The ATLAS E_{T}^{miss} trigger

Diego Casadei

Department of Physics New York University

HEFTI Workshop on Missing Energy Signals at LHC 1–2 Apr 2009 University of California Davis

Introduction

- The ATLAS detector at LHC
- Event selection with $E_{\rm T}^{\rm miss}$
- Commissioning of $E_{\rm T}^{\rm miss}$ in ATLAS

Performance

Summary

[All plots are taken from the ATLAS "CSC book", CERN-OPEN-2008-020.]

► 4 Ξ ►

Introduction

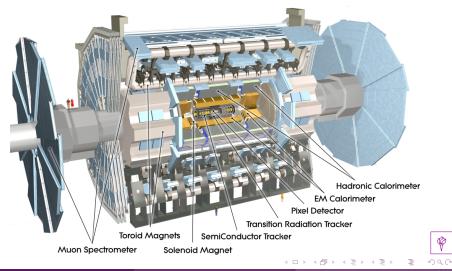
The ATLAS detector at LHC The LHC startup The ATLAS detector The ATLAS calorimeters The ATLAS TDAQ system Event selection with $E_{\rm T}^{\rm miss}$ The $E_{\rm T}^{\rm miss}$ trigger The mHT trigger Trigger menus

Introduction

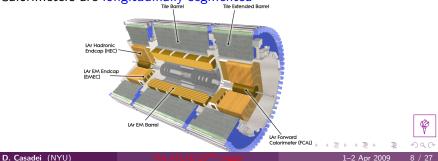
- Missing energy in high-energy collision is a general signature of most models beyond SM
- Example: if SUSY is to provide the DM particle
 - R-parity is conserved
 - the LSP is neutral
- Hence
 - SUSY particles produced in pairs in collisions
 - they decay into LSP and SM particles
 - LSPs leave the detector without loosing energy

Introduction

The ATLAS detector at LHC The LHC startup The ATLAS detector The ATLAS calorimeters The ATLAS TDAQ system Event selection with E_T^{miss} The E_T^{miss} trigger The mHT trigger Trigger menus


The LHC startup

- ▶ Design: √s = 14 TeV, L = 10³⁴ cm⁻² s⁻¹, 23 interactions per bunch crossing, 40 MHz bunch crossing
- ▶ LHC startup: ~ 11 months with $\sqrt{s} = 10$ TeV (much time at 20 MHz) for a total of O(200) pb⁻¹. Pile-up may be present


The ATLAS detector

▶ 25 m diameter, 46 m length

The ATLAS calorimeters

- ▶ Liquid Argon EM calorimeter over $|\eta| < 3.2$
 - ▶ Barrel ($|\eta| < 1.475$) and end-caps ($1.375 < |\eta| < 3.2$)
 - ► Lead absorbers in LAr with accordion-shaped Kapton electrodes
- Hadronic calorimeter over $|\eta| < 4.9$
 - Fe scintillating-tile for barrel and extended-barrel ($|\eta| < 1.7$)
 - LAr Hadronic End-Cap ($|\eta| < 3.2$)
 - ▶ High-density Forward Calorimeter $(3.1 < |\eta| < 4.9)$
- Calorimeters are longitudinally segmented

The ATLAS TDAQ system

The challenge is to achieve sensitivity to new physics while keeping an acceptable event rate.

- LHC bunch crossing rate: \leq 40 MHz
- ▶ L1 is hardware based
 - can access full calorimeters (no tracking)
 - must reduce the rate to 75 kHz
- L2 is software based
 - can access only channels inside Regions of Interest
 - \blacktriangleright must reduce the rate to $\sim 2 \ \text{kHz}$
- Event filter (EF)
 - can access all channels (same granularity as offline)
 - must reduce the rate to 200 Hz (\approx 1.5 MB/event)
- ► L2 and EF constitute the high-level trigger (HLT) system

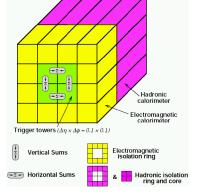
The ATLAS L1 calorimeter trigger

 \blacktriangleright e/ γ & τ /had trigger $(|\eta| < 2.5)$: 0.1×0.1 trigger towers in (η, ϕ) space

• Jet trigger $(|\eta| < 3.2)$: 2×2 jet Rol as seed, windows to measure Et

Window 0.4 x 0.4

Window 0.6 x 0.6



Window 0.8 x 0.8

(to avoid 6x6, and 2 jets/window)

▶ JEM also computes Ex, Ey and SumEt from jet elements: XE, TE and JE Rols $(|\eta| < 4.9)$

イロト イポト イヨト イヨト

The ATLAS HLT trigger

- ▶ The HLT makes use of the Athena environment and tools
- At each level, there are two phases:
 - Feature extraction (Fex): physics objects are built (possibly in multiple steps)
 - Hypothesis testing (Hypo): verify conditions (early reject)
- L2 can access full granularity data from the seed Rol to refine the L1 decision
- EF can access data from the full detector

Introduction The ATLAS detector at LHC The LHC startup The ATLAS detector The ATLAS calorimeters The ATLAS TDAQ system Event selection with $E_{\rm T}^{\rm miss}$ The $E_{\rm T}^{\rm miss}$ trigger The mHT trigger Trigger menus Offline $E_{\rm T}^{\rm miss}$ reconstruction

Commissioning of *E*_T^{miss} in ATLAS Commissioning of *E*_T^{miss} trigger Commissioning of full

reconstructio

Performance

Trigger performance

Full reconstruction performance

Fake E_T

Summary

The $E_{\rm T}^{\rm miss}$ trigger

► L1 $E_{\rm T}^{\rm miss}$ (and $\Sigma E_{\rm T}$) from all calorimeters ($|\eta|$ < 4.9)

- Hardware based
- Computed using trigger towers
- L2 refines the L1 result with muons
- ► EF recomputes calorimeter and muon contributions
 - Cell-based $E_T^{\text{miss}}, \Sigma E_T$ by default (with or without noise suppression)
 - May also use FEB header summary info (much quicker)
- The EF $E_{\rm T}^{\rm miss}$ Fex does not replicate the offline algorithm
 - It accesses the same channels as the offline reconstruction
 - but it is kept simple and robust

The mHT trigger

- ▶ mHT and SumHT can also be used to select events
 - ► At present, mHT is used at L1 and L2 only
- mHT and SumHT computed using jets only
 - ► mHT uses localized energy: very effective noise suppression
- $E_{\rm T}^{\rm miss}$ is computed using the full calorimeters
 - ► *E*_T^{miss} accounts for unclustered energy: less model dependent
- Work in progress to combine mHT with E_{T}^{miss}

Trigger menus

- Trigger menus will evolve with LHC luminosity
- ► Menus contain inclusive E^{miss}_T chains and combined signatures like electron+E^{miss}_T, muon+E^{miss}_T, τ+E^{miss}_T, jet+E^{miss}_T, etc.

Trigger Item	XE15	XE20	XE25	XE30	XE40	XE50	XE70	XE80
Prescale	30000	7000	1500	200	20	2	1	1
Rate (Hz)	2.5	3	4	7.5	7.5	14	2	1

Table 7: L1 trigger items and estimated rates at 10^{31} cm⁻² s⁻¹ for Missing E_T objects.

Trigger Item	EM13_XE20	EM7_MU6	MU11_XE15	MU10_J18
Rate (Hz)	225	10	13	33
Trigger Item	2J42_XE30	4J23_EM13I	4J23_MU11	EM13I_J42_XE30
Rate (Hz)	13	6.5	1	6.5

Table 9: A representative list of L1 trigger items and estimated rates at 10^{31} cm⁻² s⁻¹ for triggers combining several object types. The "_" notation is used to show the AND between two object types.

[From the ATLAS "CSC book", CERN-OPEN-2008-020]

Э

イロト イポト イヨト イヨト

Offline E_{T}^{miss} reconstruction

► MET_CaloCalib

- All calo cells with $|E_{cell}| > 2\sigma_{noise}$ and "H1 style" calibration
- ► TopoClusters (4/2/0) with "H1 style" calibration
- TopoClusters (4/2/0) with local hadronic calibration
- Cells in reconstructed objects (e, γ , τ , jet) and unused TopoClusters with object-based calibration

► MET_Cryo

- Cryostat losses EMB/Tile using cone tower jets with $\Delta R < 0.7$
- Cryostat losses EMB/Tile using cone TopoCluster jets with $\Delta R < 0.7$

MET Muon

- Momentum measured with muon spectrometer only
- Momentum measured with muon spectrometer, inner detector and and calorimeter
- MET_Final = MET_CaloCalib + MET_Cryo + MET_Muon

[See the ATLAS "CSC book", CERN-OPEN-2008-020, for more details]

Ŷ

Introduction The ATLAS detector at LHC The LHC startup The ATLAS detector The ATLAS calorimeters The ATLAS TDAQ system Event selection with $E_{\rm T}^{\rm miss}$ The $E_{\rm T}^{\rm miss}$ trigger The mHT trigger Trigger menus Commissioning of E_{T}^{miss} in ATLAS Commissioning of E_{T}^{miss} trigger Commissioning of full reconstruction

Commissioning of $E_{\rm T}^{\rm miss}$ trigger

With first collisions:

- ▶ (large) subset of L1 signatures will be enabled
- HLT will be in pass-through
- Introduce new signatures as soon as their behavior is understood
- Trigger slices have different commission strategies for HLT
- The $E_{\rm T}^{\rm miss}$ slice approach is the following:
 - 1. Tune the 8 L1 thresholds to get almost the same rate for each signature
 - 2. While HLT is in pass-through, decide final configuration of EF
 - Refine trigger menus in order to have many chains in common for different luminosities
 - 4. Enable HLT as soon as rates are under control

Commissioning of full reconstruction

- First, calo-based methods not relying on other components will be validated step by step
 - 1. All cells with 2-sigma noise suppression
 - 2. All 4/2/0 TopoClusters [see Peter's talk]
- Next, the following improvements will be applied, as soon as other things get commissioned:
 - H1-like and local hadronic calibration [see Peter's talk]
 - Cryostat correction (needs jets)
 - Muon correction (needs muons)
 - Object-based calibration piece by piece (as soon as e, τ , etc. are ready)
- To validate each step, the performance will be compared with the previous one and with expected results [see Peter's talk]

 - $\blacktriangleright\,$ Tag-probe: use W/Z and $t\bar{t}$ events with single lepton trigger

Image: A match a ma

Introduction The ATLAS detector at LHC The LHC startup The ATLAS detector The ATLAS calorimeters The ATLAS TDAQ system Event selection with $E_{\rm T}^{\rm miss}$ The $E_{\rm T}^{\rm miss}$ trigger The mHT trigger Trigger menus Performance Trigger performance Full reconstruction performance Fake E^{miss}

Trigger performance

- Showing figures from the ATLAS "CSC book", CERN-OPEN-2008-020
- ► The plots are obsolete: many improvements since CSC book

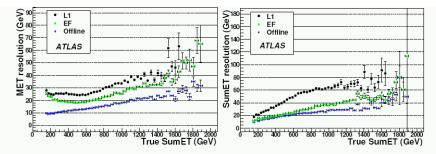


Figure 17: L1, EF and offline results for the $\not\!\!E_T$ (left) and the $\Sigma \not\!\!E_T$ (right) resolution as a function of the true $\Sigma \not\!\!E_T$ in $t\bar{t}$ events.

Full reconstruction performance (1/2)

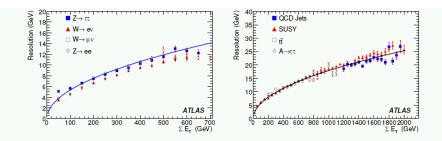


Figure 4: Resolution of the two $\not E_T$ components with refined calibration as a function of the total transverse energy, ΣE_T for low to medium values (left) and for higher values (right). The curves correspond to the best fits of $\sigma = 0.53\sqrt{\Sigma E_T}$ through the points from $Z \rightarrow \tau \tau$ events (left) and $\sigma = 0.57\sqrt{\Sigma E_T}$ through the points from $A \rightarrow \tau \tau$ events are for masses m_A ranging from 150 to 800 GeV and the points from QCD jets correspond to dijet events with 560 $< p_T < 1120$ GeV.

Full reconstruction performance (2/2)

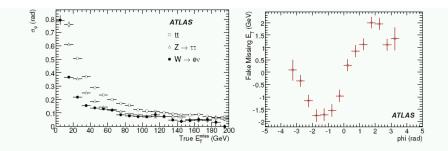
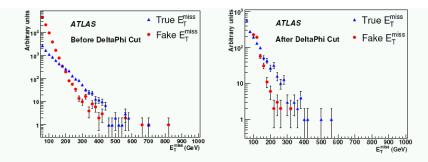


Figure 9: (left) Accuracy of the measurement of the azimuth of the $\not\!\!E_T$ vector as a function of the true $\not\!\!E_T$ for three different physics processes: semi-leptonic $t\bar{t}$ events, $Z \to \tau \tau$ and $W \to ev$ events. (right) $\not\!\!E_T^{\text{Fake}}$ as a function of the reconstructed $\phi(\not\!\!E_T)$ in $t\bar{t}$ events, simulated with extra material in ϕ .



Fake E_{T}^{miss}

- Fakes are one of the most important problems
- Fake E^{miss} may come from hardware problems and physical environment
- Hardware problems
 - Dead or noisy channels
 - Dead read-out units
- Physical environment
 - Cosmic rays and cavern background
 - Pile-up
 - Beam-gas, beam-halo, beam-pipe collisions
- ▶ Offline, many fake events can be found and discarded (see next page)
- Work is in progress to flag them in trigger

Fake <u>E^{miss}</u>

Example of offline clean-up

Introduction The ATLAS detector at LHC The LHC startup The ATLAS detector The ATLAS calorimeters The ATLAS TDAQ system Event selection with $E_{\rm T}^{\rm miss}$ The $E_{\rm T}^{\rm miss}$ trigger The mHT trigger Trigger menus Summary

- $E_{\rm T}^{\rm miss}$ is important signature for new physics
- ► ATLAS will try to commission E_T^{miss} trigger and full E_T^{miss} reconstruction as early as possible
- Expected E^{miss} performance good enough to be sensitive to large portions of the SUSY parameter space
- LHC startup going to be very exciting!

