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For FRW

〈a∗
!m a!′m′〉 = C! δ!!′ δmm′

Claims of violation of statistical isotropy of the CMB
perturbations. A number of “2 − 3σ effects”, signif-
icance susceptible to statistics used. Some of these
claims concern the largest scale modes, for which ad-
ditional problems due to galaxy contamination
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FIG. 1: The ! = 2 (top panel) and ! = 3 (bottom panel) multipoles from the ILC123 cleaned map, presented in Galactic
coordinates, after correcting for the kinetic quadrupole. The solid line is the ecliptic plane and the dashed line is the supergalactic
plane. The directions of the equinoxes (EQX), dipole due to our motion through the Universe, north and south ecliptic poles
(NEP and SEP) and north and south supergalactic poles (NSGP and SSGP) are shown. The multipole vectors are plotted as
the solid red symbols for ! = 2 and solid magenta for ! = 3 (dark and medium gray in gray scale versions) for each map, ILC1
(circles), ILC123 (triangles), TOH1 (diamonds) and LILC1 (squares). The open symbols of the same shapes are for the normal
vectors for each map. The dotted lines are the great circles connecting each pair of multipole vectors for the ILC123 map. For
! = 3 (bottom panel), the solid magenta (again medium gray in the gray scale version) star is the direction of the maximum
angular momentum dispersion axis for the ILC123 octopole.
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! = 2 ! = 3 ! = 4 ! = 5 Mean

Map (b, l) m (b, l) m (b, l) m (b, l) m inter-θ

LILC1 (0.9, 156.7) 0 (63.0, -126.9) 3 (56.7, -163.7) 2 (48.6, -94.7) 3 51.4
TOH1 (58.5, -102.9) 2 (62.1, -120.6) 3 (57.6, -163.3) 2 (48.6, -93.4) 3 22.4

TOH3 (76.5, -134.0) 2 (27.0, 51.9) 1 (35.1, -130.6) 1 (47.7, -94.7) 3 53.8
WMAP3 (2.7, -26.5) 0 (62.1, -122.6) 3 (34.2, -131.2) 1 (47.7, -96.0) 3 53.7

Table 1. The n! axes, in galactic coordinates (b, l), and m that maximise (2) for the multipoles ! = 2− 5, for various all-sky renditions
of the first and third-year WMAP data. Note the low mean inter-angle values for the TOH1 map, which indicate a strong correlation
between the multipoles (it i.e., AOE). The dicontinuous nature of the statistic causes the results to vary widely.

Figure 1. The power ratio R!(n) in the dominating m mode (above), and the m value (below) for the quadrupole (left) and octopole
(right). The “axis of evil” statistic in (2) searches for the hottest spot in these maps. We can see the close calls that cause the results to
vary widely in Table 1. Plotted in galatic coordinates and Mollweide projection.

encoding m-preference or planarity, compared to the base
model of statistical isotropy. We first outline the general
formalism.

Let L be the likelihood of the data given a model, and
k the number of parameters of this model. The parameters
should be tuned so to maximize the likelihood, or equiva-
lently, to minimize the information in the data given the
theory (defined as I(D|T ) = − ln(L)). However the real ev-
idence should refer to the information in the data and the
theory: I(D ∩ T ) = I(D|T ) + I(T ), where the information
in the theory, I(T ), provides a penalization related to the
number of parameters. This matter is behind the “Occam’s
razor” rationale (Magueijo & Sorkin 2006), and the informa-
tion criteria (Liddle 2004). According to the Aikaike infor-
maiton criteria (AIC), the information in a theory is simply
the number of parameters, k. In fact, we will use a more ac-
curate form, which is especially important for small sample
size, IAIC = k + k(k+1)

N−k−1 , where N is the number of data
points being fit (Burnham & Anderson 2006).

An alternative approach to the problem of penalization
is to compute the Bayesian evidence,

E =

Z

L(D|θ, M) Π(θ)dθ = P (D|M), (4)

where Π are the priors on the parameters θ for the model in
question (see e.g., Trotta (2005) for a review). Bayes theo-
rem tells us how this is related to the probability of a model
P (M |D), and it provides an effective penalization by com-
puting the average of the likelihood over this expanded pa-
rameter space. As an approximation to the logarithm of the
Bayes factor, B ≡ E1/E0, we will compute the Bayesian in-
formation criteria (BIC), IBIC = k

2 ln N (confusingly this is
not actually related to information-theoretic methods).

The evidence H for a theory T1 is then defined as the
decrease in the information of data and theory when it is
compared with a null hypothesis T0:

H = I(D ∩ T0) − I(D ∩ T1)

≡ Hf − Hp, (5)
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Data-set (b l) ε Hf HAIC HBIC ln B

LILC1 63 -120 .042 6.51 2.01 2.78 1.36
TOH1 61 -113 .032 7.48 2.98 3.75 1.85

TOH3 74 -129 .018 6.97 2.47 3.24 1.27
WMAP3 64 -123 .043 6.49 1.99 2.76 1.32

Table 2. The maximum likelihood improvement, Hf , and best-
fitting parameters for the planarity model (i.e., 3 extra param-
eters), from various all-sky renditions of the WMAP data. We
consider the evidence from AIC and BIC methods as well as the
Bayes factor (ln B ≡ ∆ ln E).

where Hf measures the improvement in the fit Hf =
ln(L1)− ln(L0), and Hp is the extra penalization we have in
our new theory.

In the language of the Jeffreys’ scale (Jeffreys 1961;
Liddle et al 2006) ln(B), or H , between 1 and 2.5 signals
substantial evidence, between 2.5 and 5 signals strong evi-
dence, and “decisive” evidence requires ln(B) > 5. However,
for these rules of thumb to apply to the IC methods, various
conditions should be met. For example the AIC assumes
Gaussianity of the likelihood with respect to the param-
eters, while the BIC assumes independent identically dis-
tributed data points. We will therefore compare these results
to those from statistically isotropic Gaussian simulations, in
Section 3.3. We will also compute the Bayes factor, for com-
parison with the BIC approximation, and the frequentist
results.

3.1 Planarity model

It was shown in Magueijo & Sorkin (2006) that the planarity
of the ! = 2, 3 multipoles is supported by a Bayesian anal-
ysis. The model used to assess the evidence for planarity is
based on the diagonal covariance matrix:

〈|a!m|2〉(n) = c!

`

δ!|m| + ε(1 − δ!|m|)
´

(6)

where n and ε are the free parameters of the model (in ad-
dition to c! that is common with the isotropic model, but of
a different value), with ε ! 1. We use the same ε and n for
both multipoles, so that k = 3, N = 12, HAIC

p = 4.5, and
HBIC

p = 3.73. In Table 2 we list the parameter values that
maximize the likelihood, together with Hf and H following
the AIC and BIC methods.

We also compute the Bayesian evidence and record
ln(B) in Table 2. We do this via brute force integration,
and for the base model (

˙

|a!m|2
¸

= c!) we use a uniform
prior on c!; 0 ! c! !(! + 1)/(2π) ! 3000µK2 . For the pla-
narity model we use uniform priors on ε ∈ [0, 1], and on c!;
0 ! c! !(! + 1)/(2π) ! (2! + 1) × 3000µK2 , with the fur-
ther constraint c̄! !(! + 1)/(2π) ! 3000µK2 where c̄! is the
average c̄! =

P

m

˙

|a!m|2
¸

/(2! + 1).
As before (Magueijo & Sorkin 2006) we find that varia-

tions between different galactic plane treatments lead to only
small variation in Hf . However, different evidence measures
reach different conclusions. All the measures find at least
substantial evidence for the planarity model, however the
AIC and BIC appear to significantly overestimate this evi-
dence compared to the ln(B) result. We refer to Section 3.3

" m′ (b l) ε Hf

2 0 6 157 0.027 3.47
2 2 59 -103 0.030 3.09

3 3 62 -120 0.025 5.06

4 2 58 -163 0.041 5.07
4 0 43 -98 0.043 4.02

5 3 49 -93 0.026 7.65

Table 3. The maximum likelihood improvement, Hf , for a dom-
inating m-mode model in the TOH1 map, where each multipole
can select its own axis, ε, and m′. Where there is a close call, the
runner up m′ is also listed.

for a frequentist assessment of significance, through an anal-
ysis of Hf from simulations.

3.2 General m-preference model

Using the same formalism we now revisit the debate on the
extent of the AOE, i.e., m-preference as opposed to pla-
narity. In the Bayesian formalism the matter can be ad-
dressed by replacing the the covariance matrix (6) by

〈|a!m|2〉(n) = c!(δm′|m| + ε(1 − δm′|m|)) (7)

where n, ε and m′(!) are the free parameters of the model,
with ε ! 1. We find that if we analyze each ! separately we
rediscover the instabilities reported in Section 2. In Table 3
we take TOH1 for definiteness, and present the winning m′,
its associated (b, l) and Hf ; and also the runner up in cases
where we get close calls in maximising Hf . We see that the
Bayesian analysis, in this set up, merely confirms the ! = 2,
m′ = 0, 2 and the ! = 4, m′ = 0, 2 instabilities.

However, a totally new perspective into these instabili-
ties now makes itself known. Hf only becomes the real evi-
dence H after it is degraded by the penalization Hp, related
to the number of parameters of the model. If we allow each
! to choose its own parameters then the overall Hf is large
(the sum total) but the penalization is prohibitive as each
multipole has 3 parameters. Thus in optimizing H we wish
to reduce the number of parameters by always seeking a
common axis n for all ! in (7). This immediately removes
the instabilities found in the frequentist formalism, by effec-
tively penalizing for jumping between close calls, when one
choice leads to a better common set of parameters.

Take for example ! = 2. We have that m′ = 0, 2 are close
competitors in the optimization of Hf ; however only m′ = 2
picks an axis that is roughly aligned with the preferred axis
for the other multipoles. So only m′ = 2 permits a large
saving in Hp (Hp = 2 per axis, using, say, the AIC) with
only small deterioration in Hf . An instability would only
arise if m′ = 0 improved Hf by an extra 2 when compared
with m′ = 2. The penalization forces the multipoles to chose
common parameters, at the risk of decreasing the fit a little.
Thus, in order to maximize H—and not only Hf—we should
select a common n for ! = 2 − 5, and the complete result
(for the same data-set) is presented in Table 4.

In order to mimic the full treatment
in Magueijo & Sorkin (2006) we should also seek a
common ε, thus reducing the number of parameters further.
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Data-set HP
f % Hm

f %

LILC1 6.51 2.69 11.46 6.90
TOH1 7.48 1.37 14.54 0.53

TOH3 6.97 2.02 11.57 6.35
WMAP3 6.49 2.71 12.10 4.21

Figure 2. The distribution of Hf returned by 10,000 Gaussian and isotropic simulations for the planarity model (left) and the general m-
preference model (middle). We also plot the result obtained by the WMAP3 map (short dashed line). In the Table we list the percentage
of simulations that find higher Hx

f values for the planarity model (P) and the m-preference model (m). We stress that this approach
does not take account of the relative complexities of the models.

A disadvantage of the Bayesian approach is its sensitiv-
ity to priors, and its insensitivity to useless parameters that
are unconstrained by the data. However, the frequentist ap-
proach can involve a large amount of computational time
and can be prone to selection effects (i.e., using a statis-
tic pre-tuned by the data). Consider that we could always

choose some convoluted complex statistic for which our data
returns anomalously high (or low) values, compared to the
simulations. Only the Bayesian approach can help here in
imposing a suitable penalization, by averaging the likelihood
over the extra parameter space. This ensures that a model is
preferred only if the improvement in the fit merits opening
up this extra dimension of parameter space.

The IC method provides another way of penalizing for
the extra parameters, however we see that the AIC generally
prefers the m-preference model (with the most parameters)
to the planarity or base model - in disagreement with both
the Bayesian and frequentist approach.

4 CONCLUSIONS

We have highlighted weaknesses with the original AOE
statistic (2) that probed m-preference for ! = 2 − 5. These
are primarily: 1) lack of robustness: small changes in the
data produce very different best-fitting parameter values,
i.e., the statistics are discontinuous; 2) variations with data-
set: it is hard to connect varying results to imperfections in
the data or the statistic; 3) the need for simulations to as-
sess significance: no way of penalizing for extra parameters
or comparing competing theories on an equal footing, e.g.,
planarity V’s general m-preference.

We have found an improved formalism by employing a
model selection approach, which cures the instabilities by
favouring common parameters between the multipoles. The
original instabilities were due to the existence of multiple
solutions for a given multipole. But bringing in a penal-
ization related to the number of parameters of the model
enforces “Occams Razor” and selects solutions where pa-
rameters are common between the multipoles. We now find
the best-fitting parameter values are robust.

The model selection approach also allows assessment
of the relative Bayesian evidence (ln B) for the planarity
model (correlation between ! = 2, 3, m′ = ! modes) and
the m-preference model (a correlation between ! = 2−5, m′

not restricted). This extends the work of Magueijo & Sorkin

(2006) where the low-! low-power evidence was assessed, as
well as planarity for some data-sets.

Using the Bayes factor, and the BIC approximation,
we find that there is substantial evidence for the planarity
model, but no evidence for the m-preference model. We also
take a frequentist approach to the problem, and compare
the “goodness of fit” (Hf ) to those from Gaussian SI sim-
ulations. In agreement with the Bayesian approach, we find
stronger evidence for the planarity model (∼ 98% CL), than
for the m-preference model (∼ 95% CL). These results are in
contradiction with the AIC approach which finds evidence
for both models, and generally stronger evidence for the m-
preference model. We think this demonstrates a weakness of
this crude statistic, that does not appear to penalize enough
for extra parameters.

The m-preference model is a more general version of
the planarity model. It is therefore not surprising that the
evidence for the planarity model is higher, as the parameter
space is smaller while still including the best fitting model
(m′ = !). Likewise, we could restrict the m′ parameters to
positive mirror parity modes and find a higher Bayes factor.
But without a theoretical motivation for restricting the m′

parameters to these values it could be argued that this ap-
proach involves tuning our model (or equivalently - the pri-
ors) to fit the data. Therefore, the lower significance (∼ 95%)
result for the m-preference model is our more conservative
result for the significance of the AOE in the WMAP third-
year data. Note that the Bayes factor finds no support for
this model, in multipoles ! = 2− 5, nor for just ! = 2, 3 (see
last column of Table 5).

The higher significance returned by the simulations,
compared to the Bayes factor, highlights an important dif-
ference between the Bayesian and frequentist approaches
to model comparison. For some confidence level, the ln(B)
threshold and frequentist Hf threshold can disagree, with
the Bayesian approach tending to be the more conservative
- a phenomenon not unheard of when discussing “2-sigma”
results.
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Fig. 1.— Top panel: The low-resolution Q-, V- and W-band
co-added WMAP map, to which the extended Kp0 mask has been
applied.
Middle panel: Results from the local power spectrum analysis.
The color of the large discs indicate the ratio between the ! = 2–63
power spectrum bin of the northern and southern hemispheres, as
determined in a reference frame where the north pole pierces the
center of the disc; light red/yellow indicates a low ratio, dark red
a high ratio. The medium sized dots indicate the absolute value
of the power spectrum estimated on a 9.◦5 disc in the ! = 2–63 bin
(i.e., not on the full hemisphere), and a dark blue dot means that
this value lies below the lower 80% confidence limit, while a green
dot means it lies above the upper 80% limit. Finally, the ecliptic
poles are marked by the small dark-blue spots. The figure should
not be interpreted as implying that data close to the galactic plane
have been used in the analysis: the WMAP Kp2 mask has been
applied for all power spectrum computations.
Bottom panel: The results from the intermediate scale three-point
analysis. Blue corresponds to low χ2, which again corresponds
to small fluctuations in the three-point function, while red corre-
sponds to high χ2. The full Kp0 mask has been applied to the
data.

and computing the three-point correlation function for
each disc. The full Kp0 mask is applied to the sky map,
including the regions of exclusion related to known point
sources. In order to reduce disc-disc correlations we first
apply a high-pass filter to the maps, removing all multi-
poles with ! = 0, . . . , 18. On each of these discs, we com-
pute the three-point correlation functions for 460 isosce-
les configurations smaller than 5◦.

The degree of agreement between the simulations and
the observations are quantified in terms of a standard
covariance matrix χ2 statistic. Such a statistic is, in
principle, only appropriate if the data under considera-
tion follow a joint Gaussian distribution. Usually, it also
works quite well for mildly non-Gaussian distributions,
and in particular symmetric ones, but for strongly asym-
metric distributions it is likely to yield biased results. It
is easily seen that the distributions for the even-ordered
correlation functions for a given geometrical configura-
tion are in general strongly asymmetric. We therefore
transform the data of each configuration into a Gaus-
sian distribution by means of the empirical distribution
function, before performing the χ2 analysis. The trans-
formation is defined as follows

Rank of observed map

Total number of maps + 1
=

1√
2π

∫ s

−∞

e−
1

2
t
2

dt. (1)

The left-hand side is the fraction of simulations with a
lower correlation function value than the map under con-
sideration (i.e., it approximates the true, but unknown,
cumulative distribution function), and the right-hand
side yields the corresponding value, s, measured relative
to a standard normal distribution.

4. RESULTS

4.1. Power spectrum

We have computed a local power spectrum estimate
for 164 slightly overlapping discs with radius 9.◦5, uni-
formly distributed on the part of the sphere outside of
the WMAP Kp2 sky cut and compared these to spec-
tra derived from an ensemble of 6144 simulated maps.
Concentrating on the lowest multipole bin ! = 2 − 63
we found that the amplitudes for discs in the northern
Galactic hemisphere were generally lower in the WMAP
data than in the simulated maps. Conversely, we found
that the discs in the southern Galactic hemisphere were
of generally higher amplitude than in the simulations. By
considering the ratio of the mean of the spectra in the
northern hemisphere to that in the southern hemisphere,
we found that only 0.5% of the simulations have a ratio
as low as the WMAP data. This is the first evidence of
a large scale absence of power in one hemisphere of the
WMAP data.

In order to pursue this effect further, we have com-
puted the ratio of the power spectrum amplitudes de-
termined for the northern and southern hemispheres as
defined in a particular coordinate system, and for a se-
lection of multipole ranges. The results are reported in
Table 1. In particular, we consider this ratio after first
determining that coordinate frame that maximizes its
value. The ratio for the WMAP data is larger than
∼ 99% of the maximum asymmetry values determined
from the simulated maps. We have also tabulated the
orientation, in Galactic coordinates, of the north pole
for the data-preferred reference frame. Note that whereas
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TABLE 1
Summary statistics for modulated CMB model posteriors

Data Mask !mod (lbf, bbf) Abf Significance (σ) ∆ logL ∆ log E

ILC KQ85 64 (224◦ ,−22◦) ± 24◦ 0.072 ± 0.022 3.3 7.3 2.6
V -band KQ85 64 (232◦ ,−22◦) ± 23◦ 0.080 ± 0.021 3.8 · · · · · ·

V -band KQ85 40 (224◦ ,−22◦) ± 24◦ 0.119 ± 0.034 3.5 · · · · · ·

V -band KQ85 80 (235◦ ,−17◦) ± 22◦ 0.070 ± 0.019 3.7 · · · · · ·

W -band KQ85 64 (232◦ ,−22◦) ± 24◦ 0.074 ± 0.021 3.5 · · · · · ·

ILC KQ85e 64 (215◦ ,−19◦) ± 28◦ 0.066 ± 0.025 2.6 · · · · · ·

Q-band KQ85e 64 (245◦ ,−21◦) ± 23◦ 0.088 ± 0.022 3.9 · · · · · ·

V -band KQ85e 64 (228◦ ,−18◦) ± 28◦ 0.067 ± 0.025 2.7 · · · · · ·

W -band KQ85e 64 (226◦ ,−19◦) ± 31◦ 0.061 ± 0.025 2.5 · · · · · ·

ILCa Kp2 ∼ 40 (225◦,−27◦) 0.11 ± 0.04 2.8 6.1 1.8

Note. — Listed quantities are (first column) data set (first column); mask (second column);
maximum multipole used for modulation covariance matrix, !mod (third column; marginal best-
fit dipole axis (fourth column) and amplitude (fifth column) with 68% confidence regions indi-
cated; statistical significance of non-zero detection of A (sixth column); the change in maximum
likelihood between modulated and isotropic models, ∆ logL = logLmod − logLiso (seventh col-
umn); and the Bayesian evidence difference, ∆ log E = log Emod−log Eiso (eighth column). The
latter two were only computed for one data set, due to a high computational cost. However,
other values can be estimated by comparing the significances indicated in the sixth column.
a Results computed from Nside = 16 and 9◦ FWHM data, as presented by Eriksen et al. (2007b).

Fig. 2.— Posterior distribution for the dipole modulation axis,
shown for the V-band map and KQ85 sky cut, marginalized over
power spectrum and amplitude parameters. Grey sky pixels in-
dicate pixels outside the 2σ confidence region. The dots indicate
the axis 1) reported by Eriksen et al. (2004a) in white; 2) for both
the ILC and V-band maps (these have the same best-fit axis) with
the KQ85 sky cut in black; 3) for the W -bands in blue, and the
axis reported by Eriksen et al. (2007b) in green. Note that the
background distribution has been smoothed for plotting purposes
to reduce visual Monte Carlo noise.

the three data sets, and also indicates the axes reported
by Eriksen et al. (2004a) and Eriksen et al. (2007b).

Next, we also see that the results are not strongly de-
pendent on the choice of mask, as the amplitudes for the
extended KQ85e mask are consistent with the KQ85 re-
sults, even though it removes an additional 10% of the
sky. However, we do see, as expected, that the error
bars increase somewhat by removing the additional part
of the sky, and this reduces the absolute significances
somewhat.

Finally, the best-fit modulation amplitudes for the V-
band data and KQ85 mask are A = 0.11 for !mod = 40,
A = 0.075 for !mod = 64 and A = 0.066 for !mod = 80 at
3.5σ, 3.8σ and 3.7σ, respectively. This is an interesting
observation for theoreticians who are interested in con-
structing a fundamental model for the effect: Taken at
face value, these amplitudes could indicate a non-scale
invariant behaviour of A, as also noted by Hansen et al.
(2008). On the other hand, the statistical significance of
this statement is so far quite low, as a single common

value A ∼ 0.07 is also consistent with all measurements.
Better measurements at higher !’s are required to unam-
biguously settle this question.

5. CONCLUSIONS

Shortly following the release of the first-year WMAP
data in 2003, Eriksen et al. (2004b) presented the early
evidence for a dipolar distribution of power in the
CMB temperature anisotropy sky, considering only
the large angular scales of the WMAP data. Next,
Groeneboom & Eriksen (2009) presented the evidence
for a quadrupolar distribution of CMB power, and found
that this feature extended over all !’s under considera-
tion. Finally, Hansen et al. (2008) found that the dipolar
CMB power distribution is present also at high !’s. The
evidence for violation of statistical isotropy in the CMB
field is currently increasing rapidly, and the significance
of these detections are approaching 4σ.

In this paper, we revisit the high-! claims of
Hansen et al. (2008), by applying an optimal Bayesian
framework based on a parametric modulated CMB model
to the WMAP data at higher multipoles than previ-
ously considered with this method, albeit lower than
those considered by Hansen et al. (2008). In doing so,
we find results very consistent with those presented by
Hansen et al. (2008): The evidence for a dipolar dis-
tribution of power in the WMAP data increases with
!. For example, when considering the V-band data and
KQ85 sky cut, the statistical significance of the modu-
lated model increases from 3.2σ at !mod = 40, to 3.8σ at
!mod = 64, and 3.7σ at !mod = 80.

The Bayesian evidence now also ranking within the
“strong to very strong” category on Jeffreys’ scale. How-
ever, it should be noted that the Bayesian evidence is by
nature strongly prior dependent, and if we had chosen a
prior twice as large as the one actually used, the corre-
sponding log-evidence for the ILC map would have fallen
from ∆ lnE = 2.6 to 1.7, ranking only as “substantial”
evidence. For this reason, it is in many respects easier
to attach a firm statistical interpretation to the posterior
distribution than the Bayesian evidence.

It is interesting to note that the absolute amplitude A
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Next, we also see that the results are not strongly de-
pendent on the choice of mask, as the amplitudes for the
extended KQ85e mask are consistent with the KQ85 re-
sults, even though it removes an additional 10% of the
sky. However, we do see, as expected, that the error
bars increase somewhat by removing the additional part
of the sky, and this reduces the absolute significances
somewhat.

Finally, the best-fit modulation amplitudes for the V-
band data and KQ85 mask are A = 0.11 for !mod = 40,
A = 0.075 for !mod = 64 and A = 0.066 for !mod = 80 at
3.5σ, 3.8σ and 3.7σ, respectively. This is an interesting
observation for theoreticians who are interested in con-
structing a fundamental model for the effect: Taken at
face value, these amplitudes could indicate a non-scale
invariant behaviour of A, as also noted by Hansen et al.
(2008). On the other hand, the statistical significance of
this statement is so far quite low, as a single common

value A ∼ 0.07 is also consistent with all measurements.
Better measurements at higher !’s are required to unam-
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CMB power distribution is present also at high !’s. The
evidence for violation of statistical isotropy in the CMB
field is currently increasing rapidly, and the significance
of these detections are approaching 4σ.

In this paper, we revisit the high-! claims of
Hansen et al. (2008), by applying an optimal Bayesian
framework based on a parametric modulated CMB model
to the WMAP data at higher multipoles than previ-
ously considered with this method, albeit lower than
those considered by Hansen et al. (2008). In doing so,
we find results very consistent with those presented by
Hansen et al. (2008): The evidence for a dipolar dis-
tribution of power in the WMAP data increases with
!. For example, when considering the V-band data and
KQ85 sky cut, the statistical significance of the modu-
lated model increases from 3.2σ at !mod = 40, to 3.8σ at
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Fig. 9.— Marginal ACW posteriors obtained from the V- (left) and W-band (right) WMAP temperature sky maps. Top row shows
P (g∗|d) and bottom three rows show P (n̂|d) for three different !-ranges. Note the common preferred axis in both ! = [2, 100] and [100, 400].

(l, b) = (110◦, 10◦).
Further, this same direction is observed in both ! =

[2 − 100] and ! = [100, 400], indicating that the struc-
ture is present over a large range of angular scales. The
results are also stable with respect to sky cut, as the
same pattern is seen with the KQ75 sky mask as with
the KQ85 cut, removing an additional 10% of the sky.

5.3. Sensitivity to systematics

Given the nominally strong results found in the pre-
vious section, it is imperative to search for possible sys-
tematic effects that might explain the observations. In
particularly, three major sources of uncertainty should
be considered in detail, namely non-cosmological fore-
grounds, correlated noise and asymmetric beams.

First, residual Galactic foregrounds do not a priori ap-

TABLE 1
Summary of marginal posteriors from WMAP5

Band ! range Mask Amplitude g∗ Direction (l, b)

V 2 − 400 KQ85 0.10 ± 0.04 (130◦, 10◦)
V 100 − 400 KQ85 0.09[0.084, 0.148] (130◦, 10◦)
V 2 − 100 KQ85 −0.07[−0.156, 0.480] (130◦, 15◦)
V 2 − 400 KQ75 0.10[−0.100, 0.158] (130◦, 10◦)
V-raw 2 − 400 KQ85 0.11 ± 0.036 (130◦, 10◦)
V1 2 − 400 KQ85 0.12 ± 0.041 (130◦, 10◦)
V2 2 − 400 KQ85 0.08 ± 0.044 (130◦, 10◦)
W 2 − 400 KQ85 0.15 ± 0.039 (110◦, 10◦)
W 100 − 400 KQ85 0.14[−0.097, 0.236] (110◦, 10◦)
W 2 − 100 KQ85 0.14[−0.162, 0.470] (125◦, 20◦)

Note. — In cases with no significant detection, the values for g∗
indicate the maximum posterior value and 95% confidence regions.
Otherwise, they indicate posterior mean and standard deviation.
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Note that the quadratic action (41) does not contain any time derivatives of the modes {Φ̂, χ̂, B̂, α̂0} (Actually,
the starting action has terms which contains time derivatives of these modes, but such terms are always coupled to
non time differentiated modes, so they can be integrated by parts). It is straightforward to see that, from to the
antisymmetric stress tensor Fµν = ∇µAν −∇νAµ, the mode δA0 = α0 (and correspondingly the gauge invariant mode

α̂0) does not have a quadratic kinetic term. Similar behavior for the metric perturbations Φ̂, χ̂, B̂ can be understood
through the lines of the ADM formalism [38], where the g0µ components of the metric are nondynamical (The Ricci
scalar does not contain kinetic terms for these components). Variation of the action with respect to g0µ components
result in the energy and momentum constraints. Indeed, if we were to fix the infinitesimal coordinate gauge invariance

by choosing
(

E = Σ = B̃ = 0
)

, as in [10], the gauge invariant modes {Φ̂, χ̂, B̂, α̂0} would reduce to δg0µ, and δA0.

Thus, the combinations {Φ̂, χ̂, B̂, α̂0} given in (27) are nondynamical, which is explicitly verified by the form of the
action (41).

In order to determine the dynamical behavior of the system of perturbations and to determine the canonical variables
(which is done explicitly in Appendix A), we need to reduce the full action (41) to an action which contains only
the dynamical modes. This can be achieved by integrating out the nondynamical modes {Φ̂, χ̂, B̂, α̂0}. Since the
quadratic action does not contain any time derivatives of the nondynamical modes, it is clearly seen from equation
(42) that the variation with respect to these modes result in algebraic equations. We then solve the resulting equations
(they coincide with the first four of (31), i.e. they are the constraint equations) for the nondynamical modes and
insert the solutions back into the action. This final action contains only dynamical modes and determine the evolution
of the system completely. To be more precise, note that the quadratic action (41) is formally of the type

S =

∫

d3k dt
[

aij Ẏ ∗
i Ẏj +

(

bij N∗
i Ẏj + h.c.

)

+ cij N∗
i Nj +

(

dij Ẏ ∗
i Yj + h.c.

)

+ eij Y ∗
i Yj + (fij N∗

i Yj + h.c.)
]

(43)

where Y = {Ψ̂, α̂, α̂1} and N = {Φ̂, χ̂, B̂, α̂0}. All the coefficient matrices a, b, c, d, e, f depend on the background
quantities and a, c, e are hermitian. The constraint equations (equations of motion for the nondynamical modes) are
given by

δS

δN∗
i

= 0 ⇒ cij Nj = −bij Ẏj − fij Yj (44)

From this equation we solve for the nondynamical variables Ni and insert the solution back into the original action
(43) which gives

S →
∫

d3k dt
[

Ẏ ∗
i Kij Ẏj +

(

Ẏ ∗
i Λij Yj + h.c.

)

− Y ∗
i Ω2

ij Yj

]

Kij ≡ aij −
(

b†
)

ik

(

c−1
)

km
bmj

Λij ≡ dij −
(

b†
)

ik

(

c−1
)

km
fmj

Ω2
ij ≡ eij −

(

f †
)

ik

(

c−1
)

km
fmj (45)

The computation of the matrices Kij , Λij , Ω2
ij are straightforward but algebraically very involved. We therefore do

not report their full expressions here. We are interested in the behavior of the kinetic matrix Kij , which determines
whether the system has a ghost. If one of the eigenvalues of the kinetic matrix is negative, this indicates that the a
certain linear combination of the dynamical modes is a ghost. Namely, after diagonalizing the kinetic matrix (which
we carry out in the early time limit in Appendix A) the resulting action will be composed of canonically normalized
dynamical modes, which are linear combinations of the original modes Yi. If an eigenvalue of Kij is negative, then
the eigenvector (a linear combination of the original modes we started with) corresponding to the negative eigenvalue,
will have a kinetic term with the wrong (negative) sign. Such a mode is a ghost and indicates the instability of the
vacuum of the theory. Since the determinant is a product of the eigenvalues, we compute the kinetic determinant in
this subsection. Thus if the determinant of Kij is negative, this will indicate that at least one of the eigenvalues is
also negative and therefore there is a ghost.

The linearized equations for the dynamical modes can be obtained by extremezing the action (45) with respect to
the dynamical modes, which formally gives

δS

δY ∗
i

= 0 → Kij Ÿj +
[

K̇ij + (Λij + h.c.)
]

Ẏj +
(

Λ̇ij + Ω2
ij

)

Yj = 0 (46)

If one of the eigenvalues of Kij vanishes at some moment of time t∗, the linear combination of dynamical modes
Yi, which corresponds to this vanishing eigenvalue, has a second time derivative which approaches infinity as time
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i Ẏj +
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i Ẏj +

(

bij N∗
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i Yj + h.c.

)

+ eij Y ∗
i Yj + (fij N∗

i Yj + h.c.)
]

(43)

where Y = {Ψ̂, α̂, α̂1} and N = {Φ̂, χ̂, B̂, α̂0}. All the coefficient matrices a, b, c, d, e, f depend on the background
quantities and a, c, e are hermitian. The constraint equations (equations of motion for the nondynamical modes) are
given by

δS

δN∗
i

= 0 ⇒ cij Nj = −bij Ẏj − fij Yj (44)
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dynamical modes, which are linear combinations of the original modes Yi. If an eigenvalue of Kij is negative, then
the eigenvector (a linear combination of the original modes we started with) corresponding to the negative eigenvalue,
will have a kinetic term with the wrong (negative) sign. Such a mode is a ghost and indicates the instability of the
vacuum of the theory. Since the determinant is a product of the eigenvalues, we compute the kinetic determinant in
this subsection. Thus if the determinant of Kij is negative, this will indicate that at least one of the eigenvalues is
also negative and therefore there is a ghost.

The linearized equations for the dynamical modes can be obtained by extremezing the action (45) with respect to
the dynamical modes, which formally gives
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ij

)

Yj = 0 (46)

If one of the eigenvalues of Kij vanishes at some moment of time t∗, the linear combination of dynamical modes
Yi, which corresponds to this vanishing eigenvalue, has a second time derivative which approaches infinity as time
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Action for the dynamical (propagating) modes
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(they coincide with the first four of (31), i.e. they are the constraint equations) for the nondynamical modes and
insert the solutions back into the action. This final action contains only dynamical modes and determine the evolution
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whether the system has a ghost. If one of the eigenvalues of the kinetic matrix is negative, this indicates that the a
certain linear combination of the dynamical modes is a ghost. Namely, after diagonalizing the kinetic matrix (which
we carry out in the early time limit in Appendix A) the resulting action will be composed of canonically normalized
dynamical modes, which are linear combinations of the original modes Yi. If an eigenvalue of Kij is negative, then
the eigenvector (a linear combination of the original modes we started with) corresponding to the negative eigenvalue,
will have a kinetic term with the wrong (negative) sign. Such a mode is a ghost and indicates the instability of the
vacuum of the theory. Since the determinant is a product of the eigenvalues, we compute the kinetic determinant in
this subsection. Thus if the determinant of Kij is negative, this will indicate that at least one of the eigenvalues is
also negative and therefore there is a ghost.

The linearized equations for the dynamical modes can be obtained by extremezing the action (45) with respect to
the dynamical modes, which formally gives
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If one of the eigenvalues of Kij vanishes at some moment of time t∗, the linear combination of dynamical modes
Yi, which corresponds to this vanishing eigenvalue, has a second time derivative which approaches infinity as time
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Action for the dynamical (propagating) modes
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For illustrative purposes, consider δAµ only

(same divergency when δgµν also included)

δAµ = (δ0, ∂xδ + v1, ∂yδ + v2, δ3)

δ3 = 0 due to lagrange multiplier; $v decouples
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Nonminimal coupling
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− 2ḣ + (1 − 6 ξ)

(

2H2 + h2 + Ḣ
)}

B = 0

Nonminimal coupling

S =
∫

d4x
√
−g





M2
p

2
R −

F2

4
+

ξ

2
R A2





gµν = diag
(

−1, a2, b2, b2
)

H =
1

3
[Ha + 2Hb] h =

1

3
[Hb − Ha]

Aµ = (0, a B Mp, 0, 0) → A2 = M2
p B2

B̈+3H Ḃ+
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− 2ḣ + (1 − 6 ξ)

(

2H2 + h2 + Ḣ
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)}

B = 0

ξ = 1/6 used for

Primordial magnetic fields Turner, Widrow ’88

Vector inflation Golovnev, Mukhanov, Vanchurin ’08

Vector curvaton Dimopoulos, Lyth, Rodriguez ’08

Nonminimal coupling

S =
∫

d4x
√
−g





M2
p

2
R −

F2

4
+

ξ

2
R A2





gµν = diag
(

−1, a2, b2, b2
)

H =
1

3
[Ha + 2Hb] h =

1

3
[Hb − Ha]

Aµ = (0, a B Mp, 0, 0) → A2 = M2
p B2

B̈+3H Ḃ+
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Exhaustive computation if Aµ has no VEV
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(

2H2 + h2 + Ḣ
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i Kij Ẏj + . . .

]

det K

k1 : k2 : k3 = 100 : 80 : 60

Two negative eigenvalues

Singularity expected



Simplified computation: concentrate on one vector field

“mimic” the remaining ones with a cosmological constant

Simplified computation: concentrate on one vector field

Collective effect of the remaining ones ≡ cosmological constant

L =
M2

p

2
R − V0 −

1

4
FµνF

µν −
1

2

(

m2 −
R

6

)

AµAµ

Simplified computation: concentrate on one vector field

Collective effect of the remaining ones ≡ cosmological constant

L =
M2

p

2
R − V0 −

1

4
FµνF

µν −
1

2

(

m2 −
R

6

)

AµAµ

Simplified computation: concentrate on one vector field

Collective effect of the remaining ones ≡ cosmological constant

L =
M2

p

2
R − V0 −

1

4
FµνF

µν −
1

2

(

m2 −
R

6

)

AµAµ

Aµ = (0, a B Mp, 0, 0)+δAµ → H =

√
V0√

3Mp

+O
(

B2
)

, h =
H

3
B2+O

(

B4
)

B slowly rolling for m % H

Simplified computation: concentrate on one vector field

Collective effect of the remaining ones ≡ cosmological constant

L =
M2

p

2
R − V0 −

1

4
FµνF

µν −
1

2

(

m2 −
R

6

)

AµAµ

Aµ = (0, a B Mp, 0, 0)+δAµ → H =

√
V0√

3Mp

+O
(

B2
)

, h =
H

3
B2+O

(

B4
)

B slowly rolling for m % H

Simplified computation: concentrate on one vector field

Collective effect of the remaining ones ≡ cosmological constant

L =
M2

p

2
R − V0 −

1

4
FµνF

µν −
1

2

(

m2 −
R

6

)

AµAµ

Aµ = (0, a B Mp, 0, 0)+δAµ → H =

√
V0√

3Mp

+O
(

B2
)

, h =
H

3
B2+O

(

B4
)

B slowly rolling for m % H

vev along x only, can do 2d decomposition

Simplified computation: concentrate on one vector field

Collective effect of the remaining ones ≡ cosmological constant

L =
M2

p

2
R − V0 −

1

4
FµνF

µν −
1

2

(

m2 −
R

6

)

AµAµ

Aµ = (0, a B Mp, 0, 0)+δAµ → H =

√
V0√

3Mp

+O
(

B2
)

, h =
H

3
B2+O

(

B4
)

B slowly rolling for m % H

vev along x only, can do 2d decomposition

δgµν











1dyn + 3nondyn2ds

1dyn + 1nondyn2dv

Simplified computation: concentrate on one vector field

Collective effect of the remaining ones ≡ cosmological constant

L =
M2

p

2
R − V0 −

1

4
FµνF

µν −
1

2

(

m2 −
R

6

)

AµAµ

Aµ = (0, a B Mp, 0, 0)+δAµ → H =

√
V0√

3Mp

+O
(

B2
)

, h =
H

3
B2+O

(

B4
)

B slowly rolling for m % H

vev along x only, can do 2d decomposition

δgµν











1dyn + 3nondyn2ds

1dyn + 1nondyn2dv

δAµ











2dyn + 1nondyn2ds

1dyn2dv

7 coupled modes rather than 18

Simplified computation: concentrate on one vector field

Collective effect of the remaining ones ≡ cosmological constant

L =
M2

p

2
R − V0 −

1

4
FµνF

µν −
1

2

(

m2 −
R

6

)

AµAµ

Aµ = (0, a B Mp, 0, 0)+δAµ → H =

√
V0√

3Mp

+O
(

B2
)

, h =
H

3
B2+O

(

B4
)

B slowly rolling for m % H

vev along x only, can do 2d decomposition

δgµν











1dyn + 3nondyn2ds

1dyn + 1nondyn2dv

δAµ











2dyn + 1nondyn2ds

1dyn2dv

7 coupled modes rather than 18



0.005 0.010 0.015 0.020 0.025
!1.0

!0.5

0.0

0.5

1.0

H!p

M
p V
0

" Α 0
$in

Λ1
Λ1,0

,
Λ2
Λ2,0

,
Λ3
Λ3,0

Parametrically, detK = B2 − H2

p2 + . . .
Parametrically, detK = B2 − H2

p2 + . . .

Perturbations diverge when it vanishes



Stability of the ACW model

1 Background Evolution

We consider the following action,

S =

∫

d4x
√
−g

[

M2
p

2
R −

1

4
Fµν Fµν + λ

(

A2 − m2
)

− V0

]

(1)

where A2 ≡ Aµ Aµ. We have the equations

Gµν =
1

M2
P

[

Fµα F α
ν − 2λAµ Aν + gµν

(

−
1

4
F 2 + λ

(

A2 − m2
)

− V0

)]

1√
−g

∂ν
[√

−g Fµν
]

= 2λAµ

A2 = m2 (2)

For the background, we have

ds2 = −dt2 + a2 (t) dx2 + b2 (t)
[

dy2 + dz2
]

, Aµ = (0, Mp aB1, 0, 0) (3)

so that the above equations give

2Ha Hb + H2
b =

1

2

(

Ḃ1 + Ha B1

)2

+
V0

M2
p
− λ

(

B2
1 − µ2

)

2 Ḣb + 3H2
b =

1

2

(

Ḃ1 + Ha B1

)2

+
V0

M2
p

+ λ
(

B2
1 + µ2

)

Ḣa + Ḣb + H2
a + Ha Hb + H2

b = −
1

2

(

Ḃ1 + Ha B1

)2

+
V0

M2
p
− λ

(

B2
1 − µ2

)

B̈1 + (Ha + 2Hb) Ḃ1 +
(

Ḣa + 2Ha Hb − 2λ
)

B1 = 0

B2
1 = µ2 (4)

These equations are related by a Bianchi identity. The last equation indicates that B1 is constant; therefore,
the nonvanishing Maxwell equation gives λ = Ha Hb + Ḣa/2. The other three equations admit the solution

H2
a =

2V0

M2
p

1

6 + 7µ2 + 2µ4
, Hb =

(

1 + µ2
)

Ha (5)

2 Fluctuations of the vector field

Here we consider the fluctuations of the vector field in this background. We do include the fluctuations of
the metric (this will be done in the next Section). We introduce the fluctuations as

Aµ = (0, a µ, 0, 0) + δaµ (6)
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ACW studied the perturbations of a test field χ
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Assuming this power spectrum also for the primordial density

perturbations, Groeneboom, Eriksen ’08 find 3.8 σ evidence for

g∗ & 0.1 in WMAP 5
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Just impose a cut-off

Singularity at horizon crossing (m ∼ H); no sub-horizon regime

det K always < 0 if 〈Aµ〉 = 0 (Turner-Widrow) No blow up

For a ghost gravitationally coupled today to matter, Λ < 3MeV

Cline et al ’03

Get rid of the ghost with −R/6 + m2, with

R0 & m2 & Rinf

Assume singularity cured, any other problem ?
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So what ?

Linearized computation blows up; maybe nonlinear evolution ok

Linearized computation → CMB

nonlinear interactions: |0〉 → ghost-nonghost; UV ∞

U(1) hard breaking, AL interactions p/m enhanced

Quantum theory out of control at E >∼ m ∼ H

whole sub-horizon regime

Unclear UV completion

± |DH|2 → ±m2 A2

Ghost condensation ?



Scalar-Vector Coupling

supports anisotropic expansion
due to vector field. 

Isotropic expansion

Power Spectrum for 
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that the quadratic action for the longitudinal vector polarization

vanishes at that point → perturbations diverge

Problems in theories with fixed A2 also pointed out by Clayton ’01

Conclusions

• Some evidence of broken statistical isotropy at large scales

(e.g. evidence for g∗ #= 0, ....)

• To reconcile this with the inflationary scenario, we extended the

theory of cosmological perturbations to anisotropic backgrounds

Scalar / tensor coupling at linearized level

Different spectra for the two tensor polarizations

Nondiagonal a"m a∗
"′m′ correlations

• Problems with specific realizations

Some “evidence” at large scales

against this assumption

Quadrupole / octupole planarity

& alignment

de Olivero-Costa et al. ’03

Axis of evil (" = 2 − 5) Land, Magueijo ’05

North-south asymmetry

• Full computations in simplest non FRW

scalar-tensor coupling; P+ != P×; Nondiagonal C!!′mm′

Easy to extend further
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