Diffractive Higgs Production at the LHC

Andrew Pilkington
University of Manchester

HEFTI light hidden Higgs workshop, UC Davis, March 2008.

Overview

- Central exclusive production and the FP420 project.
- Luminosity dependent backgrounds
- $h \rightarrow a a \rightarrow 4 \tau$ in the NMSSM

Central Exclusive Production

- Protons remain intact and typically lose 1% of their momentum during interaction.
- Protons scatter through very small angles (p_{T} of order 0.5 GeV).
- All of momentum lost during interaction goes into the production of a central system.
- Central system is produced in a $\mathrm{J}_{\mathrm{z}}=0$ state (true for zero angle scattering):
- Resonance production is predominantly 0^{++}.
- Di-quark backgrounds are suppressed by $\sim \frac{m_{q}^{2}}{M^{2}}$

Central Exclusive Production (II) - Kinematics

- If tag and measure each outgoing proton, can reconstruct the mass, M, and rapidity, y, of the central system from 4-momentum conservation:

$$
M^{2} \approx \xi_{1} \xi_{2} s \quad \text { and } \quad y \approx \frac{1}{2} \ln \left(\frac{\xi_{1}}{\xi_{2}}\right) .
$$

- ξ_{i} is the fractional longitudinal momentum loss of proton i during the interaction
- Mass measurement of any resonance regardless of decay:
- doesn't depend on jet energy resolution $(h \rightarrow b \bar{b})$
- or missing energy ($h \rightarrow W W^{*}$ and $h \rightarrow a a \rightarrow 4 \tau$)

Forward Proton Detectors

- Installation of new detectors at $220 \mathrm{~m} / 420 \mathrm{~m}$ from the interaction point turns the LHC into a magnetic spectrometer for off-momentum protons from CEP

- ξ determined from distance of proton hit to beam
- Lower ξ acceptance determined from distance of active detector edge to beam
- Upper acceptance from beam pipe.

Forward Detector Acceptance

- Low mass acceptance depends on how close detectors are to the beam
- Good coverage of $60-200 \mathrm{GeV}$, a scalar Higgs hunting ground?

The FP420 design

- Proposal to install forward proton taggers at 420 m either side of IP.
- Each side has 2 stations which are 8 m apart. Each station consists of:
- 3D silicon detectors fixed to pocket in beam-pipe. Proton hit within silicon measured to $10 \mu \mathrm{~m}$.
- Beam-pipe moved closer to beam when beam is stable (Hamburg Pipe).
- Position of pocket w.r.t beam measured to $50 \mu \mathrm{~m}$ by beam positioning monitors (BPMs).
- Cerenkov fast timing detectors (GASTOF front station, QUARTIC rear) measure time-of-flight (TOF) of each proton from the IP to 10 ps .

FP420 layout

Forward Proton Resolution

- Purple curve is primary momentum spread uncertainty.
- Realistically aim for red/green curve which are the effects of the proton displacement measurement and transverse beam spot size respectively.
- Mass measurement accurate to approximately 2.3 GeV for 90 GeV central system and 2 GeV for 120 GeV central system

Unfortunately.....

- CEP cross sections are typically small; $\sigma \sim 1$ to $20 \mathrm{fb}^{-1}$ (CTEQ6M)
- Have to fight against
- Trigger efficiencies at low Pт.
- Luminosity dependent backgrounds

Trigger Strategy

- Typically CEP rates are low, $\sigma \sim 1$ to $20 \mathrm{fb}^{-1}$, therefore need a good trigger.
- Can't trigger on forward protons at 420 m as signal arrives too late for L 1 decision.
- At L2, can require two 'in-time' proton hits to reject non-diffractive events and substantially reduce the rate.
- Have to trigger on central detector quantities at L1
- Lepton triggers are easiest, low thresholds.
- Jets very hard. Standard triggers always have high thresholds.
- Possibility for jets: Rapidity gap triggers (low lumi), low pt muons for b-jets, fixed (large) jet rate (rejected at L2). None are that successful at high luminosity.

Overlap Backgrounds (I)

- The overlap (OLAP) background is a coincidence between two or more interactions in one bunch crossing, that result in two forward protons and a hard scatter that mimics the signal.
- Largest background is $[p][X][p]$, where $[p]$ is a SD event that produces one forward proton within the acceptance of FP420 (1% of all events at LHC) and $[X]$ is an event that produces a hard scatter to mimic the signal (i.e. $[X]$ is a normal QCD $b \bar{b}$ event if we are looking for $h \rightarrow b \bar{b}$.
- At this stage, at all luminosities, the OLAP background is usually many orders of magnitude larger than the signal (shown later).

Overlap backgrounds (II)

- It should be noted that there are many sources of forward protons, not just SD:
- At 420 m , usually only care about SD events.
- At 220 m , large number of forward protons from non-diffractive events. Also large uncertainty, factor of two difference between PYTHIA and PHOJET.
- Machine induced backgrounds from beam-halo, beam-gas and momentum cleaning. Beam-halo is negligible, others not well known at this time.

Overlap backgrounds (III) - TOF rejection

- Both protons TOF measured to 10ps accuracy. Reference clock accurate to 5ps.
- Vertex location from difference in time-of-flight, if optics are well known, i.e.

$$
z=\frac{c}{2}\left(t_{2}-t_{1}\right)
$$

- This measurement is accurate to 2.1 mm .
- Compare TOF vertex to central system vertex (di-jets, muon etc):
- Rejection factor of approximately 20 over OLAP background (95% of signal retained).
- If TOF accuracy improved to 2ps, rejection factor increases to 100 .
- Would need new design or new ideas.

Overlap background (IV) - Luminosity dependence

- As luminosity increases, so does the average number of interactions in a bunch crossing:
- From 3.5 per B.C. at $10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ to 35 per B.C. at $10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$.
- The probability for three-fold coincidence $[p][X][p]$ also increases.

Example CEP analysis: $h \rightarrow a a \rightarrow 4 \tau$ in NMSSM

- At least 4 neutrinos in the final state:
- Mass hard to obtain from decay products
- Mass obtained from forward protons if produced in CEP.
- Point chosen results in (NMHDECAY):

$$
\begin{aligned}
m_{h} & =92.9 \mathrm{GeV} \\
m_{a} & =9.7 \mathrm{GeV} \\
\operatorname{BR}(h \rightarrow a a) & =92 \% \\
\operatorname{BR}\left(a \rightarrow \tau^{+} \tau^{-}\right) & =81 \%
\end{aligned}
$$

- Simulated with ExHuME event generator. Cross section $=4.8 \mathrm{fb}$.

Backgrounds

- Four types of background
- CEP: $b \bar{b}$ and $g g$ simulated using ExHuME.
- DPE: dijets simulated by POMWIG with H1 2006 Fit B dPDF.
- OLAP: [p][jj][p] simulated with PYTHIA.
- QED: $p p \rightarrow p+4 \tau+p$ and $p p \rightarrow p+2 \tau 2 l+p$ simulated with MADGRAPH/ PYTHIA. $(l=e, \mu)$
- Focus on those cuts used to reduce overlap background rejection in this talk there are others that are used to generally reject dijets.

Ethos of Analysis

- Perform a track based analysis:
- Don't need neutrals as we have lots of missing energy anyway.
- Tracks can be associated with a specific vertex and a specific interaction. Reduces effect of pile-up on results.
- Trigger on a low transverse momentum muon:
- Low PT muon triggers foreseen at ATLAS/CMS.
- Hadronic decay of taus too low in energy to trigger the tau threshold triggers.

Charged Track Multiplicity Cut

- Require 4 or 6 charged tracks within 2.5 mm of vertex defined by the muon (smaller \Rightarrow lose signal; greater \Rightarrow pile-up contamination).
- Large rejection against dijet backgrounds.
- Very efficient at removing OLAP backgrounds due to underlying event activity producing a large number of tracks.

Topology Cuts (I) - clustering

- Cluster tracks to make four 'tau' objects
- Cluster the tau objects to create 'pseudo-scalar' objects.

Topology cuts (II)

- Require pseudo-scalars are back to back, $\Delta \phi>2.8$; this does not affect CEP events, which have no initial state radiation.
- Require average rapidity of pseudo-scalars matches that predicted by FP420, i.e

$$
\Delta y=\left|y-\left(\frac{\eta_{a_{1}}+\eta_{a_{2}}}{2}\right)\right| \leq 0.1
$$

- This is a typical approach to reject overlap backgrounds: the forward protons do not come from the same interaction as the hard scatter and hence the kinematics do not match up.

Final event rates

Luminosity	MU10		MU15		MU10 (2ps)	
$\left(\times 10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right)$	S	B	S	B	S	B
1	1.4	0.02	1.0	0.01	1.4	0.02
5	3.8	0.20	2.9	0.11	3.8	0.08
10	3.3	0.57	2.5	0.33	3.3	0.15

Table 1: Expected number of signal (S) and background (B) events for the three trigger scenarios assuming that the data are collected at a fixed instantaneous luminosity over a three year period. We assume the integrated luminosity acquired each year is $10 \mathrm{fb}^{-1}, 50 \mathrm{fb}^{-1}$ and $100 \mathrm{fb}^{-1}$ at an instantaneous luminosity of $1 \times 10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}, 5 \times 10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ and $10 \times 10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$.

- Note that signal drops between mid-high luminosity, due to events failing charge track requirement as pile-up tracks are wrongly associated with interaction.
- Background increases due to OLAP background rate increasing rapidly.

Significances; assuming $10 \mathrm{fb}^{-1} \mathrm{yr}^{-1}$ at $\mathrm{L}=10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$.

- Left: analysis presented in this talk.
- Right: Significance for double data, i.e. combined ATLAS/CMS results or improved trigger (using (di-)electron, di-muon, electron-muon triggers expected to increase efficiency by factor of 2.5)
- Improving the timing to 2 ps dramatically reduces OLAP
- S determined using Poisson statistics: $\frac{1}{\sqrt{2 \pi}} \int_{S}^{\infty} \mathrm{e}^{-\frac{x^{2}}{2}} d x=\sum_{n=s+b}^{\infty} \frac{b^{n} \mathrm{e}^{-b}}{n!}$

Pseudo-scalar mass reconstruction (I)

- Reconstruct pseudo-scalar mass from forward proton information, given that

$$
p_{a_{1}}+p_{a_{2}}=p_{h}
$$

- Assume that the decay products of the pseudo-scalar are collinear with the pseudo-scalar (a good approximation as the a's are highly boosted), Thus the momentum of each pseudo-scalar is given by

$$
p_{i}^{v i s}=f_{i} p_{a, i}
$$

- We obtain from the above equations, and information from FP420,

$$
\begin{aligned}
\frac{\left(p_{1}^{v i s}\right)_{x, y}}{f_{1}}+\frac{\left(p_{2}^{v i s}\right)_{x, y}}{f_{2}} & =0 \\
\frac{\left(p_{1}^{v i s}\right)_{z}}{f_{1}}+\frac{\left(p_{2}^{v i s}\right)_{z}}{f_{2}} & =\left(\xi_{1}-\xi_{2}\right) \frac{\sqrt{s}}{2}
\end{aligned}
$$

- Which can be solved to give 4 independent pseudo-scalar mass measurements per event!

Pseudo-scalar mass reconstruction (II)

- Left: Distribution is broad due to breakdown of collinearity approximation, not detector effects.
- Right: Typical a mass measurement assuming double data for $150 \mathrm{fb}^{-1}$ of data collected at $5 \times 10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$. Expect from examining many such samples that $m_{a}=9.3 \pm 2.3 \mathrm{GeV}$

Summary

- Central exclusive production offers a unique way to measure the properties of the Higgs boson at the LHC:
- Measurement of the quantum numbers of the Higgs.
- Mass measurement to just a few GeV, regardless of decay channel.
- Difficult decay channels, such as $h \rightarrow a a \rightarrow 4 \tau$, become possible with CEP.
- The outstanding experimental challenges are:
- Can we trigger with high efficiency on jets if the Higgs decays that way.
- Can we reduce the overlap backgrounds further by improved time-of-flight? Or can we reject the overlap background another way?

Some PR slides......

$h \rightarrow b \bar{b}$ in the MSSM

Upper left: 5σ contours for heavy Higgs observation using CEP.

Lower left: 5σ contours for light Higgs observation using CEP.

Lower right: Mass plot for light (119.5GeV) Higgs for $60 \mathrm{fb}^{-1}$ of data $\left(\tan \beta=40, M_{A}=120 \mathrm{GeV}\right)$

First observation of CEP at CDF

- Looked for an excess of events in the double pomeron exchange (DPE) dijet sample. The dijets are produced in DPE by pomeron-pomeron fusion.
- In DPE: Two forward protons + dijets + pomeron remnants.
- Look at dijet mass fraction (Rjj) - the mass of the central system that is contained in the jets.

