R-symmetric Gauge Mediation and the MRSSM

Andrew Blechman University of Toronto

Based on work with

S. De Lope Amigo, P. Fox and E. Poppitz

arXiv:0809.1112, ...

Motivation

- Supersymmetry pairs each Standard Model (Weyl) fermion with a spin-0 boson, and each boson with a (Weyl) fermion.
- Solves the gauge hierarchy problem by canceling quantum corrections in the Higgs sector.
- Also improves Grand Unification, provides Dark Matter candidates, has many nice theoretical properties, ...

Motivation

- Problem: we do not see scalar electrons or fermionic gluons! This can be resolved by Spontaneous Symmetry Breaking.
- Solution to hierarchy problem is assured as long as SUSY-breaking operators are "soft" (d<4).</p>
- Naively doubling the SM content, adding a second Higgs doublet, and writing down all soft SUSY breaking operators allowed by symmetries is called the Minimal Supersymmetric Standard Model.

The MSSM Soft Operators

Hermitian scalar masses:

$$m_{ij}^2 \tilde{q}_i^* \tilde{q}_j$$

Holomorphic scalar mass ("B-terms"):

$$B_{\mu}H_{u}H_{d}$$

Holomorphic trilinear couplings ("A-terms"):

$$A_{ij}H_{u,d}\tilde{q}_L^i\tilde{q}_R^j$$

Majorana gaugino masses:

$$M_{1/2}\lambda\lambda$$

A New Puzzle

- With all these new operators, the MSSM has 124 parameters - and that's the MINIMAL model!
- Many of those parameters are flavor mixing angles and phases, implying large FCNC's and CP violation. This is called the SUSY Flavor/CP Puzzle.
- We need some principle to eliminate this flavor violation to avoid conflicts with observation and reduce the parameter space to something manageable for experiments.

A New Solution

- An R-symmetry rotates fields within a supermultiplet differently.
- Fribs, Poppitz, Weiner (arXiv:0712.2039) found that by imposing an additional R-symmetry to the MSSM you can have sizable flavor-violating operators while not generating large FCNC's or CP violation, as long as gluinos are heavy.
- We impose a U(1)_R symmetry, although a discrete symmetry would work as well.

The MRSSM

- Features of the MRSSM:
 - No Majorana masses for the gauginos, but there are Dirac masses.
 - No A-terms for the scalars; hence no left-right squark/slepton mixing.
 - No mu-term, but there is a B-term (complicated Higgs sector).

K-Kbar Mixing

Strongest constraint in SUSY flavor physics.

Parametrize mixing:
$$\delta_L \equiv \frac{m_{ ilde{Q}12}^2}{M_{ ilde{q}}^2} \qquad \delta_R \equiv \frac{m_{ ilde{d}12}^2}{M_{ ilde{q}}^2}$$

The Low-Energy Effective Lagrangian is:

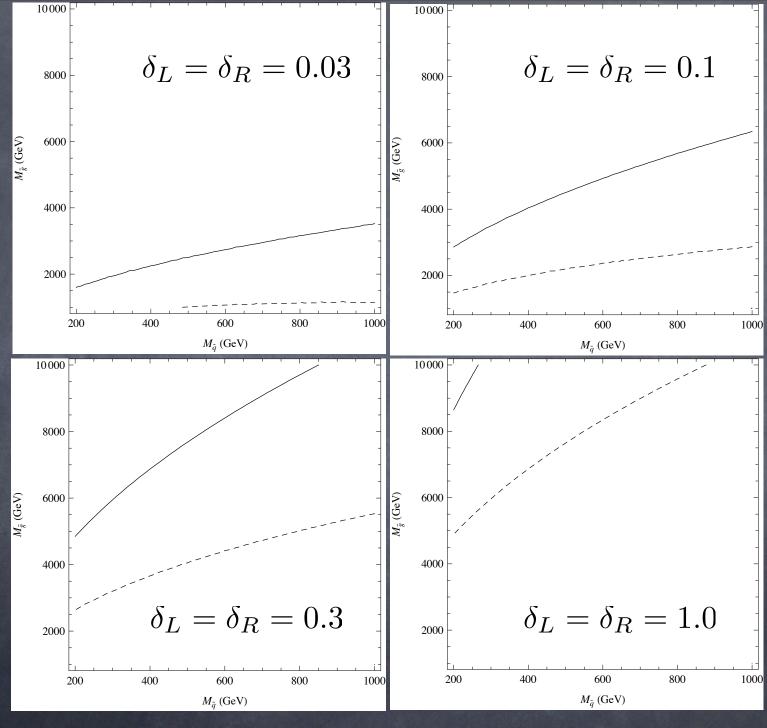
$$\mathcal{L}_{\text{eff}} = \frac{\alpha_s^2(M_{\tilde{g}})}{216} \left(\frac{M_{\tilde{q}}^2}{M_{\tilde{g}}^4}\right) \sum_n C_n(\mu) \mathcal{O}_n(\mu)$$

$$\mathcal{O}_{1} = (\bar{d}_{L}^{i} \gamma^{\mu} s_{L}^{i}) (\bar{d}_{L}^{j} \gamma_{\mu} s_{L}^{j})$$

$$\mathcal{O}_{4} = (\bar{d}_{R}^{i} s_{L}^{i}) (\bar{d}_{L}^{j} s_{R}^{j})$$

$$\mathcal{O}_{5} = (\bar{d}_{R}^{i} s_{L}^{j}) (\bar{d}_{L}^{j} s_{R}^{i})$$

QCD Corrections computed in A.B., S.-P. Ng, arXiv:0803.3811



 $M_{\tilde{q}}({
m GeV})$

Results: CP Violation

Assuming this contribution saturates the measured bound of ϵ_K :

$M_{ ilde{g}}$	$M_{ ilde{q}}$	$\delta_L \equiv \delta_R$	KPW phase	BN phase
3.5 TeV	400 GeV	0.06	0.15	9.8×10 ⁻³
3.5 TeV	400 GeV	0.25	0.01	5.7×10 ⁻⁴

A Problem...

- Anytime you spontaneously break SUSY, you have a goldstino and a cosmological constant.
- When turning on supergravity, this goldstino is "eaten" by the gravitino (gauge field of SUSY) and it gains a mass which is Rviolating (at least in N=1 SUSY).
- This mass term feeds into the MSSM through anomaly mediation, so it looks like this model can never be realized...

... A Solution!

- Gauge mediation has a very light gravitino, typically around 1 keV or so, rendering these troublesome effects irrelevant.
- Ordinary gauge mediation breaks the R-symmetry, but if we can find a framework where we can maintain the symmetry through a gauge-mediation-like mechanism, then we might realize the MRSSM naturally...

ISS Models

- Intriligator, Seiberg and Shih (hep-th/0609529) show that certain SUSY-QCD theories have a "metastable" vacuum that spontaneously breaks SUSY but preserves an R-symmetry.
- The electric theory has N_f quark superfields, an SU(N_c) gauge group, and a superpotential:

$$W_{el.} = \operatorname{Tr} m Q \bar{Q}$$

The magnetic theory has a "meson" superfield, N_f "dual quark" superfields, an $SU(N_F - N_C)$ gauge group and a superpotential:

$$W_{magn.} = \bar{q} \mathcal{M} q + m \Lambda \mathcal{M} + \dots$$

A Minimal Model

- Previously, much effort has gone into finding ways to break the R-symmetry so as to give the gauginos Majorana masses (see our paper for a list of references).
- We will consider $N_F = 6$, $N_C = 5$ as the simplest model no gauge fields in the magnetic theory (Csaki, Shirman, Terning, hep-ph/0612241).
- The dual squarks will get vevs, breaking

$$SU(6) \rightarrow SU(5)$$

We will write the SU(6) fields in terms of SU(5) fields:

$$\mathcal{M} = \begin{pmatrix} M & N \\ \bar{N} & X \end{pmatrix} , q = \begin{pmatrix} \varphi \\ \psi \end{pmatrix} , \bar{q} = \begin{pmatrix} \bar{\varphi} \\ \bar{\psi} \end{pmatrix}$$

We embed the Standard Model group as a gauged subgroup of SU(5).

We also add two additional adjoint superfields.

	$\mid SU(5)_V \mid$	U(1)	$U(1)_R$
\overline{M}	Adj+1	0	+2
X	1	0	+2
N	5	+6	+2
$ar{N}$	$ar{5}$	-6	+2
φ	5	+1	0
$ar{arphi}$	$ar{5}$	-1	0
ψ	1	-5	0
$ar{\psi}$	1	+5	0
Φ	\mathbf{Adj}'	0	0
M'	Adj	0	0

- Because of the symmetry breaking, there will be 11 massless Nambu-Goldstone modes - we would like to get rid of these since they will have charge under the SM gauge group.
- We therefore "tilt" the ISS superpotential to explicitly break the SU(6) symmetry and give masses to these NG modes:

$$W = W'_{\text{magn}} + W_1$$

$$W_{\text{magn}} = \lambda \left(\bar{\varphi} M \varphi + \kappa' \bar{\psi} X \psi + \kappa \bar{\varphi} N \psi + \kappa \bar{\psi} \bar{N} \varphi \right)$$
$$-f^{2} (X + \omega \operatorname{Tr} M)$$

and
$$W_1 = y \left(ar{arphi} \Phi N - ar{N} \Phi arphi
ight)$$

Messenger Spectrum

At the SUSY-breaking metastable vacuum:

$$\langle \bar{\psi}\psi \rangle \equiv v^2 = \frac{f^2}{\lambda \kappa'},$$
 $\langle F_{\text{Tr}M} \rangle = \omega f^2$

We can parametrize all the masses in terms of two scaleless variables and a mass:

$$z \equiv \lambda \omega$$
 $z \equiv \frac{\omega \kappa'}{\kappa^2}$ $M_{\rm mess}^2 \equiv \frac{x}{z} f^2$

Messenger Spectrum

Scalars:

 N, \bar{N} : SUSY-preserving mass $M^2_{
m mess}$

 $\overline{arphi, \overline{arphi}}$: SUSY-breaking mass $^{\mathrm{2}}(1\pm z)M_{\mathrm{mess}}^{2}$

R-preserving!!

Fermions:

 $arphi ar{N} + N ar{arphi}$: SUSY-preserving (Dirac) mass $M_{
m mess}$

Note: with all this matter, QCD will develop a Landau Pole Λ_3

Messenger Spectrum

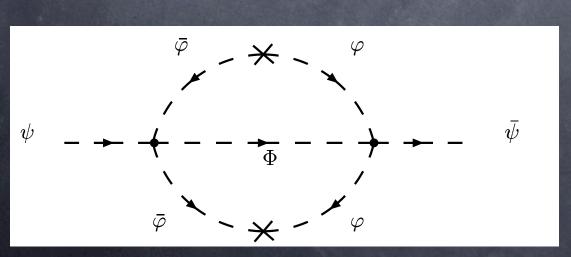
$$\psi = ve^{(\eta+i\xi)/v}$$

$$\bar{\psi} = ve^{-(\eta+i\xi)/v}$$

Coleman-Weinberg calculation gives

$$\langle \eta \rangle = 0$$

 ξ is the NG boson of the U(1) symmetry. W₁ explicitly breaks this symmetry and so will generate a potential for the NG boson at two loops:



$$V_{
m eff}(\xi)=-\mu^2 v^2\cos\left(rac{2\xi}{v}
ight)$$
 $m_{\xi}^2=\left(rac{\lambda\kappa y}{16\pi^2}
ight)^2M_{
m mess}^2H(z)$ where $H(1)=rac{2\pi^2}{3}$

Charge Conjugation

- Charge conjugation symmetry exchanges barred and unbarred fields.
- Gauge fields (including gaugino) change sign, so to make a Dirac mass:

$$\Phi o -\Phi$$

- \odot This explains the relative sign in W_1 .
- This also forbids a tadpole for the hypercharge adjoint, up to SM contributions that we assume are small.
- This also forbids dangerous kinetic mixing of the SUSY breaking spurion with the hypercharge D term which could generate tachyonic sleptons.

Soft terms in the Visible Sector

There are two contributions:

Contributions from unknown UV physics.

IR ("Gauge Mediation") contributions.

UV Contributions

All terms can be generated by a SUSY-breaking spurion:

$$\Xi \equiv \langle \text{Tr} M \rangle = \theta^2 \omega f^2$$

and all UV contributions are proportional to a single scale:

$$M_{UV} = \frac{\omega f^2}{\Lambda} = \left(\frac{z}{\lambda}\right) \left(\frac{M_{\text{mess}}}{\Lambda}\right) M_{\text{mess}}$$

where Λ is the scale at which these operators are generated.

UV Contributions: The Size of Λ

There are two extremes for estimating the UV scale:

- $\Lambda \sim \frac{\Lambda_3}{4\pi}$: UV operators are important this is the maximal size of the operators (using NDA). We will consider this case, but it could overestimate the size of these contributions.

UV Contributions

UV Dirac Gaugino Mass:

$$\int d^2\theta \, \frac{1}{\Lambda^3} \, (W^\alpha \Phi) \, \bar{D}^2 D_\alpha \, (\Xi^\dagger \Xi)$$

$$m_{1/2} \sim M_{UV} \left(\frac{M_{UV}}{\Lambda}\right)$$

UV Scalar Mass:

$$\int d^4\theta \; \frac{c_{ij}}{\Lambda^2} \; \left(\Xi^{\dagger}\Xi\right) Q_i^{\dagger} Q_j$$

Small!

$$m_{0\ ij} \sim M_{UV}$$

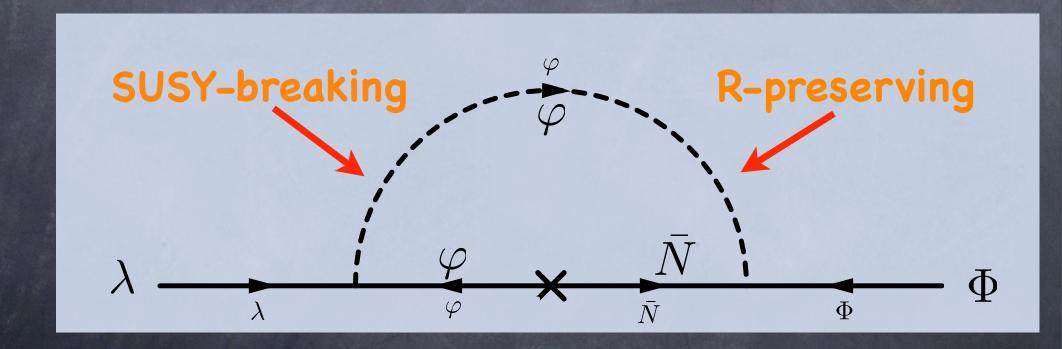
Adjoint Masses: scalars

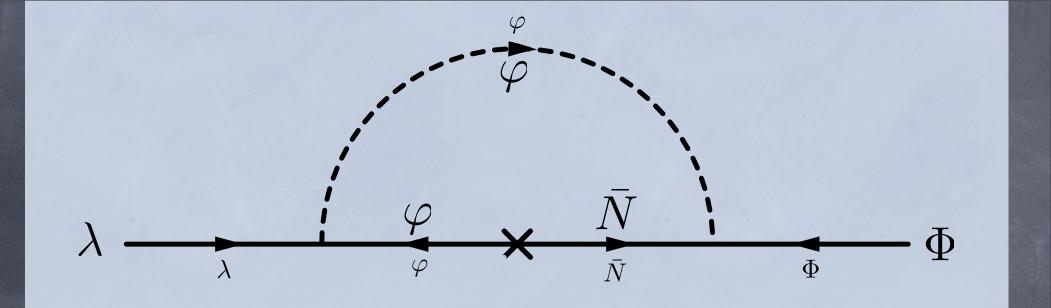
scalars & fermions

$$\int d^4\theta \; \frac{\Xi^{\dagger}\Xi}{\Lambda^2} \; \left(\text{Tr}\Phi^{\dagger}\Phi + \text{Tr}\Phi^2 \right) \; + \int d^4\theta \; \frac{1}{\Lambda} \; \Xi^{\dagger}MM'$$

IR Contributions: Dirac Gaugino Mass

There is a new diagram:





This diagram gives:

Yukawa dependent!

$$m_{1/2} = \frac{gy}{16\pi^2} M_{\text{mess}} R(z) \cos\left(\frac{\langle \xi \rangle}{v}\right)$$

where we have the new function:

$$R(z) = \frac{1}{z} \left[(1+z) \log(1+z) - (1-z) \log(1-z) - 2z \right]$$

IR Contributions: Scalar Masses

Identical to Gauge Mediation with one messenger:

$$m_0^{(IR)2} = 2C_F^{(a)} \left(\frac{\alpha_a}{4\pi}\right)^2 M_{\text{mess}}^2 F(z)$$

where F(z) is the usual GM function:

$$F(z) = (1+z) \left[\log(1+z) - 2\text{Li}_2\left(\frac{z}{1+z}\right) + \frac{1}{2}\text{Li}_2\left(\frac{2z}{1+z}\right) \right] + (z \to -z)$$

IR Contributions: Adjoint Scalar Masses

Messenger loops will also generate masses for the adjoint scalars (at ONE loop!):

$$m_{\phi}^{2} = \frac{y^{2}}{16\pi^{2}} M_{\text{mess}}^{2} R_{s}(z)$$
 $B_{\phi} = \frac{y^{2}}{16\pi^{2}} M_{\text{mess}}^{2} R(z)$

This leads to the prediction:

$$\left[\frac{m_{\phi}}{m_{1/2}} \sim \frac{\sqrt{|B_{\phi}|}}{m_{1/2}} \sim \sqrt{\frac{4\pi}{\alpha}}\right]$$

IR Contributions: Adjoint Scalar Masses

- Notice that $m_\phi^2 \sim |B_\phi|$ and $B_\phi < 0$ so the scalar will be lighter than the pseudoscalar.
- So the adjoint scalars are typically quite heavy – this can have consequences for the low energy spectrum, since these scalars contribute at two loops.
- Interesting phenomenology in its own right: single production of scalars through gluon fusion; double production at the LHC if light enough (Plehn, Tait, arXiv:0810.3919 [hep-ph]).

- Thus we have ordinary scalar GM masses, but a new kind of gaugino mass.
- Recall that the MRSSM needed gauginos heavier than squarks by a factor of 5. However:

$$\frac{m_{1/2}}{m_0^{IR}} = \frac{1}{\sqrt{2C_F}} \left(\frac{y}{g}\right) \left(\frac{R(z)}{\sqrt{F(z)}}\right)$$

This ratio function of z is strictly less than unity, so to make gauginos heavy requires a large Yukawa.

A Generalized Model

- The key to generating the spectrum was that we had a SUSY-breaking **AND** an R-preserving messenger scalar mass, as well as an R-preserving chirality flip.
- We can seek to capture these effects in a more general model that removes any excess material in the messenger sector:

$$W_{mess} = \sum_{i=1}^{N_{\text{mess}}} \left(\Xi \, \bar{\varphi}^i \varphi^i + M_{\text{mess}} \, \bar{\varphi}^i N^i + M_{\text{mess}} \, \bar{N}^i \varphi^i + y \, \bar{\varphi}^i \Phi N^i - y \, \bar{N}^i \Phi \varphi^i \right)$$

Less adjoints means the QCD Landau pole is higher, which will help us control the UV operators.

Benefits of The Generalized Model

- $oldsymbol{\circ}$ The Generalized Model has an additional parameter: $N_{\rm mess}$
- ${\it \odot}$ Both the gaugino mass and the squark mass squared are proportional to $N_{\rm mess}.$ Thus the gaugino:squark mass ratio $\propto \sqrt{N_{\rm mess}}.$
- This will also lower the Landau pole, but not as much as the adjoints do.

Sample Spectra

Let us consider three sample spectra:

- ISS Model, small Yukawa
- ISS Model, large Yukawa
- Generalized Model

NOTE: All scalar masses are only IR contributions.

We will use $z=0.99,\ \lambda=1$ and all other couplings $\mathcal{O}(1)$

Spectrum 1: ISS, Small Yukawa

SU(3)	$ m_{ ilde{q}} $	1400 GeV	$\mid m_{\tilde{g}} \mid$	880 GeV
SU(2)	$m_{ ilde{l}}$	360 GeV	$\mid m_{ ilde{W}} \mid$	520 GeV
U(1)	$m_{ ilde{e^c}}$	160 GeV	$\mid m_{ ilde{B}} \mid$	370 GeV
Messenger	$M,M', ilde{\Phi}$	15 TeV	m_{-}	10 TeV
sector		100 TeV	$\mid m_{\xi} \mid$	3100 GeV

$$y = 2$$
 $\Lambda_3 = 8 \times 10^3 \text{TeV}$

Spectrum 2: ISS, Large Yukawa

SU(3)	$ m_{ ilde{q}} $	1300 GeV	$\mid m_{\tilde{g}} \mid$	$3500~{ m GeV}$
SU(2)	$ m_{ ilde{l}} $	$350 \; \mathrm{GeV}$	$\mid m_{ ilde{W}} \mid$	2100 GeV
U(1)	$m_{ ilde{e^c}}$	160 GeV	$\mid m_{ ilde{B}} \mid$	1500 GeV
Messenger	$M,M', ilde{\Phi}$	13 TeV	m_{-}	10 TeV
sector		100 TeV	m_{ξ}	13 TeV

$$y = 8$$
 $\Lambda_3 = 10^4 \text{TeV}$

Spectrum 3: Generalized Model

SU(3)	$\mid m_{ ilde{q}} \mid$	1900 GeV	$\mid m_{ ilde{g}} \mid$	5300 GeV
SU(2)	$\mid m_{ ilde{l}} \mid$	620 GeV	$\mid m_{ ilde{W}} \mid$	3500 GeV
U(1)	$m_{ ilde{e^c}}$	290 GeV	$\mid m_{ ilde{B}} \mid$	2600 GeV
Messenger sector		80 TeV		

$$y = 3$$
, $N_{\text{mess}} = 6$ $\Lambda_3 = 5 \times 10^4 \text{TeV}$

Tuning

Recall that scalar masses have two relevant contributions: UV and IR.

There are two types of tuning in these models:

- To make the squarks light enough, there is a UV-IR cancelation.
- To satisfy flavor constraints, there is a tuning of the off-diagonal mass terms in the UV contribution.

UV-IR Cancelation

Recall that the UV operators contribute

$$c_D rac{M_{
m mess}^2}{\lambda \Lambda}$$

to the diagonal masses.

 $m{o}$ If m_0 is the physical mass, then this puts an estimate on c_D :

$$c_D = \frac{m_0^2 - m_{IR}^2}{M_{UV}^2}$$

Thus:

$$c_D \sim 10^{-2}$$
 for ISS Models $c_D \sim 1$ for Generalized Models

Flavor Tuning

- $m{\circ}$ Ideally we would like $c_D \sim c_{OD}$ to solve the flavor puzzle.
- \bullet We can estimate the size of ^{C}OD

$$c_{OD} = \delta \left(\frac{m_0}{M_{UV}}\right)^2 \qquad (\delta_L = \delta_R)$$

From this we can derive a general formula for the flavor tuning:

$$t \equiv \left| \frac{c_{OD}}{c_D} \right| = \frac{\delta}{|1 - (m_{IR}/m_0)^2|}$$

lacktriangle Note that this is independent of M_{UV}

Flavor Tuning

$$t \equiv \left| \frac{c_{OD}}{c_D} \right| = \frac{\delta}{|1 - (m_{IR}/m_0)^2|}$$

- From this formula, it is clear that it is difficult to avoid tuning.
- $\ensuremath{\mathfrak{o}}$ Using the results from K-K mixing:

	$ m_0 $	δ	$\mid t$
ISS with Large y	$600 \; \mathrm{GeV}$		
General Model	1 TeV	0.07	2.7%

Next Step: Higgs Sector

The Higgs sector is quite complicated compared to the MSSM. It can be thought of as two hypermultiplets (Hu,Ru), (Hd,Rd) in N=2 SUSY:

$$\delta W = \mu_u H_u R_u + \lambda_1^u H_u \Phi_1 R_u + \lambda_2^u H_u \Phi_2 R_u + (u \to d)$$

- The H superfields have R-charge 0 while the R superfields have R-charge +2. Notice the new form of the mu-term.
- Due to the supersoft nature of this model, the Higgs D-term vanishes in the limit that the soft mass terms for the adjoint scalars vanish, thus making EWSB difficult in general...

Next Step: Higgs Sector

mu and B terms can be generated through UV operators:

$$\int d^4\theta \, \frac{1}{\Lambda^2} \, (\Xi^{\dagger}\Xi) \, H_u H_d \qquad \sqrt{B_{\mu}} \sim M_{UV}$$

$$\int d^4\theta \, \frac{1}{\Lambda} \, \Xi^{\dagger} \, H_{u(d)} R_{u(d)} \qquad \mu_{u(d)} \sim M_{UV}$$

- Except for the B term, the Higgs sector obeys a PQ symmetry. This is different than the MSSM where **both** mu and B violate this symmetry.
- This implies that these operators must be generated by different physics!

Charginos

In ordinary GM, the gravitino is the LSP, and it is so here as well:

$$m_{3/2} \sim \frac{f^2}{M_P} \sim 1 \text{ keV}$$

- Kribs, Martin and Roy (arXiv:0807.4936) study the EW gauginos/higgsinos.
- In many regions of parameter space, they find the charginos are the NLSP, and that all SUSY particles can decay through a cascade involving the charged wino (lower bound at 101 GeV). This leads to interesting new collider signals.

Discussion

- MRSSM: A new class of SUSY model with some fascinating possibilities!
- Besides a new and untried phenomenological model, it is a great home for ISS-like models.
- RGM: A modified SUSY-breaking mediator that provides a new and unique spectrum, both through what it allows, and the nature of the mass spectrum.

Discussion

- For RGM to realize MRSSM, it is possible but requires a better understanding of the UV theory.
- "mu problem" solved, but "B problem" is still open - where does this operator come from?
- The Higgs sector, even at low energy, provides a rich environment for new physics due to the N=2 couplings and pseudo-SuperSoft nature of the model - work in progress...

The End!