Diffractive Higgs Production at the LHC

Andrew Pilkington University of Manchester

HEFTI light hidden Higgs workshop, UC Davis, March 2008.

Overview

- Central exclusive production and the FP420 project.
- Luminosity dependent backgrounds
- \bullet $h \rightarrow aa \rightarrow 4\tau$ in the NMSSM

Central Exclusive Production

- Protons remain intact and typically lose 1% of their momentum during interaction.
- Protons scatter through very small angles (p_T of order 0.5 GeV).
- All of momentum lost during interaction goes into the production of a central system.

- Central system is produced in a $J_z=0$ state (true for zero angle scattering):
 - Resonance production is predominantly 0⁺⁺.
 - \odot Di-quark backgrounds are suppressed by $\sim rac{m_q^2}{M^2}$

Central Exclusive Production (II) – Kinematics

If tag and measure each outgoing proton, can reconstruct the mass,
 M, and rapidity, y, of the central system from 4-momentum conservation:

$$M^2 \approx \xi_1 \, \xi_2 \, s$$
 and $y \approx \frac{1}{2} \ln\left(\frac{\xi_1}{\xi_2}\right)$.

- ξ_i is the fractional longitudinal momentum loss of proton i during the interaction
- Mass measurement of any resonance regardless of decay:
 - ${}_{m{ o}}$ doesn't depend on jet energy resolution ($h
 ightarrow bar{b}$)
 - \bullet or missing energy ($h \to WW^*$ and $h \to aa \to 4 au$)

Forward Proton Detectors

Installation of new detectors at 220m/420m from the interaction point turns the LHC into a magnetic spectrometer for off-momentum protons from CEP

- ξ determined from distance of proton hit to beam
- Lower ξ acceptance determined from distance of active detector edge to beam

• Upper acceptance from beam pipe.

Forward Detector Acceptance

- Low mass acceptance depends on how close detectors are to the beam
- Good coverage of 60 200 GeV, a scalar Higgs hunting ground?

The FP420 design

- Proposal to install forward proton taggers at 420m either side of IP.
- Seach side has 2 stations which are 8m apart. Each station consists of:
 - @ 3D silicon detectors fixed to pocket in beam-pipe. Proton hit within silicon measured to 10 $\mu m.$
 - Beam-pipe moved closer to beam when beam is stable (Hamburg Pipe).
 - Position of pocket w.r.t beam measured to 50 μm by beam positioning monitors (BPMs).
 - Cerenkov fast timing detectors (GASTOF front station, QUARTIC rear) measure time-of-flight (TOF) of each proton from the IP to 10 ps.

FP420 layout

Forward Proton Resolution

- O Purple curve is primary momentum spread uncertainty.
- Realistically aim for red/green curve which are the effects of the proton displacement measurement and transverse beam spot size respectively.
- Mass measurement accurate to approximately 2.3 GeV for 90 GeV central system and 2 GeV for 120 GeV central system

Unfortunately.....

<-Standard Model

- CEP cross sections are typically small; $\sigma \sim 1 ext{ to } 20 ext{ fb}^{-1}$ (CTEQ6M)
- Have to fight against
 - Trigger efficiencies at low p_T .
 - Luminosity dependent backgrounds

Trigger Strategy

- Typically CEP rates are low, $\sigma \sim 1 ext{ to } 20 ext{ fb}^{-1}$, therefore need a good trigger.
- Can't trigger on forward protons at 420m as signal arrives too late for L1 decision.
 - At L2, can require two `in-time' proton hits to reject non-diffractive events and substantially reduce the rate.
- Have to trigger on central detector quantities at L1
 - Lepton triggers are easiest, low thresholds.
 - Jets very hard. Standard triggers always have high thresholds.
 - Possibility for jets: Rapidity gap triggers (low lumi), low p_T muons for b-jets, fixed (large) jet rate (rejected at L2). None are that successful at high luminosity.

Overlap Backgrounds (I)

- The overlap (OLAP) background is a coincidence between two or more interactions in one bunch crossing, that result in two forward protons and a hard scatter that mimics the signal.
- Largest background is [p][X][p], where [p] is a SD event that produces one forward proton within the acceptance of FP420 (1% of all events at LHC) and [X] is an event that produces a hard scatter to mimic the signal (i.e. [X] is a normal QCD $b\bar{b}$ event if we are looking for $h \rightarrow b\bar{b}$.
- At this stage, at all luminosities, the OLAP background is usually many orders of magnitude larger than the signal (shown later).

Overlap backgrounds (II)

It should be noted that there are many sources of forward protons, not just SD:

At 420m, usually only care about SD events.

- At 220m, large number of forward protons from non-diffractive events. Also large uncertainty, factor of two difference between PYTHIA and PHOJET.
- Machine induced backgrounds from beam-halo, beam-gas and momentum cleaning. Beam-halo is negligible, others not well known at this time.

Overlap backgrounds (III) - TOF rejection

- Both protons TOF measured to 10ps accuracy. Reference clock accurate to 5ps.
- Vertex location from difference in time-of-flight, if optics are well known, i.e.

$$z = \frac{c}{2} \left(t_2 - t_1 \right)$$

- This measurement is accurate to 2.1mm.
- © Compare TOF vertex to central system vertex (di-jets, muon etc):
 - Rejection factor of approximately 20 over OLAP background (95% of signal retained).
 - If TOF accuracy improved to 2ps, rejection factor increases to 100.
 - Would need new design or new ideas.

Overlap background (IV) – Luminosity dependence

- As luminosity increases, so does the average number of interactions in a bunch crossing:
 - From 3.5 per B.C. at 10^{33} cm⁻² s⁻¹ to 35 per B.C. at 10^{34} cm⁻² s⁻¹.

The probability for three-fold coincidence [p][X][p] also increases.

Example CEP analysis: $h \rightarrow aa \rightarrow 4\tau$ in NMSSM

At least 4 neutrinos in the final state:

Mass hard to obtain from decay products

Mass obtained from forward protons if produced in CEP.

Point chosen results in (NMHDECAY):

 $m_h = 92.9 \text{ GeV}$ $m_a = 9.7 \text{ GeV}$ $BR(h \rightarrow aa) = 92\%$ $BR(a \rightarrow \tau^+ \tau^-) = 81\%$

Simulated with ExHuME event generator. Cross section = 4.8fb.

Backgrounds

- Four types of background
 - \odot CEP: $b\overline{b}$ and \overline{gg} simulated using ExHuME.
 - OPE: dijets simulated by POMWIG with H1 2006 Fit B dPDF.
 - OLAP: [p][jj][p] simulated with PYTHIA.
 - QED: $pp \rightarrow p + 4\tau + p$ and $pp \rightarrow p + 2\tau 2l + p$ simulated with MADGRAPH/ PYTHIA. ($l = e, \mu$)
- Focus on those cuts used to reduce overlap background rejection in this talk there are others that are used to generally reject dijets.

Ethos of Analysis

- Ø Perform a track based analysis:
 - On't need neutrals as we have lots of missing energy anyway.
 - Tracks can be associated with a specific vertex and a specific interaction. Reduces effect of pile-up on results.
- Trigger on a low transverse momentum muon:
 - Low p_T muon triggers foreseen at ATLAS/CMS.
 - Hadronic decay of taus too low in energy to trigger the tau threshold triggers.

Charged Track Multiplicity Cut

- Require 4 or 6 charged tracks within 2.5mm of vertex defined by the muon (smaller => lose signal; greater => pile-up contamination).
- a Large rejection against dijet backgrounds.
- Very efficient at removing OLAP backgrounds due to underlying event activity producing a large number of tracks.

Topology Cuts (I) - clustering

- Oluster tracks to make four 'tau' objects
- Cluster the tau objects to create `pseudo-scalar' objects.

Topology cuts (II)

Require pseudo-scalars are back to back, $\Delta \phi > 2.8$; this does not affect CEP events, which have no initial state radiation.

Require average rapidity of pseudo-scalars matches that predicted by FP420, i.e.

$$\Delta y = \left| y - \left(\frac{\eta_{a_1} + \eta_{a_2}}{2} \right) \right| \le 0.1$$

This is a typical approach to reject overlap backgrounds: the forward protons do not come from the same interaction as the hard scatter and hence the kinematics do not match up.

Final event rates

Luminosity	MU10		MU15		MU10 (2ps)	
$(\times 10^{33} \text{ cm}^{-2} \text{ s}^{-1})$	S	B	S	B	S	B
1	1.4	0.02	1.0	0.01	1.4	0.02
5	3.8	0.20	2.9	0.11	3.8	0.08
10	3.3	0.57	2.5	0.33	3.3	0.15

Table 1: Expected number of signal (S) and background (B) events for the three trigger scenarios assuming that the data are collected at a fixed instantaneous luminosity over a three year period. We assume the integrated luminosity acquired each year is 10 fb⁻¹, 50 fb⁻¹ and 100 fb⁻¹ at an instantaneous luminosity of 1×10^{33} cm⁻² s⁻¹, 5×10^{33} cm⁻² s⁻¹ and 10×10^{33} cm⁻² s⁻¹.

- Note that signal drops between mid-high luminosity, due to events failing charge track requirement as pile-up tracks are wrongly associated with interaction.
- Background increases due to OLAP background rate increasing rapidly.

Significances; assuming 10 fb⁻¹ yr⁻¹ at L=10³³ cm⁻² s⁻¹.

Left: analysis presented in this talk.

- Right: Significance for double data, i.e. combined ATLAS/CMS results or improved trigger (using (di-)electron, di-muon, electron-muon triggers expected to increase efficiency by factor of 2.5)
- Improving the timing to 2ps dramatically reduces OLAP
- S determined using Poisson statistics: $\frac{1}{\sqrt{2\pi}} \int_{S}^{\infty} e^{\frac{-x^2}{2}} dx = \sum_{n=s+b}^{\infty} \frac{b^n e^{-b}}{n!}$

Pseudo-scalar mass reconstruction (I)

Reconstruct pseudo-scalar mass from forward proton information, given that

$$p_{a_1} + p_{a_2} = p_h$$

Assume that the decay products of the pseudo-scalar are collinear with the pseudo-scalar (a good approximation as the a's are highly boosted), Thus the momentum of each pseudo-scalar is given by

$$p_i^{vis} = f_i \ p_{a,i}$$

We obtain from the above equations, and information from FP420,

$$\frac{(p_1^{vis})_{x,y}}{f_1} + \frac{(p_2^{vis})_{x,y}}{f_2} = 0$$
$$\frac{(p_1^{vis})_z}{f_1} + \frac{(p_2^{vis})_z}{f_2} = (\xi_1 - \xi_2)\frac{\sqrt{s}}{2}$$

Which can be solved to give 4 independent pseudo-scalar mass measurements per event!

Pseudo-scalar mass reconstruction (II)

Left: Distribution is broad due to breakdown of collinearity approximation, not detector effects.

Right: Typical a mass measurement assuming double data for 150 fb⁻¹ of data collected at 5×10^{33} cm⁻² s⁻¹. Expect from examining many such samples that $m_a = 9.3 \pm 2.3 \text{GeV}$

Summary

- Central exclusive production offers a unique way to measure the properties of the Higgs boson at the LHC:
 - Measurement of the quantum numbers of the Higgs.
 - Mass measurement to just a few GeV, regardless of decay channel.
- In Difficult decay channels, such as $h \rightarrow aa \rightarrow 4\tau$, become possible with CEP.
- The outstanding experimental challenges are:
 - Can we trigger with high efficiency on jets if the Higgs decays that way.
 - Can we reduce the overlap backgrounds further by improved time-of-flight? Or can we reject the overlap background another way?

Some PR slides.....

$h \rightarrow b\overline{b}$ in the MSSM

Upper left: 5σ contours for heavy Higgs observation using CEP.

Lower left: 5σ contours for light Higgs observation using CEP.

Lower right: Mass plot for light (119.5GeV) Higgs for 60 fb⁻¹ of data ($\tan\beta = 40$, $M_A = 120 \text{GeV}$)

First observation of CEP at CDF

- Looked for an excess of events in the double pomeron exchange (DPE) dijet sample. The dijets are produced in DPE by pomeron-pomeron fusion.
- In DPE: Two forward protons + dijets + pomeron remnants.
- Look at dijet mass fraction (Rjj) the mass of the central system that is contained in the jets.

