Boosted Top

Salvatore Rappoccio

Johns Hopkins University / CMS / CDF
Fine Print

• This talk is meant to stimulate discussion

• Very active area of HEP, many new and exciting developments
 – If I missed something don’t be offended!

• Thanks to the many people who have worked on this!
Assorted References

- **Theoretical motivations:**
 - arXiv:0803.1160

- **Algorithmic Developments:**
 - arXiv:0806.0023
 - arXiv:0802.2470
 - arXiv:0806.0848v2
 - arXiv:0903.5081

- **Tevatron Developments:**
 - arXiv:0902.3276
 - arXiv:0709.0705v1
 - arXiv:0804.3664v1
 - arXiv:0803.3256v1

- **LHC Developments**
 - ATL-COM-PHYS-2008-001
 - ATL-PHYS-PUB-2006-002
 - ATL-PHYS-PUB-2006-033
 - CMS-TOP-2009-009
 - CMS-JME-2009-001
 - CMS-EXO-2009-002
 - CMS-EXO-2009-008
Motivation

- New physics scenarios often involve ttbar resonances
- Are we sensitive to hadronic decays of top?
 - Can we suppress the huge dijet background?
- What about tricks with leptonic decays also?
 - “Traditional” methods are (eventually) ineffective due to crowded environment

hep-ph/0612015v1
SBM-07-001
Experimental Status

CDF

$M_{Z'} > 700 \text{ GeV}/c^2$

20 Nov 09 Top@Tevatron4LHC
Experimental Status

Reliant on “traditional” reconstruction methods:
- semileptonic mode
- b-tagging
- lepton isolation
- jet counting

\[M_{Z'} > 700 \text{ GeV/c}^2 \]
Semileptonic Sensitivities at LHC

CMS Simulation

$\sigma_Z \times Br (pb)$

100 pb^{-1}

CMS-TOP-2009-009

CMS preliminary

$\sigma \times Br (Z^0 \rightarrow \tilde{t} \tilde{t})$ [pb]

CMS-EXO-2009-008

$g^* \rightarrow tt$

30 fb^{-1}

ATL-PHYS-PUB-2006-002

$\sigma^2 Br (fb)$

ATL-PHYS-PUB-2006-002

@Tevatron
Semileptonic Sensitivities at LHC

100 pb⁻¹

Kinematic Fit

CMS-TOP-2009-009

ΔR, p_T^{Rel}, H_T^{lep}

CMS-EXO-2009-008

Double B-tagging

ATL-PHYS-PUB-2006-002

Still reliant on “traditional” reconstruction methods...
Semileptonic Sensitivities at LHC

CMS Simulation

$\sigma \times BR (pb)$

100 pb$^{-1}$

Kinematic Fit

$\Delta R, p_T^{\text{Rel}}, H_T^{\text{lep}}$

Is there anything else we can think of?

Double B-tagging

Still reliant on “traditional” reconstruction methods…
New Idea: Top Jets

- Even moderate parent masses will result in collimated top “jets”
- Substructure can still be resolved
 - Subjets
- Two mass scales involved:
 - Top mass
 - W mass
 - Affects angular distribution of subjets
- For QCD, only gluon emission scales
 - Tend toward “zero” mass, smaller angular separation

20 Nov 09 Top@Tevatron
New Idea: Top Jets

- Even moderate parent masses will result in collimated top "jets"
- Substructure can still be resolved
 - Subjets
- Two mass scales involved:
 - Top mass
 - W mass
 - Affects angular distribution of subjets
- For QCD, only gluon emission scales
 - Tend toward "zero" mass, smaller angular separation

Much Work in the Area of Subjets!

Examine this in detail
New Idea: Top Jets

- How to get at substructure?

- Cone-like algorithms are not very good
 - Start with “large pt” and then incorporate “small pt”
 - This is going to wash out substructure

arXiv:0806.0848v2
New Idea: Top Jets

• How to get at substructure?

• Cone-like algorithms are not very good
 – Start with “large pt” and then incorporate “small pt”
 – This is going to wash out substructure

arXiv:0806.0848v2
New Idea: Top Jets

• How to get at substructure?

• Cone-like algorithms are not very good
 – Start with “large pt” and then incorporate “small pt”
 – This is going to wash out substructure
New Idea: Top Jets

• How to get at substructure?

• Cone-like algorithms are not very good
 – Start with “large pt” and then incorporate “small pt”
 – This is going to wash out substructure

arXiv:0806.0848v2

20 Nov 09 Top@Tevatron4LHC 15
New Idea: Top Jets

• How to get at substructure?

• Sequential combination algorithms produce “subjets” naturally in the course of the algorithm!
 – Exploit the clustering sequence

arXiv:0806.0848v2
New Idea: Top Jets

• How to get at substructure?

• Sequential combination algorithms produce “subjets” naturally in the course of the algorithm!
 – Exploit the clustering sequence

arXiv:0806.0848v2
New Idea: Top Jets

• How to get at substructure?

• Sequential combination algorithms produce “subjets” naturally in the course of the algorithm!
 – Exploit the clustering sequence

Look at sequential combination in more detail

arXiv:0806.0848v2
Sequential Combination

- Pairwise examination of input 4-vectors
- Calculate d_{ij}
 \[d_{ij} = \min(n_k_{ti}, n_k_{tj}) \frac{\Delta R_{ij}^2}{R^2} \]
 - $N = 2$: k_T
 - $N = 0$: Cambridge Aachen
 - $N = -2$: anti-k_T
- Also find the “beam distance”
 \[d_{iB} = k_{Ti}^n \]
- Find min of all d_{ij} and d_{iB}
- If min is a d_{ij}, merge and iterate
- If min is a d_{iB}, classify as a final jet
- Continue until list is exhausted

fastjet manual has good overview
Substructure Finding

Top-down
- “Peel off” layers of jet clustering sequence
- Throw away soft and colinear clusters

4 \rightarrow 3 \rightarrow 2 \rightarrow 1
- arXiv:0806.0848v2

Bottom-up
- Start from “ground up” of clustering sequence
- Throw away soft and colinear clusters

1 \rightarrow 2 \rightarrow 3 \rightarrow 4
- arXiv:0810.0934

Comparable results for both
Substructure Finding

Top-down
- “Peel off” layers of jet clustering sequence
- Throw away soft and collinear clusters

4 -> 3 -> 2 -> 1
- arXiv:0806.0848v2

Bottom-up
- Start from “ground up” of clustering sequence
- Throw away soft and collinear clusters
1 -> 2 -> 3 -> 4
- arXiv:0903.5081

Comparable results for both

In the interest of time, discuss top-down only

20 Nov 09 Top@Tevatron4LHC
Substructure Finding

- Exploit kinematics!
 - Angular information
 - Mass of top, W
 - Mass "drop" from full jet
 - Energy scale at which decomposition occurs
 - ...

- All provide **very powerful** discrimination against generic QCD

ATL-COM-PHYS-2008-001

CMS-JME-009-01

arXiv:0806.0848v2
All-Hadronic Sensitivities at LHC

Comparable sensitivities to semileptonic mode for low mass,
Better sensitivity at high mass

NB: Y-splitter ATLAS analysis didn’t post sensitivities but the analysis is active

20 Nov 09 Top@Tevatron4LHC
The Devil is in the Cliche

- Improvements in reconstruction
- How to characterize top-taggers in data
- Combining information and channels
- Wide resonances
Improvements in Reconstruction

- Use of finer-grain angular resolution
 - “Particle flow”
 - Unclustered track hit information
- Subjet energy corrections
Top “Tag” Characterization

• **Efficiency**
 - Find a sample of top jets
 - Find a data-to-MC “scale factor”
 - Apply to other samples

• **Fake rate**
 - Find an unbiased signal-depleted sample of jets
 - Characterize fake rate as a function of jet characteristics

• **Candidate sample:**
 - Ttbar continuum in semileptonic sample
 - “Tag” leptonic top (with lepton)
 - “Probe” hadronic top

• **Candidate sample:**
 - QCD Dijets
 - “Anti-tag” one side
 - “Probe” away side
Combination Issues

- Data-driven **efficiency** in hadronic sample
 - From semileptonic signal region

- Data-driven **background** in semileptonic sample
 - From a sample with different gluon fraction
 - Needs a correction

- How to resolve these two issues in a data-driven way?

Factor of > 2!
Wide Resonances

- Interplay can happen between PDF’s and falling tail of wide resonances
- Manifests in a “dual hump” structure
- A “bump hunt” can rapidly turn into a “global excess” hunt
- Analyses need to be prepared to deal with this!
- Makes an accurate background model **absolutely critical**

 - Data-driven approaches are probably the only viable option for these cases
Discussion

• This was meant to stimulate discussion

• The results were arranged pedagogically instead of historically
 – May have left out some pieces, if so, please bring them up so we can discuss them!

• Now the conversation is supposed to organically grow