statistical
error summing it in quadrature to the systematic er-
ror.

When the variables defining the ratio are uncorre-
lated, the error on the ratio is obtained by propagating
the errors on the numerator and denominator, accord-
ing to the relation

σ(r) =

√

(

σ(Nnum)

Nden

)2

+

(

Nnumσ(Nden)

N2
den

)2

(9)

where r = Nnum/Nden.

This is not the correct formula in our case, since
all of the counts on our ratios are correlated. For in-
stance, N(4j) and N(3j) are correlated, since all the
events with at least four jets have also three jets. Only
a fraction of the events defining N(3j) will satisfy the
requirement of an additional jet, i.e. applying the re-
quirement of an additional jet on the ≥ 3 jets sam-
ple corresponds to a binomial process, with the ra-
tio r(4j)(3j) = N(4j)/N(3j) the associated efficiency.
The error on r is then given by eqn. 8, replacing εj

i with
the r and NGEN with N(4j). The same consideration
applies to all the ratios built from correlated variables.
In order to use eqn. 8 for the error, we always define
the ratios such that they are in the range [0,1].

9 For the CMS benchmark models, we used Isajet

v7.69 but compared the spectra results with SuSpect v2.3

+ SUSY-HIT v.1.1 and SoftSusy v.2.0.14 [82]. The dif-
ferences in the computed spectra led to differences in our
observed yield of 3 to 10%.
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– r(mT2-400/300) with the theory LSP mass
– r(mT2-500/300) with the theory LSP mass
– r(mT2-600/300) with the theory LSP mass
– r(nt-cα) for n=10,20,30,40 and α = 30◦,45◦, 60◦,

75◦, 90◦

– r(ntdiff-cα) for for n=10,20,30,40 and α = 30◦, 45◦,
60◦, 75◦, 90◦

We also use the ratios of the counts in the DiJet, TriJet
and Muon20 boxes to the count in the MET box:

– r(DiJet)
– r(TriJet)
– r(Muon20)

As mentioned previously, it turns out that the DiJet,
TriJet and Muon20 boxes are subsamples of the MET
box to an excellent approximation, thus these ratios
are also ratios of inclusive counts.

Finally we iterate and perform the transpose com-
parisons (the model that was considered as data takes
the role of the model).

6.1 Theoretical uncertainty

We take into account several sources of uncertainty.
First of all, there is an error associated to the knowl-
edge of the parton probability density functions (pdfs)
that are used to generate the event samples. In or-
der to evaluate this error, we produce and analyze all
samples with three different sets of pdfs: CTEQ5L [80],
CTEQ6M [80], and MRST2004nlo [81] or MRST2002nlo [81]
for Group 1 and Group 2 respectively. We quote as cen-
tral value the average of the three values; for the pdf
uncertainty we crudely estimate it by taking half the
spread of the three values. This uncertainty, as we will
show, has important effects on the results.

An additional error is given by the relative QCD
scale uncertainty when we compare different look-alike
models. This is an overall systematic on the relative
cross sections that we take to be 5%. It is actually
larger than this in our study, at least for the Group
2 models where we use LO cross sections, but we are
assuming some improvement by the time of the real
discovery.

There is an additional uncertainty for each observ-
able from the missing higher order matrix elements.
It is not included in the analysis shown here. It could
be included crudely by running Pythia with different
values of the ISR scale controlled by MSTP(68), simi-
lar to how we evaluate the pdf uncertainties. A better
way is to include, for the signals, the higher order ma-
trix elements for the emission of extra hard jets. The
ideal approach would be a full NLO generator for the
signals.

The sum in quadrature of all these effects gives the
systematic error associated to the theoretical predic-
tion. In the case of ratios, the error on the cross section
cancels out. In a similar way, the correlated error on
the pdfs cancels out by calculating the ratios for the
three sets of pdfs and then averaging them.

In the case of mSUGRA models, the result of the
simulation also depends on which RGE evolution code

we use9 to go from the parameters at the high scale to
the SUSY spectrum at the Terascale. Rather than in-
cluding an error associated to such differences we take
one of the codes (Isajet v7.69 or SuSpect v2.3) as
part of the definition of the theory model we are con-
sidering.

The theory predictions are also affected by a statis-
tical error, related to the fact that the value of each ob-
servable is evaluated on a sample of limited size. Gen-
erating the same sample with a different Monte Carlo
seed one obtains differences on the predicted values of
the observable. The differences, related to statistical
fluctuations, are smaller for larger generated data sets.
Considering that each number of events N j

i for observ-
able i and model j can be written as N j

i = εj
i ×σj and

that the error on σj is already accounted for in the
systematic contribution to the theoretical error, the
efficiency εj

i has an associated binomial error:

σ(εi) =

√

εj
i × (1 − εj

i )

NGEN
(8)

where NGEN is the size of the generated sample be-
fore any selection requirement. This error can be made
negligible by generating data sets with large values of
NGEN. We include the contribution of the statistical
error summing it in quadrature to the systematic er-
ror.

When the variables defining the ratio are uncorre-
lated, the error on the ratio is obtained by propagating
the errors on the numerator and denominator, accord-
ing to the relation

σ(r) =

√

(

σ(Nnum)

Nden

)2

+

(

Nnumσ(Nden)

N2
den

)2

(9)

where r = Nnum/Nden.

This is not the correct formula in our case, since
all of the counts on our ratios are correlated. For in-
stance, N(4j) and N(3j) are correlated, since all the
events with at least four jets have also three jets. Only
a fraction of the events defining N(3j) will satisfy the
requirement of an additional jet, i.e. applying the re-
quirement of an additional jet on the ≥ 3 jets sam-
ple corresponds to a binomial process, with the ra-
tio r(4j)(3j) = N(4j)/N(3j) the associated efficiency.
The error on r is then given by eqn. 8, replacing εj

i with
the r and NGEN with N(4j). The same consideration
applies to all the ratios built from correlated variables.
In order to use eqn. 8 for the error, we always define
the ratios such that they are in the range [0,1].

9 For the CMS benchmark models, we used Isajet

v7.69 but compared the spectra results with SuSpect v2.3

+ SUSY-HIT v.1.1 and SoftSusy v.2.0.14 [82]. The dif-
ferences in the computed spectra led to differences in our
observed yield of 3 to 10%.
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Table 20. Summary of the best discriminating ratios for model comparisons in Group 2. The models listed in rows are
taken as simulated data, with either 100 or 1000 pb−1 of integrated luminosity assumed, and uncertainties as described
in the text. The models listed in columns are then compared pairwise with the “data”. In each case, the three(five)
best distinct discriminating ratios for 100(1000) pb−1 are shown, with the estimated significance. By distinct we mean
that we only list the best ratio of each type; thus if r(5j)(4j) is listed, then r(4j)(3j) is not, etc. Square brackets denote
ratios defined in the DiJet, Trijet or Muon20 boxes; all other ratios are defined in the MET box, and r(DiJet), r(TriJet)
denotes the ratio of the number of events in the DiJet/TriJet boxes to the number in the MET box. The mT2 ratios are
computed using the LSP mass of the relevant “theory” model, not the “data” model.

LH2 NM4 CS7

LH2
100 r(mT2-500) 4.9σ r(mT2-500) 6.7σ

r(Meff1400) 3.0σ r(MET420) 6.5σ
r(M1400) 2.7σ r(4j)(3j) 4.0σ

1000 r(mT2-500) 14.1σ r(mT2-500) 18.9σ
r(mT2-300) [TriJet] 11.0σ r(MET420) 16.7σ
r(mT2-400) [DiJjet] 7.9σ r(mT2-500) [TriJet] 8.8σ
r(Meff1400) 7.2σ r(4j)(3j) [DiJet] 7.3σ
r(M1400) 6.6σ r(mT2-300) [DiJet] 6.7σ

NM4
100 r(Meff1400) 4.2σ r(Meff1400) 4.3σ

r(M1400) 4.0σ r(DiJet) 4.1σ
r(mT2-400) 3.8σ r(MET420) 4.0σ

1000 r(Meff1400) 10.8σ r(Meff1400) 11.2σ
r(TriJet) 10.4σ r(MET520) 10.6σ
r(M1400) 9.8σ r(DiJet) 10.6σ
r(DiJet 8.2σ r(HT900) 9.0σ
r(HT900) 8.0σ r(4j)(3j) 6.1σ

CS7
100 r(MET420) 4.9σ r(4j)(3j) 4.4σ

r(4j)(3j) 4.6σ r(MET420) 3.3σ
r(mT2-400) 4.1σ r(Hem1) 3.2σ

1000 r(5j)(3j) [DiJet] 16.8σ r(4j)(3j) 9.4σ
r(TriJet) 10.4σ r(5j)(3j) [DiJet] 7.4σ
r(MET420) 9.6σ r(Meff1400) 7.4σ
r(4j)(3j) 9.5σ r(DiJet) 6.9σ
r(mT2-500) 8.3σ r(HT900) 6.2σ

Thus the discriminating power of r(mT2-400) in
this case is correlated with r(5j)(3j), not with kine-
matic ratios like r(HT900) and r(Meff1400).

It is important to note that the mT2 ratios have
some ability to discriminate based on neutrinos in the
final state: Figure 22 shows a comparison of the mT2

distributions for LM2p events containing neutrinos ver-
sus those without neutrinos. The events with neutri-
nos have a softer mT2 distribution, i.e. the subsample
with neutrinos is less efficient at populating the mT2

upper endpoint. Models LM2p and LM5 differ greatly
in the proportion of events after selection that have
neutrinos: about 50% for LM2p but only about 10%
for LM5. The neutrino content effect on the mT2 dis-
tributions actually reduces the discrimination of LM2p
versus LM5, because the neutrino effect works in the
opposite direction from the dominant effect of jet mul-
tiplicity.

This example shows that the interpretation of the
mT2 ratios requires a comparison with other discrimi-
nators. If the mT2 ratios r(mT2-xxx/yyy) have a high

significance positively correlated with e.g. r(HT900)
and r(Meff1400), then the mT2 ratios are predomi-
nantly indicating kinematics. If the mT2 ratios r(mt2-
xxx) have a high significance but r(mT2-xxx/yyy) do
not (as occurred here), we expect they will be posi-
tively correlated with the jet ratios, indicating a dif-
ference in the multiplicity of reconstructed objects. If
the mT2 ratios r(mT2-xxx/yyy) have a high signif-
icance uncorrelated or negatively correlated with ei-
ther kinematics or jet multiplicity, this could signal
the presence of three unseen particles (e.g. two LSPs
and a neutrino) in the final state of a large fraction of
events.

7.3 CS4d vs LM8

This is the second most difficult pair of look-alikes
in our study. From Figure 5 we see that the gluino
and squark superpartner spectra are roughly similar.
The gluino masses agree to within 10 GeV; in LM8



Conclusions
We will hopefully have 5 sigma discovery by the end of 
the 100pb-1 era

we’ve developed techniques to discriminate models 
efficiently with small amounts of data

set of robust observables (ratios of inclusive counts)

“realistic” in that we minimize systematics, and stick 
to things that are (or should be) achievable in first year 
of physics running

Compelling evidence for spin discrimination at moment of 
discovery


